
State Space Caching Revisited

Pat r ice Godefroid*

Universi t6 de Liege

Ins t i tu t Montef iore B28

4000 Liege Sa r t -T i lman

Belgium

Gerard J. Holzmann

A T & T Bell Labora tor ies

600 Mounta in Avenue

Murray iIill, NJ 07974

U.S.A.

Didier Pirot t in*

Universi t6 de Liege

Ins t i tu t Montef iore B28

4000 Li6ge Sa r t -T i lman

Belg ium

Abstract

State space caching is a state space exploration method that stores all states of just
one execution sequence plus as many previously visited states as available memory al-
lows. So far, this technique has been of little practical significance. With a conventional
reachability analysis, it allows one to reduce memory usage by only two to three times,
before an unacceptable exponential increase of the run-time overhead sets in. The ex-
plosion of the run-time requirements is caused by redundant multiple explorations of
unstored parts of the state space. Indeed, almost all states in the state space of concur-
rent systems are typically reached several times during the search. There are two causes
for this: firstly, several different partial orderings of statement executions can lead to the
same state; secondly, all interleavings of a same partial ordering of statement executions
lead to the same state.

In this paper, we describe a method to completely avoid the effects of the second
cause given above. We show that with this method, most reachable states are visited
only once during the state space exploration. This makes for the first time state space
caching a very efficient verification method. We were able, for instance, to completely
explore a state space of 250,000 states while storing simultaueously no more than 500
states and with only a three-fold increase of the run-time requirements.

1 I n t r o d u c t i o n

Memory is the main limiting factor of most conventional reachability anMysis algorithms.

These verification algorithms perform an exhaustive exploration of the state space of the

system being checked. This exploration amounts to simulating all possible behaviors the
system can have from its initial state and storing all reachable states. To avoid significant
run-time penalties for disk-access, reachable states call only be stored ill a randomly accessed
memory, i.e. in the main memory available in the computer where the algorithm is executed.

Therefore the applicability of these verification algorithms is limited by the amount of main
memory available. Typically, it only takes a few minutes of run-time to fill up the whole

main memory of a classical computer.

*Tile work of these authors is partially supported by tile European Community ESPRIT BRA project
SPEC (3096) and by the Belgian Incentive Program "luformatiou Technology ~ - Computer Science of the
future, init iated by Belgian State - Prime Minister 's Service - Science Policy Office. The scientific responsi-
bility is assumed by i ts authors.

179

During the search, once states have been visited they are stored. Storing states avoids

redundant explorations of parts of the state space. If a stored state is encountered again

later in the search, it is not necessary to revisit all its successors. It is worth noticing that

states that are reached only once during the search do not need to be stored. Storing them
or not would not change anything about the time requirements of the method. Of course,
it would be preferable not to store them in order to decrease the memory requirements, but
with a conventional algorithm it is virtually impossible to predict if a given state will be
visited once or more than once.

Typically, almost all states in the state space of concurrent systems are reached several
times during the search. There are two causes for this:

�9 From the initial state, the exploration of different partial orderings of statement exe-

cutions of the system can lead to the same state.

�9 From the starting state, the exploration of all interleavings of a same partial ordering
of statement executions lead to the same state.

In this paper, we give a way to completely get rid of the second cause given above. Then
we study the impact of this new technique on real-protocol state spaces. In many cases,
when using this method, most of the states are now reached only once during the search.

Sadly, it is not possible to determine which states are visited only once before the search
is completed. However, the risk of double work when not storing an already visited state
becomes very small since the probability that this state will be visited again later during
the search becomes very small. This enables us not to store most of the states that have

already been visited without incurring too much redundant exploration of parts of the state
space. The memory requirements can thus strongly decrease (more than I00 times) without
seriously increasing the time requirements (only 3 or 4 times). This makes possible the
complete exploration of very large state spaces (several tens of million states) that can not

be explored exhaustively by any other known method. With this technique, time becomes
the main limiting factor.

