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Abstract  

State space caching is a state space exploration method that stores all states of just 
one execution sequence plus as many previously visited states as available memory al- 
lows. So far, this technique has been of little practical significance. With a conventional 
reachability analysis, it allows one to reduce memory usage by only two to three times, 
before an unacceptable exponential increase of the run-time overhead sets in. The ex- 
plosion of the run-time requirements is caused by redundant multiple explorations of 
unstored parts of the state space. Indeed, almost all states in the state space of concur- 
rent systems are typically reached several times during the search. There are two causes 
for this: firstly, several different partial orderings of statement executions can lead to the 
same state; secondly, all interleavings of a same partial ordering of statement executions 
lead to the same state. 

In this paper, we describe a method to completely avoid the effects of the second 
cause given above. We show that with this method, most reachable states are visited 
only once during the state space exploration. This makes for the first time state space 
caching a very efficient verification method. We were able, for instance, to completely 
explore a state space of 250,000 states while storing simultaueously no more than 500 
states and with only a three-fold increase of the run-time requirements. 

1 I n t r o d u c t i o n  

Memory is the main limiting factor of most conventional reachability anMysis algorithms. 

These verification algorithms perform an exhaustive exploration of the state space of the 

system being checked. This exploration amounts to simulating all possible behaviors the 
system can have from its initial state and storing all reachable states. To avoid significant 
run-time penalties for disk-access, reachable states call only be stored ill a randomly accessed 
memory, i.e. in the main memory available in the computer where the algorithm is executed. 

Therefore the applicability of these verification algorithms is limited by the amount of main 
memory available. Typically, it only takes a few minutes of run-time to fill up the whole 

main memory of a classical computer. 

*Tile work of these authors is partially supported by tile European Community ESPRIT BRA project 
SPEC (3096) and by the Belgian Incentive Program "luformatiou Technology ~ - Computer Science of the 
future, init iated by Belgian State - Prime Minister 's Service - Science Policy Office. The scientific responsi- 
bility is assumed by i ts  authors. 
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During the search, once states have been visited they are stored. Storing states avoids 

redundant explorations of parts of the state space. If a stored state is encountered again 

later in the search, it is not necessary to revisit all its successors. It is worth noticing that 

states that are reached only once during the search do not need to be stored. Storing them 
or not would not change anything about the time requirements of the method. Of course, 
it would be preferable not to store them in order to decrease the memory requirements, but 
with a conventional algorithm it is virtually impossible to predict if a given state will be 
visited once or more than once. 

Typically, almost all states in the state space of concurrent systems are reached several 
times during the search. There are two causes for this: 

�9 From the initial state, the exploration of different partial orderings of statement exe- 

cutions of the system can lead to the same state. 

�9 From the starting state, the exploration of all interleavings of a same partial ordering 
of statement executions lead to the same state. 

In this paper, we give a way to completely get rid of the second cause given above. Then 
we study the impact of this new technique on real-protocol state spaces. In many cases, 
when using this method, most of the states are now reached only once during the search. 

Sadly, it is not possible to determine which states are visited only once before the search 
is completed. However, the risk of double work when not storing an already visited state 
becomes very small since the probability that this state will be visited again later during 
the search becomes very small. This enables us not to store most of the states that have 

already been visited without incurring too much redundant exploration of parts of the state 
space. The memory requirements can thus strongly decrease (more than I00 times) without 
seriously increasing the time requirements (only 3 or 4 times). This makes possible the 
complete exploration of very large state spaces (several tens of million states) that can not 

be explored exhaustively by any other known method. With this technique, time becomes 
the main limiting factor. 

In the next Section, we recall the principles of state space caching and present some 
results obtained with this method for the verification of four real-protocols. Then we show 
how this verification method can be substantially improved by the use of "sleep sets". Sleep 

sets were introduced in [God90, GW91b]. In Section 3, we recall the basic idea behind sleep 
sets. Then, we give a new simple and efficient implementation of the sleep set scheme. We 
study properties of sleep sets and prove two new theorems. Section 4 presents and compares 
the results obtained with the state space caching method with and without the use of sleep 
sets. In Section 5, some suggestions to further improve the effectiveness of the method are 
investigated. 

