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A b s t r a c t .  We have modelled the design of a safety-critical railway sys- 
tem in the process calculus CCS, described important properties of the 
design in temporal logic, and verified with the Concurrency Workbench 
that some of the properties hold of the model. Verifying properties of a 
design, rather than an implementation, presented special problems, par- 
ticularly in capturing in the formal model the kinds of abstraction found 
in the design, and in showing that the verified properties would also hold 
in all implementations of the design. 

1 Introduction 

Many case studies demonstrating the verification of distributed systems involve 
communication protocols, low-level algorithms, or hardware. A less-studied topic 
is the verification of system designs. A design describes structure, such as the 
top-level components of a system and their interconnection, as well as beha- 
viour, such as the responses of components to inputs. Verifying properties of 
a design allows design decisions to be checked before spending much, possibly 
wasted, implementation effort. Since the design contains less detail than a full 
implementation, the verification task may also be more tractable. 

We describe here our experience in at tempting to verify properties of the 
design of a safety-critical system. We had three specific goals. First, to formalize 
the key parts  of the system design as a CCS process, leaving more detailed design 
issues open. Second, to formalize safety-critical properties of the system as tem- 
poral logic formulas and show, using an automatic verification tool, tha t  these 
properties hold of the model. Finally, to prove that  any "acceptable implement- 
ation" would also possess the properties shown to hold of the design model. By 
"acceptable implementation" we are intentionally vague. Such an implement- 
ation could be one reached from the design systematically according to a set 
of refinement rules, or simply one satisfying certain ad-hoc, application-specific 
constraints. 

2 Background 

The function of British Rail's Solid State Interlocking (SSI) [7] is to adjust, at the 
request of the signal operator,  the settings of signals and points in the railway to 
permit  the safe passage of trains. "Safe", in this context, means that  the system 
will protect  the signal operator  from inadvertently sending trains along routes 



221 

tha t  could lead to a collision or derailment. The entire BR network is controlled 
by many SSI's, each responsible for one sub-network. 

Figure 1 depicts an SSI and the devices it controls. Safe commands issued 
from the control panel are allowed to effect signals and points via messages sent 
over a high-speed communication link to trackside functional modules (TFM's).  
Each message is received by all TFM's  connected to the link, but  only acted on 
by the TFM with the address specified in the message. 

Pig. 1. The SSI and its environment 

D 

high-speed link 

A safety-related features of the SSI is its pat tern of communication with the 
TFM's.  Instead of sending signal or point commands only as needed, the SSI 
sends a message of the form (TFM address, state) to each attached TFM about  
once every second, giving the intended current setting. These messages are sent 
in a predefined cyclic pat tern,  called a major cycle, one TFM after another. After 
sending a message, the SSI waits at most a few milliseconds for the addressed 
TFM to respond with the current state of the device. This scheme allows failures 
of the TFM's  and communication link to be detected quickly, and forces devices 
tha t  have autonomously changed state to return to their proper state. 

In some sections of the BR network, many miles of track lie between TFM's,  
making the high-speed link very expensive. A cheaper low-speed link could not 
be directly adopted as it would not provide the bandwidth needed for the TFM 
command cycling scheme. On the other hand, dropping the scheme would com- 
promise safety and force changes to the SSI and TFM's. A solution is to employ 
a slow-scan system, built of a low-speed link (also called a low-grade link, or 
LGL) with protocol converters at each end (see Figure 2). The SSI-side pro- 
tocol converter (SPC) accepts TFM commands once every second, and responds 
immediately with trackside device status, but only sends the TFM command 
along the low-grade link occasionally. The TFM-side protocol converter  (TPC)  
sends a command to each attached TFM once every second. Responses from 
the TFM's  are occasionally sent by the TPC to the SPC, in order to update  
the SPC's device status information. Because the SPC mimics a TFM, and the 
T P C  mimics an SSI, the slow-scan system can replace a section of high-speed 
link, although the safety and performance properties will be altered. 