In the next Section, we recall the principles of state space caching and present some
results obtained with this method for the verification of four real-protocols. Then we show
how this verification method can be substantially improved by the use of "sleep sets". Sleep

sets were introduced in [God90, GW91b]. In Section 3, we recall the basic idea behind sleep
sets. Then, we give a new simple and efficient implementation of the sleep set scheme. We
study properties of sleep sets and prove two new theorems. Section 4 presents and compares
the results obtained with the state space caching method with and without the use of sleep
sets. In Section 5, some suggestions to further improve the effectiveness of the method are
investigated.

2 State Space Caching

State space exploration can be performed by" a classical depth-first search algorithm, as
shown in Figure 1, starting from the initial state so of the system. The main data struc-
tures used are a Stack to hold the states of the current explored path, and a hash table

180

Initialize: Stack is empty; H is empty;
Search() {

enter so in H;
push (so) onto Stack;
DFSO;
}

DFSO {
s = top(Stack);
for all f enabled in s do {

s' ---- succ(s) after t ; / * execution of t */
if s' is NOT already in H then {

enter s' in H;
push (s') onto Stack;
DFS0;
}

/* backtracking of t */
}

pop s from Stack
}

Figure h Algorithm 1 - - classical depth-first search

H to store all the states that have already been visited during the search. Algorithm 1
simulates all possible transitions sequences the system is able to perform. The exploration
can be performed "on-the-fly'~ i.e. without storing the transitions that are taken during the
search. This reduces substantially the memory requirements. Unfortunately, the number of

reachable states can be very large and it is then impossible to store all these states in H.

However, it is well-known that a completely exhaustive state space exploration can be

performed without the storage of any other part of the full state space than a single sequence
of states leading from the initial state to the currently explored state, i.e. the Stack used
in Algorithm 1. Such a search, termed "Type-3" or stack-search algorithm ill [lIol90],

reduces the memory requirements while still guaranteeing a complete exploration of any
finite state space. This strategy was used ill, for instance, the first Pall system [Hol81], and
i n t h e Pandora system [Iio184]. The problem is that, if all execution path joins a previously
analyzed sequence in a state that is no more onto the stack, this search strategy will do
redundant work. Hence the run-time requirements of this type of search go up dramatically.
The result is that even state spaces that could otherwise comfortably he stored exhaustively
become unsearchable with even the fastest implementations of a stack-search discipline.

A trade-off between these two strategies consists of storing all the states of the current
path and storing as many other states as possible given the remaining amount of available
memory. This strategy is called state space caching [Ito185]. tt creates a restricted cache of

selected system states that have already been visited. Initially, all system states encountered
are stored into the cache. When the cache fills up, old states are deleted to accommodate
new ones. This method never tries to store more states than possible in the cache. Thus, if
the size of the cache is greater than the maximal size of the stack during the exploration,

181

the whole state space can be explored without any problems.

We have implemented such a caching discipline in an efficient automated protocol vali-

dation system called SPIN I [I[o191], which includes an implementation of a classical search

as described in Figure 1. The details of PROMELA, the validation language that SPIN

accepts, can be found in [Ho191]. PROMELA defines systems of asynchronously executing

concurrent processes that can interact via shared global variables or message channels. Inter-

action via message channel can be either synchronous (i.e. by rendez-vous) or asynchronous

(buffered), depending on what type of channel is declared.

Experiments with our implementation were made on four sample real protocols:

1. PFTP is a file transfer protocol presented in Chapter 14 of [Iio191], modeled in 206

lines of PROMELA.

2. URP is the AT&T's Universal Receiver Protocol, modeled in 405 lines of PROMELA.

3. MULOG3is a protocol implementing a mutual exclusion algorithm presented in [TN87],

for 3 participants, modeled in 97 lines of PROMELA.

4. DTP is a data transfer protocol, modeled in 406 lines of PROMELA.

The results of our experiments with Algorithm 1 and different cache sizes are presented in
Figure 4. All measurements were run on a SPARC2 workstation (64 Megabytes of RAM).
Time is user time plus system time as reported by the UNIX system time command. The
experiments were performed using a random replacement strategy (see Section 5).

The results show clearly that the number of stored states can be reduced by approxi-
mately two to three times without seriously affecting the run time. If tile cache is further
reduced, the run time increases dramatically.