2 State Space Caching 

State space exploration can be performed by" a classical depth-first search algorithm, as 
shown in Figure 1, starting from the initial state so of the system. The main data struc- 
tures used are a Stack to hold the states of the current explored path, and a hash table 
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Initialize: Stack is empty; H is empty; 
Search() { 

enter so in H; 
push (so) onto Stack; 
DFSO; 
} 

DFSO { 
s = top(Stack); 
for all f enabled in s do { 

s' ---- succ(s) after t ; / *  execution of  t */ 
if s' is NOT already in H then { 

enter s' in H; 
push (s') onto Stack; 
DFS0; 
} 

/* backtracking of t */ 
} 

pop s from Stack 
} 

Figure h Algorithm 1 - -  classical depth-first search 

H to store all the states that have already been visited during the search. Algorithm 1 
simulates all possible transitions sequences the system is able to perform. The exploration 
can be performed "on-the-fly'~ i.e. without storing the transitions that are taken during the 
search. This reduces substantially the memory requirements. Unfortunately, the number of 

reachable states can be very large and it is then impossible to store all these states in H. 

However, it is well-known that  a completely exhaustive state space exploration can be 

performed without the storage of any other part of the full state space than a single sequence 
of states leading from the initial state to the currently explored state, i.e. the Stack used 
in Algorithm 1. Such a search, termed "Type-3" or stack-search algorithm ill [lIol90], 

reduces the memory requirements while still guaranteeing a complete exploration of any 
finite state space. This strategy was used ill, for instance, the first Pall system [Hol81], and 
i n t h e  Pandora system [Iio184]. The problem is that, if all execution path joins a previously 
analyzed sequence in a state that is no more onto the stack, this search strategy will do 
redundant work. Hence the run-time requirements of this type of search go up dramatically. 
The result is that even state spaces that could otherwise comfortably he stored exhaustively 
become unsearchable with even the fastest implementations of a stack-search discipline. 

A trade-off between these two strategies consists of storing all the states of the current 
path and storing as many other states as possible given the remaining amount of available 
memory. This strategy is called state space caching [Ito185]. tt creates a restricted cache of 

selected system states that have already been visited. Initially, all system states encountered 
are stored into the cache. When the cache fills up, old states are deleted to accommodate 
new ones. This method never tries to store more states than possible in the cache. Thus, if 
the size of the cache is greater than the maximal size of the stack during the exploration, 
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the whole state space can be explored without any problems. 

We have implemented such a caching discipline in an efficient automated protocol vali- 

dation system called SPIN I [I[o191], which includes an implementation of a classical search 

as described in Figure 1. The details of PROMELA, the validation language that SPIN 

accepts, can be found in [Ho191]. PROMELA defines systems of asynchronously executing 

concurrent processes that can interact via shared global variables or message channels. Inter- 

action via message channel can be either synchronous (i.e. by rendez-vous) or asynchronous 

(buffered), depending on what type of channel is declared. 

Experiments with our implementation were made on four sample real protocols: 

1. PFTP is a file transfer protocol presented in Chapter 14 of [Iio191], modeled in 206 

lines of PROMELA. 

2. URP is the AT&T's Universal Receiver Protocol, modeled in 405 lines of PROMELA. 

3. MULOG3is a protocol implementing a mutual exclusion algorithm presented in [TN87], 

for 3 participants, modeled in 97 lines of PROMELA. 

4. DTP is a data transfer protocol, modeled in 406 lines of PROMELA. 

The results of our experiments with Algorithm 1 and different cache sizes are presented in 
Figure 4. All measurements were run on a SPARC2 workstation (64 Megabytes of RAM). 
Time is user time plus system time as reported by the UNIX system time command. The 
experiments were performed using a random replacement strategy (see Section 5). 

The results show clearly that the number of stored states can be reduced by approxi- 
mately two to three times without seriously affecting the run time. If tile cache is further 
reduced, the run time increases dramatically. 

These results confirm the ones presented in [Ho185, Ho187]. As first pointed out in [1Io187], 
whether a large reduction of the memory requirements without a significant blow-up of the 

time complexity can be achieved depends largely on the structure of tile state space, which 
is protocol dependent and highly unpredictable. The conclusion from these early studies 
was that the effect of the state space caching discipline are too unpredictable to be useful 
in a general verification tool. Indeed, it is necessary to know how many states the full state 

space contains to find the optimal caching setup since the blow-up of execution time starts 
too soon, and is too steep. The results of these experiments were more recently confirmed 
in a series of independent experiments [J J89, JJ91]. 

