
Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits

K. L. McMillan

School of Computer Science
Carnegie Mellon University

1 Introduction

A number of researchers have observed that the arbitrary interleaving of concurrent actions is a
major contributor to the state explosion problem, and that substantial efficiencies could be obtained
if the enumeration of all possible interleavings could be avoided. As a result, several have proposed
verification algorithms based on partial orders [Va189, Valg0, GOd90, GW91, PL89, PL90, PL91,
YTK91]. The method presented in this paper is based on unfolding a Petri net into an acyclic structure
called an occurrence net. The notion of unfolding was introduced by Nielsen, Piotkin and Winskel as a
means for giving a concurrent semantics to nets, but in this case tile goal is to avoid the state explosion
problem. An algorithm is introduced for constructing the unfolding of a net, whidl terminates when
the unfolded net represents all of the reachable states of the original net. The unfolding is adequate
for testing teachability (to be more precise, coverability) and deadlock properties. Reachability testing
can be used to prove safety properties of finite state systems, for example in Diil's trace theory for
asynchronous circuits [Di!88]. It is shown using an asynchronous circuit example that the unfolding
can be polynomial in the circuit size while the state space is exponential. In contrast , the stubborn
sets method of Valmari [Va189, Val90] and trace automaton method of Godefroid [GOdg0, GW91] are
ineffective in reducing the state explosion problem for asynchronous circuit models, because of the
ubiquity of confusion in such models. In addition, because the unfolding method is fully automatic, it
has a certain advantage over behavior machines method of Probst [PL89, PLg0, PL91], which requires
a pomset grammar describing tile circuit's behavior to be constructed by hand.

2 T h e u n f o l d i n g o p e r a t i o n

Briefly, an occurrence net is a Petri net without backward conflict (two transitions outputting to
the same place), and without cycles. Such a net can be obtained from an ordinary place/transition
net by an unfolding process. Figure 1 shows an example of a net and part of its unfolding. Since the
occurrence net it is acyclic and rooted, there is a natural well founded (partial) order on the transitions
and places of the net. This order is called the dependency order. It is impossible for a transition of
the occurrence net to fire unless all of its predecessors in the dependency order have fired.

The most important theoretical notion regarding occurrence nets is that of a configuration. A
configuration represents a possible partial run of the net - it is any set of transitions that satisfies the
following conditions:

1. Ifany transition is in the configuration, then so are all of its predecessors in the dependency order
(a configuration is downward closed).

165

a) Petri net

b~

Fig. 1. Unfolding example.

2. A configuration cannot contain two transitions in conflict, meaning that both input from the same
place.

An example of a configuration is shown in figure 2, with elements of the configuration filled in black.
Two transitions in tile figure are hatched in. Either of these transitions can be added to the black set
to form a new configuration. Adding any other transition would be illegal, however, since it would
either violate downward closure or conflict-freeness.

In an unfolding, each transition corresponds to a transition of tile original net, and each place
corresponds to a place of the original net. We can associate each configuration of tile unfolding with a
state (marking) of the original net by simply identifying those places whose tokens are produced but
not consumed by the transitions in the configuration. This set is marked with black dots in figure 2.
Mapping this set back onto the original net, we obtain the final stale of the configuration.

The final theoretical notion we need regarding unfoldings is that of a local configuration. The local
configuration associated with any transition consists of that tra~sition and all of its predecessors in

166

�9 �9

Fig. 2. Configuration

the dependency order (that is, tile downward closure of the transition as a singleton). This is the set
of transitions which necessarily are contained in any configuration containing the given transition.
Note that a local configuration may not exist if this set contains two transitions in conflict.

We are now ready to consider the problem of building a fragment of the unfolding which is large
enough to represent all of the reachable markings of the original net. Building the unfolding itself is
straightforward. The process s tar ts with a set of places corresponding to the initial marking of the
original net. The unfolding is grown by finding a set of places in the unfolding which correspond to the
inputs (preset) of a transition in the original net, then adding a new instance of that transition to the
unfolding, as well as a new set of places corresponding to its outputs (postset). If the new transition
has no conflicts in its local configuration (more precisely, if it has a local configuration) it is kept,
otherwise it is discarded. This is because the existence of a conflict means tha t the new transition can
occur in no configurations of the unfolding.