These results confirm the ones presented in [Ho185, Ho187]. As first pointed out in [1Io187],
whether a large reduction of the memory requirements without a significant blow-up of the

time complexity can be achieved depends largely on the structure of tile state space, which
is protocol dependent and highly unpredictable. The conclusion from these early studies
was that the effect of the state space caching discipline are too unpredictable to be useful
in a general verification tool. Indeed, it is necessary to know how many states the full state

space contains to find the optimal caching setup since the blow-up of execution time starts
too soon, and is too steep. The results of these experiments were more recently confirmed
in a series of independent experiments [J J89, JJ91].

The critical point for a caching algorithm is the risk of double work incurred by joining
a previously visited state that has been deleted from memory. This risk depends on the

state space: if the states are reached several times during the search, the risk is greater than

if they are reached only once. For the state spaces of the examples above, one can see in
Table 1 that the number of transitions is about 3 times the number of states. This means
that each state is, on average, reached 3 times during the search. The risk is too high. This
is why this technique is not very efficient.

IThe original version of SPIN can be obtained free of charge via email, for educational purposes. To get
instructions, send an ~rbitra~y one-line message to ~netlib~research.att.com ~. The response is automated.

182

In the next section, we show how it is possible to strongly reduce the number of tran-
sitions that have to be explored during the search, which reduces the risk and makes state
space caching manageable.

3 Sleep Sets

The classical depth-first search presented in Figure 1 explores all enabled transitions from

each state encountered during the search. Ilowever, in case of concurrent systems, it is
possible to explore all the reachable states of the state space without exploring systematically
all enabled transitions in each state. This can be done by using sleep sets.

Sleep sets were introduced in [God90, GW91b] where it was shown that most of the
state explosion due to the modeling of concurrency by interleaving can be avoided. The
basic idea of this verification method was to describe the behavior of the system by means
of partial orders rather than by sequences. More precisely, Mazurkiewicz's traces [Maz86]
were used as a semantic model.

Traces are defined as equivalence classes of sequences. Given an alphabet ~ and a
dependency relation D C_ ~ x ~, two sequences over ~ belong to tile same trace with
respect to D (are in the same equivalence class) if they can be obtained from each other
by successively exchanging adjacent symbols which are independent according to D. For
instance, if a and b are two symbols of ~ which are independent according to D, the
sequences ab and ba belong to the same trace. A trace is usually represented by one of
its dements enclosed within brackets and, when necessary, subscripted by the alphabet and
the dependency relation. Thus the trace containing both ab and ba could be represented by
[ab](r..D). A trace corresponds to a partial ordering of symbol occurrences and represents all
linearizations of this partial order. If two independent symbols occur next to each other in a

sequence of a trace, the order of their occurrence is irrdevant since they occur concurrently

in the partial order corresponding to that trace.

In a PILOMELA program, dependency can arise between statements that refer to the

same global objects, i.e. same global variables or same message channels. For instance, two
write operations on a same shared global variable in two concurrent processes are dependent,
while two concurrent read operations on the same object are independent since they can
be shuflhd in any order without changing the possible outcome of the read. Tracking
dependencies between PItOMELA statements is by no means a trivial point. We refer the

reader to [HGP92] for a detailed presentation of that topic.

In the context of [God90, GW91b], sleep sets were one of the means used by aal algorithm
devoted to the exploration of at least one (sequence) interleaving for each possible trace
(partial ordering of transitions) the concurrent system was able to perform. More precisely,
the specific aim of sleep sets was to avoid the wasteful exploration of all possible shullling.s

of independent transitions.

Let us consider an example to illustrate the basic idea behind sleep sets. Consider a
classical depth-first search and assume there are two independent transitions tl and t~ from
the current state s (see the top of the right part of Figure 2). Assume that transition tl is
explored before transition t~ and that tl leads to a successor state 8 ~. When all immediate
successor states of s ~ have been explored, the transition tl is backtracked and the depth-first

I83

~ / \ t;
s ' _ / ",,,_ s~')

t~ 12 / 2

Figure 2: A concurrent system (left) and the exploration performed by Algorithm 2 (right)

Same as Algorithm 1 except:

�9 A variable Sleep is added. Its initial value is {}.