The critical point for a caching algorithm is the risk of double work incurred by joining 
a previously visited state that has been deleted from memory. This risk depends on the 

state space: if the states are reached several times during the search, the risk is greater than 

if they are reached only once. For the state spaces of the examples above, one can see in 
Table 1 that the number of transitions is about 3 times the number of states. This means 
that each state is, on average, reached 3 times during the search. The risk is too high. This 
is why this technique is not very efficient. 

IThe original version of SPIN can be obtained free of charge via email, for educational purposes. To get 
instructions, send an ~rbitra~y one-line message to ~netlib~research.att.com ~. The response is automated.  
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In the next section, we show how it is possible to strongly reduce the number of tran- 
sitions that have to be explored during the search, which reduces the risk and makes state 
space caching manageable. 

3 Sleep Sets 

The classical depth-first search presented in Figure 1 explores all enabled transitions from 

each state encountered during the search. Ilowever, in case of concurrent systems, it is 
possible to explore all the reachable states of the state space without exploring systematically 
all enabled transitions in each state. This can be done by using sleep sets. 

Sleep sets were introduced in [God90, GW91b] where it was shown that most of the 
state explosion due to the modeling of concurrency by interleaving can be avoided. The 
basic idea of this verification method was to describe the behavior of the system by means 
of partial orders rather than by sequences. More precisely, Mazurkiewicz's traces [Maz86] 
were used as a semantic model. 

Traces are defined as equivalence classes of sequences. Given an alphabet ~ and a 
dependency relation D C_ ~ x ~, two sequences over ~ belong to tile same trace with 
respect to D (are in the same equivalence class) if they can be obtained from each other 
by successively exchanging adjacent symbols which are independent according to D. For 
instance, if a and b are two symbols of ~ which are independent according to D, the 
sequences ab and ba belong to the same trace. A trace is usually represented by one of 
its dements  enclosed within brackets and, when necessary, subscripted by the alphabet and 
the dependency relation. Thus the trace containing both ab and ba could be represented by 
[ab](r..D). A trace corresponds to a partial ordering of symbol occurrences and represents all 
linearizations of this partial order. If two independent symbols occur next to each other in a 

sequence of a trace, the order of their occurrence is irrdevant since they occur concurrently 

in the partial order corresponding to that trace. 

In a PILOMELA program, dependency can arise between statements that refer to the 

same global objects, i.e. same global variables or same message channels. For instance, two 
write operations on a same shared global variable in two concurrent processes are dependent, 
while two concurrent read operations on the same object are independent since they can 
be shuflhd in any order without changing the possible outcome of the read. Tracking 
dependencies between PItOMELA statements is by no means a trivial point. We refer the 

reader to [HGP92] for a detailed presentation of that topic. 

In the context of [God90, GW91b], sleep sets were one of the means used by aal algorithm 
devoted to the exploration of at least one (sequence) interleaving for each possible trace 
(partial ordering of transitions) the concurrent system was able to perform. More precisely, 
the specific aim of sleep sets was to avoid the wasteful exploration of all possible shullling.s 

of independent transitions. 

Let us consider an example to illustrate the basic idea behind sleep sets. Consider a 
classical depth-first search and assume there are two independent transitions tl and t~ from 
the current state s (see the top of the right part of Figure 2). Assume that transition tl is 
explored before transition t~ and that tl leads to a successor state 8 ~. When all immediate 
successor states of s ~ have been explored, the transition tl is backtracked and the depth-first 
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Figure 2: A concurrent system (left) and the exploration performed by Algorithm 2 (right) 

Same as Algorithm 1 except: 

�9 A variable Sleep is added. Its initial value is {}. 

�9 Instead of executing systematically all enabled transitions from each state, execute only 
all enabled transitions that are not in Sleep. 

�9 Each time a transition t is executed from a state s, delete all transitions from Sleep that 
a r e  dependent with t ( t h e  result gives the value of Sleep that has to be associated t o  t h e  

s u c c e s s o r  s t a t e  s ~ o f  s ) .  

�9 Each time a transition t that has led to a state s ~ is backtracked, restore the value of 
Sleep before the execution of t. If  s' is not in Stack, then add t to Sleep. 