The key to termination of the unfolding is to identify a set of transitions of the unfolding to act as
cutoff points. This set must have the following property: any configuration containing a cutoff point
must be equivalent (in terms of final state) to some configuration containing no cutoff points�9 From
this definition, it follows that any successor of a cutoff point can be safely omitted from the unfolding,
without sacrificing any reachable markings of the original net. To see this, suppose we have built the
unfolding only up to the cutoff points, in the sense that any new transition we can add must have
a cutoff point as a predecessor. From this point on, any transition we add must be descended from
some cutoff point. Thus, any configuration we might add to the unfolding must have the same final
s tate as some configuration already present.

A sufficient condition for a transition to be a cutoff point is the following: the final s tate of its
local configuration is the same as that of some other transition whose local configuration is smaller.
The proof of this s ta tement is as follows: suppose there are two transitions tl and t2, whose local

167

configurations have tile same final state, with that of t2 being smaller. Now imagine a configuration
C1 (local or otherwise) containing t l . We can obtain C1 from the local configuration of tl by adding
the transitions in the difference one at a time, in an order consistent with the dependency relation.
According to our construction, at each step of this process, there is a corresponding transition we can
add to the local configuration of t2 leading to the same final state. IIence, we can build a configuration
C2 containing tz which has the same final state, but is at least one transition smaller than CI, since
we started from a smaller set. Thus if any configuration contains a cutoff point, it is equivalent to a
smaller configuration. Configurations cannot be made arbitrarily small, however, so any configuration
containing a cutoff point must be equivalent to a configuration not containing a cutoff point. Since all
tile reachable states are represented by configurations containing no cutoff points, it is unnecessary
to build the unfolding beyond any cutoff point.

We can find tile cutoff points by simply keeping a hash table of all transitions, indexed by the final
state of the local configuration. If when generating a transition, we find in the table a transition with
equivalent but smaller local configuration, we discard tile new transition. We can show, as follows,
that this process is guaranteed to terminate if the original net is bounded and finite. First, the depth
of the unfolding must be bounded by the number of number of reachable markings. The depth of a
given transition in the unfolding is tile longest chain of predecessors of that transition. Each transition
in this chain has a local configuration, and these local configurations form a chain of increasing size.
If the depth of the given transition is greater than the number of reachable markings of the original
net, then by the pidgeon-hole principle, two of these local configurations must have the same final
state. This cannot be, however, since in this case one of the transitions in the chain would have been
determined to be a cutoff point. If the original net is bounded, it has a finite number of reachable
markings, hence the depth of the unfolding is bounded. If the original net is finite, we can show by
induction that the number of transitions at any given depth in the unfolding is finite. Hence the total
number of transitions generated by the unfolding process is finite.

As an example of terminatiou, consider the net of figure 3, which represents the dining philosophers
paradigm. In this scenario, there are n concurrent processes (philosophers), each of which must acquire
the use of two shared resources (forks) in order to execute its critical section (eating spaghetti). The
processes are organized in a ring, with each neighboring pair sharing one resource. Figure 4 shows tile
completed unfolding for the case of three philosophers (n = 3). The cutoff points are marked with an
X. The local configuration of each of these transitions is equivalent to the empty configuration. We
observe that the size of the unfolding is not only bounded, but is linear in the number of philosophers,
while the number of states is exponential as shown in table 1.

n unfolding size reachable[
(transitions) states]

21

Table 1. Unfolding size and number of states for Dining Philosophers

168

It]

i left resource
ical section

xwt ~ d g h t resource

F (1+1) mod n

Fig.3. Dining philosophers net.

Recall that in growing the unfolding, it is necessary to enumerate all of the subsets of places
which correspond to the inputs of transitions. Tile complexity of this is O(~), where n is tile size of
the unfolding, and i is the largest number of inputs of any transition. This is,of course, bounded by
n i, which is polynomial given a fixed value of i. In practice, however, the number of subsets which
are considered can be reduced quite effectively, using tile following two techniques. First, suppose
we are enumerating the subsets: we need not add any place to the set if the result would not be
contained in the set of inputs of any transition. Second whenever a place is added to the set, we
can immediately eliminate from consideration all of the places which have a predecessor in conflict
with a predecessor of the new element, since any transition with both places as inputs would be
discarded. We add transitions to the net in order increasing size of the local configuration, so that we
can use a hash table to determine whether or not each transition is n cutoff point. Thus, whenever a
candidate for a transition in the unfolding is generated, it is placed in a queue ordered by increasing
local configuration size. The places of the net are enumerated by pulling the first element t ~ from
this queue, testing whether it is a cutoff point, and if not, generating places for its outputs. The
procedure terminates when the queue of candidate transitions becomes empty. Figures 5 and 6 show
a pseudo-code implementation of this procedure. The pseudo-code is written somewhat inefficiently
in places for simplicity.