�9 Instead of executing systematically all enabled transitions from each state, execute only
all enabled transitions that are not in Sleep.

�9 Each time a transition t is executed from a state s, delete all transitions from Sleep that
a r e dependent with t (t h e result gives the value of Sleep that has to be associated t o t h e

s u c c e s s o r s t a t e s ~ o f s) .

�9 Each time a transition t that has led to a state s ~ is backtracked, restore the value of
Sleep before the execution of t. If s' is not in Stack, then add t to Sleep.

Figure 3: Algorithm 2 - - depth-first search with sleep sets

search backs up to state 8. Then t~ is executed from 3, leads to a successor node 8" and tile

search goes on from 8". Since tl and t~ are independent, tl is still enabled in 8". But it is

not necessary to explore transition tl from state 8" since the result of another shuffling of

these independent transitions, namely the sequence tlt~, has already been explored from s.

In order to prevent the execution of tl in 8", we use sleep sets: we put tl in the sleep set
associated to 8".

A sleep set is defined as a set of transitions. One sleep set is associated with each state

s reached during the search. The sleep set associated with s is a set of transitions that are

enabled in s but will not be executed from 8. Tile sleep set associated with the initial state
80 is the empty set.

Note that, in the previous exaanple, if tl and t~ would have been dependent, then it

would have been mandatory to explore both shufllings of tl and t~. (For example, the two

shufflings of two write statements on a same global variable performed by two concurrent
processes are dependent and leaves the system in two different states.)

Figure 3 shows how to introduce the sleep set scheme in the classical depth-first search
algorithm. A single variable Sleep is added. The two last rules describe how to set and

reset the value of Sleep properly during the state-graph traversal. The appropriate rule is

applied each time a transition is executed or backtracked during the search.

184

A simple example of a state-graph traversal performed by Algorithm 2 is given in Fig-
ure 2. The system on the left is composed of two completely independent concurrent pro-
cesses. For each state, the value of Sleep when that state has been added to the stack is
given between braces beside the state. Dotted transitions are not explored by Algorithm 2.

Note that Algorithm 2 as presented above call be viewed as an efficient version of the
procedure that was given in [GWglb] to compute sleep sets. Indeed, with this new ver-

sion, it is no more necessary to store explicitly sleep sets on the stack as it was suggested
in [GW91b]. I t is sufficient to store only some information about sleep sets updates in order
to restore the value of the sleep set before the execution of a transition when the transition
is backtracked. (From our experience in designing several different versions of the sleep set
scheme, implementing it as described above can imply a substantial speed-up in the sleep
set computations.)

The following theorem ensures that all reachable states of the concurrent system are still
visited by Algorithm 2.

T h e o r e m 3.1 All reachable states are visited blt Algorithm ~.

Proof :

Let s be a state reachable from the initial s tate so. Imagine that we fix the order in which transitions
selected in a given s ta te are explored and that we first run Algorithm 1 (depth-first search without sleep
sets). Then, we run Algorithm 2 (depth-first search with sleep sets) while still exploring transit ions in the
same order. The impor tant point is that the Order used in both runs is the same, the exact order used is
irrelevant. Let then S denote the spanning tree explored by Algorithm 1 and let S, denote the part of S tha t
contains all s ta tes from which the s ta te s is reachable. Since s is reachable, S, is nonempty and contains s
(we do not prove here tha t a classical depth-first search visits all reachable states). Moreover, the leftmost
path of S, leads to s. We now prove tha t in the second run, i.e. when using Algorithm 2, the leftmo~t path

of S, is still explored.

Let p -- se ~ s l --*tl s2 . . . s , - i *~.~1 s be this path. Since the order used in both runs is the same, p is
the very first path of S, that will be examined during both runs. The only reason for which it might not

be fully explored (i.e. until s is reached) by the algorithm using sleep sets is that some transition t l of p is
not taken because i t is in the sleep set associated to si. There are two possible canses for this. The first
cause is tha t p might contain a s ta te that has already been visited with a sleep set which contained |i . This
is not possible because if such a s ta te existed, the path p would not be the leftmost path in S,. The second

possible cause is that ti has been added to the sleep set at some point on the path p and then passed along

p until si . Let us prove that this is also impossible.