Figure 3: Algorithm 2 - -  depth-first search with sleep sets 

search backs up to state 8. Then t~ is executed from 3, leads to a successor node 8" and tile 

search goes on from 8". Since tl and t~ are independent, tl is still enabled in 8". But it is 

not necessary to explore transition tl from state 8" since the result of another shuffling of 

these independent transitions, namely the sequence tlt~, has already been explored from s. 

In order to prevent the execution of tl in 8", we use sleep sets: we put tl  in the sleep set 
associated to 8". 

A sleep set is defined as a set of transitions. One sleep set is associated with each state 

s reached during the search. The sleep set associated with s is a set of transitions that are 

enabled in s but will not be executed from 8. Tile sleep set associated with the initial state 
80 is the empty set. 

Note that, in the previous exaanple, if tl and t~ would have been dependent, then it 

would have been mandatory to explore both shufllings of tl and t~. (For example, the two 

shufflings of two write statements on a same global variable performed by two concurrent 
processes are dependent and leaves the system in two different states.) 

Figure 3 shows how to introduce the sleep set scheme in the classical depth-first search 
algorithm. A single variable Sleep is added. The two last rules describe how to set and 

reset the value of Sleep properly during the state-graph traversal. The appropriate rule is 

applied each time a transition is executed or backtracked during the search. 



184 

A simple example of a state-graph traversal performed by Algorithm 2 is given in Fig- 
ure 2. The system on the left is composed of two completely independent concurrent pro- 
cesses. For each state, the value of Sleep when that state has been added to the stack is 
given between braces beside the state. Dotted transitions are not explored by Algorithm 2. 

Note that Algorithm 2 as presented above call be viewed as an efficient version of the 
procedure that was given in [GWglb] to compute sleep sets. Indeed, with this new ver- 

sion, it is no more necessary to store explicitly sleep sets on the stack as it was suggested 
in [GW91b]. I t  is sufficient to store only some information about sleep sets updates in order 
to restore the value of the sleep set before the execution of a transition when the transition 
is backtracked. (From our experience in designing several different versions of the sleep set 
scheme, implementing it as described above can imply a substantial speed-up in the sleep 
set computations.) 

The following theorem ensures that all reachable states of the concurrent system are still 
visited by Algorithm 2. 

T h e o r e m  3.1 All reachable states are visited blt Algorithm ~. 

Proof :  

Let s be a state reachable from the initial s tate so. Imagine that  we fix the order in which transitions 
selected in a given s ta te  are explored and that  we first run Algorithm 1 (depth-first search without  sleep 
sets). Then, we run Algorithm 2 (depth-first search with sleep sets) while still exploring transit ions in the 
same order. The impor tant  point is that  the Order used in both runs is the same, the exact order used is 
irrelevant. Let then S denote the spanning tree explored by Algorithm 1 and let S, denote the part  of S tha t  
contains all s ta tes  from which the s ta te  s is reachable. Since s is reachable, S, is nonempty and contains s 
(we do not prove here tha t  a classical depth-first search visits all reachable states). Moreover, the leftmost 
path of S, leads to s. We now prove tha t  in the second run, i.e. when using Algorithm 2, the leftmo~t path 

of S, is still explored. 

Let p -- se ~ s l  --*tl s2 . . .  s , - i  *~.~1 s be this path. Since the order used in both runs is the same, p is 
the very first path of S, that  will be examined during both runs. The only reason for which it  might  not 

be fully explored (i.e. until  s is reached) by the algorithm using sleep sets is that  some transition t l  of p is 
not taken because i t  is in the sleep set associated to si. There are two possible canses for this. The first 
cause is tha t  p might  contain a s ta te  that  has already been visited with a sleep set which contained |i .  This 
is not possible because if such a s ta te  existed, the path p would not be the leftmost path in S,.  The second 

possible cause is that  ti has been added to the sleep set at  some point on the path p and then passed along 

p until  si .  Let us prove that  this is also impossible. 