In function Unfold, the arguments P , T and M0 are the places, transitions and initial marking of
the original net. Each place in the unfolding is represented by a pair (place, preds), where place is the
corresponding place in the original net, and preds is the set of immediate predecessor transitions in
the unfolding (note that since there is no backward conflict, the size of this set is at most one). Each
transition in the unfolding is represented by a pair (grass, preds), where grass is the corresponding
transition in the original net, and preds is tile set of immediate predecessor places in the unfolding.
The function returns P~ and T ~, the set of places and transitions, respectively, of the unfolding. There
is also a queue Q' of transitions to be expanded, and a hash table (HashTable) used for identifying

169

[t]

~ _ _ _ _ . . . g ~ - - s~ 3 X..J r~

Fig. 4. Unfolding of the dining philosophers net.

cutoff points.
Coverability problems call be solved using the unfolding in the following way. Imagine we have a set

of places in the original net, and we wish to determined whether this set can every be simultaneously
marked. We simply add a new transition to tile net, whose iuputs are the given set, and then construct
the unfolding. If tile unfolding contains any instance of tMs new transition, the set is coverable, and
otherwise not.

3 A p p l i c a t i o n e x a m p l e

We now consider a more realistic example than the dining philosophers - a speed-independent [Sei80]
circuit designed to implement a distributed mutual exclusion (DME) protocol. The circuit was de-
signed by Alain Martin [Mar85] and has been analyzed using an abstracted trace theoretic model by
Dill [Dii88].

Networks of logic gates in speed-independent circuits are readily modeled by Petri nets. A network
o f n gates can be modeled by a Petri net of O(n) places. When we model a network of gates as a Petri
net, we introduce two places for each input of each gate. One represents the the input in a logic low
state, while the other represents tile input in a logic high state. 'l~'ansitions in tile Petri net correspond
to rising or falling transitions of gate outputs. A rising transition of a gate output removes all tile
logic low tokens from the inputs to which it is connected, and places tokens on the corresponding
logic high places.

As an example, figure 7 shows the net fragment representing an AND gate. When both inputs of
tile gate are at the logic high state, we can move a token from the place representing logic low at tile
output to the place representing logic high. Similarly, if either input is at tile logic low state, we can
move a token from the place representing logic high at the output to the place representing logic low.

170

global P',T',Q',HashTable 0
function Unfold(P,T, Mo)

P' = T ' = Q' = g; clear HashTable
for each p E M0 do

add p' = (p, r to P'
GenTrans({p'}, T)

end for
while the queue Q' is not empty do

pull the first t ' off of Q'
if not IsCutoffPoint?(t') do

for each p in outputs of trans(t') do
add p' = (p, [t~ to P '
GenTrans({p'}, T)

end for
end if

end while
returu(P',T I)

end function

procedure GenTrans(S', T)
if not exists t E T such that plaoe(S') C_ inputs of t then return
if Predecessors(S') has forward conflict then return
forall t E T do if place(S t) = inputs of t then

add t' = (t, S') to set T '
insert t ' in Q' in order of JLocalConfig(t')[

end for
for all p' E P where p' older than any member of S ~ do

GenTrans(S' U p', 7")
end procedure

Fig. 5. Pseudo-code implementation of unfolding procedure

A dynamic hazard occurs, for example, if the AND gate 's ou tpu t is enabled to rise while one
of the inputs is enabled to fall. The problem of whether or not a dynamic hazard can occur can
thus be posed as a coverability problem. Alternatively, since dynamic hazards correspond to dynamic
conflicts in the unfolding, the problem can be solved by constructing the unfolding and examining
it for dynamic conflicts, i.e., two transitions which are in conflict, and which may be simultaneously
enabled. The DME circuit also uses special tw~way mutual exclusion elements as components, which
are immune to certain hazards. In checking the DME ring for hazards, we ignore conflicts between
rising transitions of a mutual exclusion element 's acknowledge outputs.