Assume tha t tl is in the sleep set associated to s ta te s i and that i t has been added to S l e e p at some
previous point on the path p. Precisely, there are s tates sj and s j§ j < i, in p such tha t t i f~ S l e e p at sj and
t i 6. S l e e p at s j+l . This implies tha t t i has been explored b e f o r e t j from sj since a transition is introduced
in S l e e p once it is backtracked (fourth rule in Figure 3). This also implies that, from s: , tl has not led to a
s ta te sh 1 _< j already visited in the path p. Moreover, all transitions that occur between tj and ii in p, i.e.
all t , such that j _< k < i, are independent with respect to G. Indeed, if this were not the case, ti would not
be in the sleep set of si since transitions that are dependent with the transition taken are removed from the

sleep set (third rule in Figure 3).

Consequently, t i l 3 . . . t i - i 6. [t j . . . t , - i i l l , i.e. t i t j . . . t i - i and t j . . . t i - t l , are two interleavings of a single

concurrent execution (i.e. a single trace) and hence sj * , ' j ~ , - t s i+l . Given tha t s is reachable from s i+t , i t
is reachable by a path that in s ta te s j takes the transition *i. Since tl has been explored before tj in s j and
has not led to a s ta te sl, I < j already visited in p, the path p is not the leftmost path in S , . A contradiction.

185

Protocol Algorithm

PFTP
2

URP I
2

MULOG3 1
2

DTP" I
2

'~ '-~ matched

409,257
409,257
15,378
15,378
100,195
100,195
251,409
251,409

transitions ~ time (see)

771,265 1380,522"
179,304 588,561
27,709 43,087
1,884 17,262

254,183 354,378
3,736 103,931

397,058 648,467
11,152 262,561

5,044 219.4
4,550 394.6
202 6.9
202 10.7
119 35.2
119 53.6
545 97.8
545 160.8

Table 1: Comparison of the performances of Algorithm 1 and 2

In practice, the previous theorem enables us to use Algorithm 2 to verify all prop-

erties that can be reduced to a state accessibility problem, like, for instance, deadlock

detection, unreachable code detection, assertion violations, safety properties. Moreover,

other problems like the verification of liveness properties and model checking for linear-

time temporal logic formulae are reducible to a set of teachability problems (see for in-

stance [CVWY90, 11o191, VW86]), for which the method developed in this paper is appli-

cable. By construction, the state-graph G ~ explored by Algorithm 2 is a "sub-graph" of

the state-graph G explored by Algorithm 1. Both state-graphs G and G I contain the same

number of states, the only difference is that G ~ contains always less transitions than G.

Of course, if no simultaneous enabled independent transitions are encountered during the

search, G ~ is then exactly equivalent to G.

Since only states, not transitions, are stored during all on-the-fly verification and since

the number of states is the same in G and G ~, Algorithm 1 and Algorithm 2 have exactly the

same memory requirements. (As a matter of fact, Algorithm 2 requires a few hundred bytes

more for the manipulation of Sleep; this overhead can be made insignificant with respect to
the global memory requirements [HGP92].)

Table 1 compares the performances of and the state-graphs explored by Algorithm 1
and Algorithm 2 for the protocols presented in Section 2. The advantage of Algorithm 2 is
that it explores much fewer transitions than Algorithm 1. The number of state matchings
strongly decreases. If the reduction in the number of transitions is sufficient to make up the
additional run-time overhead due to the manipulation of sleep sets, an improvement in the
general run-time requirements can result. This is not the case for the protocols considered
here. (In [HGP92], it is shown that the sleep set scheme can produce a significant reduction
in the overall run-time requirements when it is combined with a state compression method.)
"Depth" is the maximum size of the stack during the search.

One clearly sees in Table 1 that the number of matched states strongly decreases when
using Algorithm 2. This phenomenon can be explained with the following theorem.

T h e o r e m 3.2 For every reachable state s, Algorithm 2 never completely ezplores more than
one interleaving of a single trace (partial ordering of tra1~itions} that leads to s, ami thus

never visits s twice because of the exploration of two interlcavings of a same trace.