Assume tha t  tl is in the sleep set associated to s ta te  s i  and that  i t  has been added to S l e e p  at  some 
previous point on the path p. Precisely, there are s tates  sj  and s j§  j < i, in p such tha t  t i  f~ S l e e p  at  sj  and 
t i  6. S l e e p  at  s j+l .  This implies tha t  t i  has been explored b e f o r e  t j  from sj  since a transition is introduced 
in S l e e p  once it  is backtracked (fourth rule in Figure 3). This also implies that,  from s: ,  tl has not led to a 
s ta te  sh 1 _< j already visited in the path p. Moreover, all transitions that  occur between tj and ii in p, i.e. 
all t ,  such that  j _< k < i, are independent with respect to G. Indeed, if this were not the case, ti would not 
be in the sleep set of si since transitions that  are dependent with the transition taken are removed from the 

sleep set (third rule in Figure 3). 

Consequently, t i l  3 . . .  t i - i  6. [ t j  . . . t , - i  i l l ,  i.e. t i t j  . . . t i - i  and t j  . . . t i - t  l ,  are two interleavings of a single 

concurrent execution (i.e. a single trace) and hence sj  * , ' j ~ , - t  s i+l .  Given tha t  s is reachable from s i+t ,  i t  
is reachable by a path that  in s ta te  s j  takes the transition *i. Since tl has been explored before tj in s j  and 
has not led to a s ta te  sl, I < j already visited in p, the path p is not the leftmost path in S , .  A contradiction. 
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Protocol Algorithm 

PFTP 
2 

URP I 
2 

MULOG3 1 
2 

DTP" I 
2 

'~ '-~ matched 

409,257 
409,257 
15,378 
15,378 
100,195 
100,195 
251,409 
251,409 

transitions ~ time (see) 

771,265 1380,522" 
179,304 588,561 
27,709 43,087 
1,884 17,262 

254,183 354,378 
3,736 103,931 

397,058 648,467 
11,152 262,561 

5,044 219.4 
4,550 394.6 
202 6.9 
202 10.7 
119 35.2 
119 53.6 
545 97.8 
545 160.8 

Table 1: Comparison of the performances of Algorithm 1 and 2 

In practice, the previous theorem enables us to use Algorithm 2 to verify all prop- 

erties that can be reduced to a state accessibility problem, like, for instance, deadlock 

detection, unreachable code detection, assertion violations, safety properties. Moreover, 

other problems like the verification of liveness properties and model checking for linear- 

time temporal logic formulae are reducible to a set of teachability problems (see for in- 

stance [CVWY90, 11o191, VW86]), for which the method developed in this paper is appli- 

cable. By construction, the state-graph G ~ explored by Algorithm 2 is a "sub-graph" of 

the state-graph G explored by Algorithm 1. Both state-graphs G and G I contain the same 

number of states, the only difference is that G ~ contains always less transitions than G. 

Of course, if no simultaneous enabled independent transitions are encountered during the 

search, G ~ is then exactly equivalent to G. 

Since only states, not transitions, are stored during all on-the-fly verification and since 

the number of states is the same in G and G ~, Algorithm 1 and Algorithm 2 have exactly the 

same memory requirements. (As a matter of fact, Algorithm 2 requires a few hundred bytes 

more for the manipulation of Sleep; this overhead can be made insignificant with respect to 
the global memory requirements [HGP92].) 

Table 1 compares the performances of and the state-graphs explored by Algorithm 1 
and Algorithm 2 for the protocols presented in Section 2. The advantage of Algorithm 2 is 
that it explores much fewer transitions than Algorithm 1. The number of state matchings 
strongly decreases. If the reduction in the number of transitions is sufficient to make up the 
additional run-time overhead due to the manipulation of sleep sets, an improvement in the 
general run-time requirements can result. This is not the case for the protocols considered 
here. (In [HGP92], it is shown that the sleep set scheme can produce a significant reduction 
in the overall run-time requirements when it is combined with a state compression method.) 
"Depth" is the maximum size of the stack during the search. 

One clearly sees in Table 1 that the number of matched states strongly decreases when 
using Algorithm 2. This phenomenon can be explained with the following theorem. 

T h e o r e m  3.2 For every reachable state s, Algorithm 2 never completely ezplores more than 
one interleaving of a single trace (partial ordering of tra1~itions} that leads to s, ami thus 

never visits s twice because of the exploration of two interlcavings of a same trace. 
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Proof: 

By definition,all w' E [w], i.e. all interleavings to' of a single concurrent execution [w], can be obtained 
from to by successively permuting pairs of adjacent independent transitions. Let to and w' denote two 
interleavings of the single trace [to]. We now prove that Algorithm 2 does not completely explore both of  
them. 