Figure 9 shows the results of the ofxurrence net unfolding procedure for the Petri net model of
the DME circuit, for rings with one to nine cells. The depth of the occurrence net unfolding for the
case of 5 cells was 141 transitions. The number of transitions in the unfolding, shown in part (a) of
the figure, increases quadratically in the number of cells. This is because as the number of cells ill the
ring increases, a request must b e relayed through a greater number of stages in order to obtain the

171

function IsCutoffPoint?(tl)
c~ = Loc.JCon~g(~)
S~ = FinalState(Cl)
L ' = HashTahle[HashFun(S~)]
forall t~ in L* do

c~ = Loc.~Con~g(t~)
if SI ---- FinalState(C~) and Size(C~) < Size(C~) then retum(1)

end for
add tl to HashTahle[HashFun(S~)]
return(0)

end function

function LocalConfig(t')
return(Predecessors({ff}) N T')

end

function Predecessors(S')
do

S' = S' u preds(S')
until S' unchanged

end function

function FinalState(C')
let S' be the set of all p' E P ' such that preds(p*) C_ C'
retum(place(S I - preds(C*)))

eud function

Fig. 6. Pseudo-code, continued.

token, in the worst case. At the same time, the number of cells which are requesting also increases.
The occurrence net therefore grows in both width and depth in proportion to the number of cells. The
time to construct the unfolding (running a LISP implementation on a Sun3 workstatation) appears
to increase quartically, as shown in part (b) of the figure. Finally, as we increase the number of cells
in the ring, the number of reachable global markings increases exponentially, as shown in part (c) of
the figure (on a logarithmic scale)) The number of states increases asymptotically by slightly less
than a factor ten for each added cell.

How do these results compare to other methods for avoiding the state explosion problem? The
trace theory approach of Dill [Dil88] required an abstract model of the arbiter cell to be created by
hand. This reduces the state explosion problem, but does not entirely solve it, since even with the
reduced model, the number of states still increases exponentially with the number of components.
Probst [PLgl] reports a method which requires quadratic space and time in the nmnber of cells, but
also is not fully automatic. The methods of Valmari [Vai89, Val90] and Godefroid [God90, GW91]

1 The number of reachable states was established using the symbolic model checking technique [BCM+90]

It]

172

Fig. 7. Translation from circuit to net

and Yoneda [YTK91] cannot be effectively applied to this example or to other speed independent
circuits, because in all states, all enabled transitions are in conflict with some disabled transition.
Thus no transition can be statically guaranteed to be persistent. Experiments by Holger Schlinglofl ~
have confirmed this to be the case. It is possible, perhaps, that some more clever static analysis
technique could be used to show that some transitions are persistent, in which case these methods
could be applied to some effect.

Finally, we consider the symbolic model checking technique [BCM+90]. For DME circuit, the
basic symbolic model checking algorithm requires cubic time and linear space (in the number of ceils).
Butch and Long 3 have obtained O(n 2's) time for the DME using symbolic model checking with a
modified search order [BCL]. This method requires some hand optimization, however. In any event, it
appears that the symbolic model checking method yields somewhat better asymptotic performance for
the DME circuit, though both methods effectively solve the state explosion problem. The unfolding
method has an advantage over the symbolic model checking method in that no variable ordering
or other heuristic information is required. It is not difficult to construct a variation on the dining
philosophers for which there is no good variable ordering for symbolic model checking, but for whidl
the unfolding is still linear space (in the number of philosophers). Ilowever, the author is presently
unaware of any practical circuits for which this is the case.

4 D e a d l o c k and o c c u r r e n c e n e t s

Besides eoverability, another interesting problem for Petri nets is the question of deadlock. A terminal
marking of a Petri net is one in which no transitions are enabled. Reachability of a terminal (or
deadlocked) state cannot be framed in terms of the coverability problem. I{owever, since the unfolding
represents all reachable markings, a net has a reachable terminal marking if and only if its unfolding
has a reachable terminal marking. The problem of existence of a reachable terminal marking of an
occurrence net is NP-complete. This is easily shown by reduction from 3-SAT. 4 To see this consider
the formula (zl +yl +zl)(z2+y2+z2)... (z , + y , +zn) where each zi, yl and zl is a positive or negative
literal. Assume the formula has m variables. Let the positive literais be 11, Ira, and the negative
literals be [l , . . . ,tin. In polynomial time, we can construct a net whidi has a terminal marking if
and only if the formula is satisfiable. The initial marking of the net is a set of places {vl, . . - , vm}.
There is a place representing each positive literal Ix ,lm and each negative literal [1 ,Ira. For

2 Personal communication
3 Personal communication
' Satisfiability of a Boolean formula in conjunctive normal form, with three literals in each conjunct.