186

Proof:

By definition,all w' E [w], i.e. all interleavings to' of a single concurrent execution [w], can be obtained
from to by successively permuting pairs of adjacent independent transitions. Let to and w' denote two
interleavings of the single trace [to]. We now prove that Algorithm 2 does not completely explore both of
them.

Let Pref(w) denote the common prefix of to and tol that ends when to and to' differ. Assume the next
transition of tv after Pref(w) is ~ and that the next transition of to~ after Pref(to) is i s. In state s such that

so P r ~) s, both transitions t and t' are enabled. Moreover, t and t' are independent since to and w' differ
only by the order of independent transitions. Assume that t and t' are not in the current Sleep and that the
search explores t first. Later, when t is backtracked and the search backs up in s, t is introduced in Sleep.
Then t ' is explored and leads to a state s ' . Since t and t' are independent, t is not removed from Sleep at
s ta te ..~H

During the remainder of the exploration of w' starting from s ' , t remains in Sleep and is never executed.
Indeed, t could only be removed from Sleep after the execution of some transition t" that is dependent with
it. This is impossible because if t" occurs before t iu w' (since t has to occur eventually in to'), re' would differ
from w by the order of two dependent transitions t and t" and thus, to and to' would not be two interleavings
of a same trace. Since t is never executed and has to occur in to', w' is not completely explored.

Note that, if an already visited state is reached during the exploration of w' from s ' , the exploration of
w' stops. It might then be the case that the remainder of w' has already been explored, but it was during
the exploration of an interleaving of another trace that has the same suffix than td.

|

In o the r words , if a s t a t e is reachable by only several in ter leavings of a single t race ,

A lgor i thm 2 never comple te ly explores more than one of these in ter leavings and visi ts t h a t

s t a t e only once. In t he example of Figure 2, all s ta tes are visi ted only once by Algor i thm 2.

Of course, if one could know it in advance before s t a r t ing the search, i t would no t be

necessary to s tore any states! Unfor tuna te ly , i t is imposs ible to de t e rmine which are t he

s ta tes t ha t a re encoun te red only once before the seaxch being comple ted .

Let us now s tudy the impac t o f sleep sets on s t a te space caching.

4 State Space Caching and Sleep Sets

Figure 4 compares the per formances of Algor i thm 1 (classical dep th- f i r s t search) and Algo-

r i t hm 2 (depth-f i r s t search wi th sleep sets) for various cache sizes.

As already pointed out in Section 2, the number of transitions that are explored during

the search performed by Algorithm 1 blows up when the cache size is approximately the

half/third of the total number of states. This causes a run-time explosion, which makes

state space caching ineffmient under a certain threshold.

With Algorithm 2, for PFTP, this threshold can be reduced to the fourth of the total

number of states. The improvement is not very spectacular because the number of matched
states, even when using sleep sets, is still too important (see Table 1). The risk of double

work when reaching an already visited state that has been deleted from memory is not

reduced enough.

For the other three protocols, URP, MULOG3 and DTP, the situation is different: there
is no run-time explosion with Algorithm 2. Indeed, the number of matched states is reduced

so much (see Table 1) that the risk of double work becomes very small. When the cache size

187

is reduced up to the maximal depth of the search (this maximal depth is the lower bound
for the cache size since all states of the stack have to be stored to ensure the termination of

the search), the number of explored transitions is still between only two and four times the

total number of transitions in the state space. These protocols, which have between 15,000
and 250,000 reachable states, can be analyzed with no more than 500 stored states. The

memory requirements are reduced to 3~ up to 0.2~. The only drawback is an increase of
the run time by two to four times compared to the search where all states are stored (which

may be impossible for larger state spaces).

The efficiency of the method can be dynamically estimated during the search: if the
maximum stack size remains acceptable with respect to the cache size and if the proportion
of matched states remains small enough, the run-time explosion will likely be avoided. Else
one cannot predict if the cache size is large enough to avoid the run-time explosion.

5 Further Investigations

An important factor when using the state space caching method is the selection criterion
for determining which states are deleted when the cache is full.