Let Pref(w) denote the common prefix of to and tol that ends when to and to' differ. Assume the next 
transition of tv after Pref(w) is ~ and that the next transition of  to~ after Pref(to) is i s. In state  s such that 

so P r ~ )  s, both transitions t and t' are enabled. Moreover, t and t' are independent since to and w' differ 
only by the order of independent transitions. Assume that t and t' are not in the current Sleep and that the 
search explores t first. Later, when t is backtracked and the search backs up in s, t is introduced in Sleep. 
Then t '  is explored and leads to a state s ' .  Since t and t' are independent, t is not removed from Sleep at 
s ta te  ..~H 

During the remainder of the exploration of w' starting from s ' ,  t remains in Sleep and is never executed. 
Indeed, t could only be removed from Sleep after the execution of some transition t" that is dependent with 
it. This is impossible because if t" occurs before t iu w' (since t has to occur eventually in to'), re' would differ 
from w by the order of two dependent transitions t and t" and thus, to and to' would not be two interleavings 
of a same trace. Since t is never executed and has to occur in to', w' is not completely explored. 

Note that, if an already visited state is reached during the exploration of w' from s ' ,  the exploration of 
w' stops. It might then be the case that the remainder of w' has already been explored, but it was during 
the exploration of an interleaving of another trace that has the same suffix than td. 

| 

In o the r  words ,  if a s t a t e  is reachable  by only several  in ter leavings  of  a single t race ,  

A lgor i thm 2 never  comple te ly  explores  more  than  one of  these  in ter leavings  and  visi ts  t h a t  

s t a t e  only once.  In t he  example  of  Figure  2, all s ta tes  are visi ted only once by Algor i thm 2. 

Of  course,  if  one could know it in advance  before s t a r t ing  the  search,  i t  would no t  be 

necessary  to  s tore  any states!  Unfor tuna te ly ,  i t  is imposs ible  to  de t e rmine  which  are  t he  

s ta tes  t ha t  a re  encoun te red  only once before the  seaxch being comple ted .  

Let  us now s tudy  the  impac t  o f  sleep sets on s t a te  space caching.  

4 State Space Caching and Sleep Sets 

Figure  4 compares  the  per formances  of  Algor i thm 1 (classical dep th- f i r s t  search)  and Algo- 

r i t hm 2 (depth-f i r s t  search wi th  sleep sets)  for various cache sizes. 

As already pointed out in Section 2, the number of transitions that are explored during 

the search performed by Algorithm 1 blows up when the cache size is approximately the 

half/third of the total number of states. This causes a run-time explosion, which makes 

state space caching ineffmient under a certain threshold. 

With Algorithm 2, for PFTP, this threshold can be reduced to the fourth of the total 

number of states. The improvement is not very spectacular because the number of matched 
states, even when using sleep sets, is still too important (see Table 1). The risk of double 

work when reaching an already visited state that has been deleted from memory is not 

reduced enough. 

For the other three protocols, URP, MULOG3 and DTP, the situation is different: there 
is no run-time explosion with Algorithm 2. Indeed, the number of matched states is reduced 

so much (see Table 1) that the risk of double work becomes very small. When the cache size 
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is reduced up to the maximal depth of the search (this maximal depth is the lower bound 
for the cache size since all states of the stack have to be stored to ensure the termination of 

the search), the number of explored transitions is still between only two and four times the 

total number of transitions in the state space. These protocols, which have between 15,000 
and 250,000 reachable states, can be analyzed with no more than 500 stored states. The 

memory requirements are reduced to 3~ up to 0.2~. The only drawback is an increase of 
the run time by two to four times compared to the search where all states are stored (which 

may be impossible for larger state spaces). 

The efficiency of the method can be dynamically estimated during the search: if the 
maximum stack size remains acceptable with respect to the cache size and if the proportion 
of matched states remains small enough, the run-time explosion will likely be avoided. Else 
one cannot predict if the cache size is large enough to avoid the run-time explosion. 

5 Further Investigations 

An important factor when using the state space caching method is the selection criterion 
for determining which states are deleted when the cache is full. 