173

[q
User

~- r e q ~ c k

JeS['/

Fig. 8. Distributed mutual exclusion circuit

each variable vi, there is a transition from vi to li and from vi to ii. For each conjunct (zl § Yl § zt),
there is a transition ci, whose preset is {~i, ~i, ~i}. In other words, the transition ei is enabled to fire
if and only if (zi § yl + zi) is false. Thus, some transition cl is enabled to fire if and only if the whole
formula is false. The postset of each transition c~ is the single place {q}, and there is a transition from
{q} to {q}. Thus, if any ei fires, the net may never reach a terminal marking. As a result, there is a
terminal marking of the net if and only if the formula is satisfiable. For example, figure 10 shows the
net constructed for the formula (a + b + 6)(b + c + d).

The reader may easily verify that the size of the unfolding of such a net (up to the cutoff points) is
linear in the size of the original net. In fact, it is essentially the same net, except the the place q occurs
n times in the unfolding. Since all reachable markings of the original net occur as configurations of the
unfolding, the unfolding has a terminal marking if and only if the b rmula is satisfiable. Hence 3-SAT
is P-time reducible to teachability of a terminal marking of an unfolding. Since the configuration
representing the terminal marking call be guessed in P-time in the size of the unfolding, and also
tested in P-time, it follows that tile problem is in NP, and hence NP-complete.

Interestingly, however, the problem is readily solved in practice even for very large unfoldings, using
an algorithm based on techniques of constraint satisfaction search. The key observation which leads
to this algorithm is that there is no terminal marking exactly when all configurations the unfolding
can reach some configuration containing a cutoff point. This is simply because if there is no terminal
marking, then all configurations can reach a configuration which is arbitrarily large. A configuration
C' can reach a configuration containing transition L' if and only if the union of C ~ and the local
configuration of t ~ is a configuration. If it is not, then no set containing C ~ and t ~ is a configuration. If
the union is not a configuration, we will say that C' and t ' are in conflict. Hence, there is a terminal

174

marking if and only if there is a configuration which is in conflict with every cutoff point. The search
for such a configuration call be carried out using branch and bound techniques. For example, if a
configuration C t is in conflict with a cutoff point t', there must be a transition t~ E C ~ which is in
conflict with some transition in the local configuration of t'. Such a transition t~ will be called a spoiler
of t ~.

There exists a configuration in conflict with all of tile all of the cutoff points (equivalently, there
exists a terminal marking) if and only if there exists a configuration containing a spoiler for every
cutoff point. The set of spoilers contained in this configuration will be called T,. The algorithm of
figure 11 uses branch and bound techniques to find such a set T, if one exists.

Note that in line 3 of tile procedure, the cutoff point with the smallest number of spoilers is chosen
so that tile number of choices in line 5 is minimized. Whenever a spoiler for a given cutoff point is
chosen to belong to T0 in line 5, everything in conflict with T, is eliminated from future consideration
in line 7. Note that the cutoff points in conflict with T, are also eliminated, which cuts down on
the amount of future branching. Whenever there is a cutoff point with no remaining spoilers, the
procedure backtracks, from line 4 to the most recent occurrence of line 5 where there are remaining
choices. If there are no remaining choices, the procedure fails. Of course, when backtracking occurs,
the the net is also returned to the state it was in at the point where execution is being resumed. This
backtracking is easily implemented by keeping a stack of the remaining choices for t ~ in each iteration
of the loop, and marking each transition in the net with the level of the stack at the time it was
"removed". Interestingly, if the procedure terminates successfully, the remaining net has the property
that every path leads to a terminal marking of the original net N. This makes it straightforward to
extract a path leading to a terminal marking.

Obviously, because of the backtracking, this procedure is exponential (as it must be, if "P ~- Argo).
IIowever, this is only the worst ease. The dining plfilosophers serve as an example of a case in whidl
the exponential complexity is avoided. In fact, the procedure finds the terminal marking in time which
is linear in the number of philosopbers. This is easily seen by examining the unfolding of the Dining
Philosophers net in figure 4. There is one cutoff point in this net for each process, hfitially, each of
these transitions has two spoilers, which correspond to the two resources required to enter the critical
region being granted to the two neighboring processes. Regardless of which cutoff point is used first,
the symmetry is then broken as the part of the net in conflict with one of the two spoilers is removed.
This removes, in particular, the transition which granted one of the resources to the first philosopher,
hence one of its neighbors now has only one spoiler, so there is only one choice available the next time
line 5 is reached. After this spoiler is added to T0, the remaining neighbor of the second philosopher
now has only one spoiler. This process continues without backtracking until it has come full circle and
the terminal marking is found. Note that if the cutoff point with the fewest spoilers were not chosen
in line 3, the procedure might have examined an exponential number of candidates for T0 before a
valid one was found.