Holzmann has studied several replacement strategies in [1[o185]. These strategies were
based on the number of times that a state has been previously visited. These strategies were:
replace the most frequently visited state; replace the least frequently visited state; replace
a state from the largest class of states in the current state space (where a class contains
states that have been visited equally often); replace randomly a state (blind round-robin
replacement); replace the state corresponding to the lowest point in the search tree (smallest
subtree). The conclusion of that study was that the best strategy seems to be a random
selection. In [Ho187], the probability of recurrence of states (i.e. the probability that once

a state has been visited n times it will be visited an n + 1st time as well) was investigated
and turns out not to be strongly correlated with the number of previous visits.

We have experimented some different replacement strategies. Our motivation was to
study the influence of the type of transitions that can lead to a state on the probability that

the state is visited again later during the search. For instance, a "labeled" state, e.g. the
target of a goto jump, is intuitively more susceptible to be matched than an "unlabeled"
state.

First, let us classify transitions into different types:

1. control branches (goto jump, start of do loops, . . .);

2. receives on message channels;

3. sends on message channels;

4. assignments to variables;

5. other transitions.

Each state encountered during the search is tagged with the type of the transition that has
led to it. We have studied the impact of the following replacement strategy on the run-tlme
requirements of the state space caching method, for each of tlle four first types of transitions:

188

transitions time
PFTP PFTP

=I
0 ,0o0.. ,0000 ~ , 0 ~ | " ,o00o0 ~ = - "

stored states stored states

transitions time
URP URP

s00~176 t \

100000[i . :

0 8000 16000 0 8000 16000
stored states stored states

transitions time
MULOG3 MULOG3

2e+ 06 [
200

le-l-06 k 100

o a00oo soooo 90000 0 3o00o 6oo0o 900o0

stored states stored states

transitions time
DTP DTP

.

6e+06 [1
800

4e+06 I
2e-F 06] " 4

; " i 5 '~00 : ' J 0 " " IS "000()0 "

stored states stored states

-..-. Algorithm 1
"4,-- Algorithm 2

300000

Figure 4: Performances of state space caching with Algorithm 1 and 2

189

transitions PFTP (algo 2) time

8e4-o61 3ooo I

, 00[2001
~ , . �9

0 200000 400000 0
stored states

PFTP (algo 2)

200000 400000
stored states

- , - random selection
"type-oriented" selection

Figure 5: Random vs "type-oriented" replacement strategy

Each time a state has to be deleted, scan an arbitrarily given number of stored

states (scanning too many states incurs an unacceptable overhead; this is Why

an arbitrary limit is given). If possible, select a state that is not tagged with the

type considered. Otherwise, select randomly one of them.

The results axe the following: for type 1, the procedure described above gives always better
results than a simple random selection; for types 2, 3 and 4, the results are unpredictable.
In other words, it is preferable not to remove states pointed by type 1 transitions, as far as
possible.

Since protocols do not necessarily have transitions of each type, a good heuristic cannot
be based only on the selection of states that follow transitions of a single type. Grouping

all the four first types together and trying to delete only states that follow transitions of
type 5 is not a good solution as well because it degenerates to a random selection since
transitions of type 5 axe usually not numerous enough. A possible trade-off is to use the
following replacement strategy:

Each time a state has to be deleted, scan an arbitrarily given number of stored

states and select one state that is tagged with the highest type (i.e. closest to
5).

The order of the types given above was chosen according to tile results of the experiments
we made with the different types taken separately. If a state is visited by several transitions,
its tag is set to the smallest type of transitions that led to it.

Figure 5 shows the results obtained with this strategy (denoted "type-oriented" strategy)
compared to a random replacement discipline for the PFTP protocol. One can see that
this strategy does not involve a significant run-time overhead. Moreover, it yields a 50%
reduction for the run-time blow-up threshold.

For the other three protocols, there is no significant difference with respect to a random
selection strategy. As a matter of fact, in these examples, the random selection strategy
is sufficient to reduce the cache size so close to the maximal stack size that no significant
further reduction is possible.