Holzmann has studied several replacement strategies in [1[o185]. These strategies were 
based on the number of times that a state has been previously visited. These strategies were: 
replace the most frequently visited state; replace the least frequently visited state; replace 
a state from the largest class of states in the current state space (where a class contains 
states that have been visited equally often); replace randomly a state (blind round-robin 
replacement); replace the state corresponding to the lowest point in the search tree (smallest 
subtree). The conclusion of that study was that the best strategy seems to be a random 
selection. In [Ho187], the probability of recurrence of states (i.e. the probability that once 

a state has been visited n times it will be visited an n + 1st time as well) was investigated 
and turns out not to be strongly correlated with the number of previous visits. 

We have experimented some different replacement strategies. Our motivation was to 
study the influence of the type of transitions that can lead to a state on the probability that 

the state is visited again later during the search. For instance, a "labeled" state, e.g. the 
target of a goto jump, is intuitively more susceptible to be matched than an "unlabeled" 
state. 

First, let us classify transitions into different types: 

1. control branches (goto jump, start of do loops, . . .  ); 

2. receives on message channels; 

3. sends on message channels; 

4. assignments to variables; 

5. other transitions. 

Each state encountered during the search is tagged with the type of the transition that has 
led to it. We have studied the impact of the following replacement strategy on the run-tlme 
requirements of the state space caching method, for each of tlle four first types of transitions: 
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Figure 4: Performances of state space caching with Algorithm 1 and 2 
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Figure 5: Random vs "type-oriented" replacement strategy 

Each time a state has to be deleted, scan an arbitrarily given number of stored 

states (scanning too many states incurs an unacceptable overhead; this is Why 

an arbitrary limit is given). If possible, select a state that is not tagged with the 

type considered. Otherwise, select randomly one of them. 

The results axe the following: for type 1, the procedure described above gives always better 
results than a simple random selection; for types 2, 3 and 4, the results are unpredictable. 
In other words, it is preferable not to remove states pointed by type 1 transitions, as far as 
possible. 

Since protocols do not necessarily have transitions of each type, a good heuristic cannot 
be based only on the selection of states that follow transitions of a single type. Grouping 

all the four first types together and trying to delete only states that follow transitions of 
type 5 is not a good solution as well because it degenerates to a random selection since 
transitions of type 5 axe usually not numerous enough. A possible trade-off is to use the 
following replacement strategy: 

Each time a state has to be deleted, scan an arbitrarily given number of stored 

states and select one state that is tagged with the highest type (i.e. closest to 
5). 

The order of the types given above was chosen according to tile results of the experiments 
we made with the different types taken separately. If a state is visited by several transitions, 
its tag is set to the smallest type of transitions that led to it. 

Figure 5 shows the results obtained with this strategy (denoted "type-oriented" strategy) 
compared to a random replacement discipline for the PFTP protocol. One can see that 
this strategy does not involve a significant run-time overhead. Moreover, it yields a 50% 
reduction for the run-time blow-up threshold. 

For the other three protocols, there is no significant difference with respect to a random 
selection strategy. As a matter of fact, in these examples, the random selection strategy 
is sufficient to reduce the cache size so close to the maximal stack size that no significant 
further reduction is possible. 
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6 Conclus ions  

We have presented a new technique which can substantially improve the state space caching 
discipline by getting rid of the main cause of its previous inefficiency, namely prohibitive 
state matching due to the exploration of all possihle interleavings of concurrent statement 
executions all leading to the same state. We have shown with experiments on real protocol 
models that, thanks to sleep sets, the memory requirements needed to validate large pro- 

tocol models can be strongly decreased (sometimes more than 100 times) without seriously 
increasing the time requirements (a factor of 3 or 4). This makes possible the complete 
exploration of very large state spaces, that could not be explored so far. However, exploring 
state spaces of several tens of million states takes time, since all these states are visited at 

least once during the search. Thus time becomes the main limiting factor. 

Note that no attempts were made in this paper to reduce the number of states that 
need to be visited in order to validate properties of a system, llowever, sleep sets were 

originally introduced as part of a method intended to master the "state explosion" phe- 

nomenon [God90, GW91a, GW91b, tIGP92]. Using the full method preserves the beneficial 
properties of sleep sets that were investigated in Section 3 while enabling a substantial 
reduction of the number of states that have to he visited for verification purposes. 
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