For the DME circuit example, we find that the run time of the deadlock algorithm is 218 seconds
for a ring of five cells, and 6600 seconds for a ring of 9 cells. IIence, even though the the algorithm
is exponential in the worst ease, in this case it runs in reasonable time for an unfolding of over 5000
transitions. It is clear that the branch and bound technique quickly narrows down the number of
choices for this example.

175

5 Evalua t ion

When is unfolding a suitable strategy for problems in automatic verification? The most promising
application is hazard checking for asynchronous control circuits. In these circuits, the state explosion
seems to derive almost entirely from arbitrary interleavings of concurrent transitions. In such cases,
the unfolding method can have a considerable advantage over methods tha t search the entire state
space. Note, however, that other methods based on partial orders are not necessarily effective in
reducing the state explosion for these circuits, because of the aforementioned problem of determining
when transitions of the net are persistent.

In general, any problem which can be posed in terms of coverability or deadlock in a Petri net
model is a possible application of the unfolding method. In addition, it is possible that heuristically
efficient procedures can be found for deciding tim existence of an infinite firing path in some w-regular
set, given an unfolding. In this case, specifications framed as linear t ime temporal logic formulas, or
w-automata could be evaluated.

References

[nCL]

[BCM+90]

[Di188]

[God90]

[GW91]
[Mar85]

[PL89]

[PL90]

[PL911

[SeiS0]

[va1891

[v~9o]

[YTK91]

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transition
relations. To appear in the Proceedings of VLS|'91.
J. R. Butch, E. M. Clarke, K. L. McMilian, D. L. Dill, and J. Hwang. Symbolic model checking:

10 2~ states and beyond. In Proceedings o] the Fifth Annual Symposium on Logic in Computer
Science, June 1990.
D. Dill. Trace theory for automatic hierarchical verification of speed-independent circuits. Tech-
nical Report 88-119, Carnegie Mellon University, Computer Science Dept, 1988.
P. Godefroid. Using partial orders to improve automatic verification methods. In Workshop on
Computer Aided Verification, 1990.
P. Godefroid and P. Wolper. A partial approach to model checking. In LICS, 1991.
A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In Henry Fncbs,
editor, 1985 Chapel tlill Conference on VLSI, pages 245-260. Computer Science Press, 1985.
D. K. Probst and H. F. Li. Abstract specification, composition, and proof of correctness of delay-
insensitive circuits and systems. Technical report, Concordia University, Dept. of Computer Sci-
ence, 1989.
D. K. Probst and H. F. Li. Using partial order semantics to avoid the state explosion problem in
asynchronous systems. In Workshop on Computer Aided Verification, 1990.
D. K. Probst and H. F. Li. Partial-order model checking: A guide for the perplexed. In Third
Workshop on Computer.aided Verification, pages 405-416, July 1991.
C. L. Seitz. System timing. In Carver Mead and Lynn Conway, editors,]ntroducllon to VLS1
Systems, pages 218-262. Addison-Wesley, 1980.
A. Valmari. Stubborn sets for reduced state space generation. In lOlh Int. Conf. on Application
and Theory o] Petri Nels, 1989.
A. Valmari. A stubborn attack on the state explosion problem. In Workshop on Computer Aided
Verification, 1990.
Tomohiro Yoneda, Yoshihiro Tohma, and Yutaka Kondo. Acceleration of timing verification
method based on time Petri nets. Systems and Computers in Japan, 22(12):37-52, 1991.

176

It]

!

1 2 3 4 5 6 7 8 9 10
Number of Ceils

~12ooo
~o 10000
"E 8OO0

6000
4OOO
2OOO

lxlON

lx10'

.~ lx10 I

-~ lx10'

lx10'

!x10 ~

lx10'

0 I 2 3 4 5 6 7 8 g I
Number of Cegs

(b)

J
lx103

I 2 3 4 5 6 7 8 9 10
Number of Cells

(c)

Fig. 9. Performance of unfolding method on hazard-detection problem for the distributed mutual exclusion
circuit

177

[t]

Fig. 10. Reduction from 3-SAT problem to a terminal marking problem.

1 let B be the set of the cutoff points, T, = 0
2 while B is not empty do
3 let t the the element of B with the fewest spoilers
4 if t has no spoilers, then backtrack
5 choose an element t t from the spoilers of t
6 add ~' to T,
7 delete all transitions in conflict with T,
8 end do

Fig. 11. Procedure to detect terminal marking.