190

6 Conclus ions

We have presented a new technique which can substantially improve the state space caching
discipline by getting rid of the main cause of its previous inefficiency, namely prohibitive
state matching due to the exploration of all possihle interleavings of concurrent statement
executions all leading to the same state. We have shown with experiments on real protocol
models that, thanks to sleep sets, the memory requirements needed to validate large pro-

tocol models can be strongly decreased (sometimes more than 100 times) without seriously
increasing the time requirements (a factor of 3 or 4). This makes possible the complete
exploration of very large state spaces, that could not be explored so far. However, exploring
state spaces of several tens of million states takes time, since all these states are visited at

least once during the search. Thus time becomes the main limiting factor.

Note that no attempts were made in this paper to reduce the number of states that
need to be visited in order to validate properties of a system, llowever, sleep sets were

originally introduced as part of a method intended to master the "state explosion" phe-

nomenon [God90, GW91a, GW91b, tIGP92]. Using the full method preserves the beneficial
properties of sleep sets that were investigated in Section 3 while enabling a substantial
reduction of the number of states that have to he visited for verification purposes.

Acknowledgements

We wish to thank Pierre Wolper for helpful comments on this paper.

References

[cvwY9o]

[God90]

[GW91a]

[GW91b]

[IIGP92]

[Iio181]

[1101841

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. Iq Proe. 2ad Workshop ou Computer Aided
Verification, volume 531 of Lecture Notes in Computer Scie.ce, pages 233-242, Rutgers,
June 1990.

P. Godefroid. Using partial orders to improve automatic verification methods. In Proe.
2nd Workshop on Compuler Aided Verification, volume 531 of Leclure Noles in Com.
pu[er Science, pages 176-185, Rutgers, June 1990.

P. Godefroid and P. Wolper. A partial approach to model checking. Ill Proceedinys of
the 6lh IEEE Symposium on Logic ia COmLpuler Scieuce, pagcs 406-415, Amsterdam.
July 1991.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock
freedom and safety properties. In Proc. 3rd Workshop ou Computer Aided Verificalion,
volume 575 of Lecture Noles in Compuler Science, pages 332-342, Aalborg, July 1991.

G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strategies
for reachability analysis. Ill Proc. 12th lalerua~iouat Symposium on Prolocol Specifica-
tion, Tesling, and Verification, Lake Buena Vista, Florida, June 1992. North-lIolland.

G. J. llolzmann. Pan - - a protocol specification analyzer. Technical report, Technical
Memorandum 81-11271-5, Bell Laboratories, 1981.

G. J. lIolzmann. The pandora system - - an interactive system for the design of data
communication protocols. Compuler Networks, 8(2):71-81, 1984.

[110185]

[1101871

[Iio1901

[Ito191]

[,l,189]

[JJ91]

[Maz86]

[TN87]

[VW861

191

G. 'l. Holzmnnn. Tracing protocols. ATgdT Technical Journal, 64(12):2413-2434, 1985.

G. J. Holzmann. Automated protocol validation in argos - - assertion proving and scatter
searching. IEEE Trans. on Software Engineering, 13(6):683-696, 1987.

G..1. Holzmann. Algorithms for automated protocol validation. AT~AT Technical Jour-
nal, 69(1):32-44, 1990. Special issue on Protocol Testing and Verification.

G. ,l. Itolzmann. Design and Validation of Computer Protocols. Prentice Ilall, 1991.

C..lard and T. ,leron. On-line model-checking for finite linear temporal logic specifica-
tions. In Workshop on automatic verification methods for finite state systems, volume
407 of Lecture Notes in Computer Science, pages 189-196, Grenoble, June 1989.

C..lard and Th. Jeron. Bounded-memory algorithms for verification on-the-fly. In Proc.
3rd Workshop on Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science, Aalborg, July 1991.

A. Mazurkiewicz. Trace theory. Ill Pctri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Pelri Nets 1986, Part 11; Proceedings of an Ad-
vanced Course, volume 255 of Lecture Notes in Computer Science, pages 279-324, 1986.

M. Trehel and M. Naimi. Un algorithme distribud d'exclusion mutuelle en log(n). Tech-
nique et Science lnformatiqaes, pages 141-150, 1987.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Comp~ter and System Science, 32(2):182-21, April 1986.