The slow-scan system must also mimic the high-speed link in its failure be- 
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Fig. 2. The slow-scan system 

haviour. For example, if the high-speed link fails so that  the attached TFM's  
stop receiving messages, then the TFM's  will detect the problem and put their 
outputs  to a safe state: signals to red; points locked in their current setting. 
Therefore, if the low-grade link of the slow-scan system fails, the TP C should 
stop sending commands to the attached TFM's.  

3 Safety Considerations 

The development of any formal model is guided by the purposes to which that  
model will be put. Here we are interested in showing safety-critical properties 
of our model, so before building the model we should consider the kinds of 
properties tha t  we will t ry  to show. 

Taken on its own, the slow-scan system cannot be considered safety-critical, 
since it does not directly control physical devices. However, by first looking at 
the safety-critical properties of the train routing system as a whole, and then 
working through the levels of the system, it is possible to obtain derived safety 
requirements of the slow-scan system. There is not room here to present such 
a hierarchical safety analysis. We will simply observe that  the safe routing of 
trains depends on the timely and error-free delivery of commands and timely 
detection of failures. 

The SSI can satisfy these requirements if a high-speed link is used. The 
bandwidth of the link and the error coding of messages ensures tha t  the first 
requirement is met. The TFM-command cycling scheme ensures the second is 
met. Both requirements are threatened by slow-scan, however. Its low-grade link 
slows the delivery of messages and lacks the bandwidth needed to send many 
redundant  messages. In this study, we focus on failures of the low-grade link and 
their detection by the slow-scan system. 

4 A S imple  M o d e l  of  Slow-Scan 

We first present a simple model of the slow-scan system and then show how the 
model can be extended to include the occurrence and handling of LGL failures. 
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Our goal is to capture the aspects of the design relevant to the safety-critical 
properties of interest, and to leave detailed design issue open. For example, we 
would like our model to be independent of a policy that  determines when TFM 
commands should be p~ssed along the low-grade link. Furthermore, we want 
to keep the model simple enough to enable mechanical verification with the 
Concurrency Workbench. 

We will model the stow-scan system as CCS processes. Only a brief and 
informal overview of CCS will be given here. 

Processes are described in CCS by terms for which the only possible beha- 
viour is to perform actions, which are either names (a,b,c,...), co-names (~,b,~,...), 
or the special action ~-. 

Process terms have the following syntax, where L ranges over sets of actions 
and f ranges over functions from actions to actions: 

P ::= O la.P I P1 + P2 I P1 I Pz I P \L I  P[f] 

The term 0 denotes the nil process, which can perform no actions. The oper- 
a to r .  expresses sequential action. The process a.P can perform the action a and 
thereby become process P.  The operator + expresses choice. If P1 can perform 
a and become P~, then so can P1 + P2, and similarly for P2. The operator  I 
expresses parallel execution. If  process P1 can perform a and become P~, then 
191 I P2 can perform a and become P~ I P2, and similarly for/~ Furthermore,  if 
/91 can perform a and become P~, and 192 can perform ~ and become P~, then 
P1 I P2 can perform r and become P~ I P2. The operator  \ expresses the restric- 
tion of actions. If P can perform a and become P~, then P\L  can only perform 
a to become P'\L if a ,~ r L. Finally, P[f] expresses the relabelling of actions, if 
P can perform a and become P ' ,  then p[/] can perform y(a) and become P ' [ f ] .  
A relabelling function f has the property that  f(T) = % and f(K) = f - ~ .  

The idea of repetition is captured by allowing recursive process definitions 

of the form P de=~ E, where P ' i s  a process constant and E is a process term 

possibly containing P .  For example, the process defined by P d___~f a.P + b.O has 
the possibility of performing either a or b, and continues to have this possibility as 
long as action a is performed. Once action b is performed, the process terminates. 

The set of actions that  can be eventually performed by a process is called its 

sort. For example, the sort of p. a_~f a.P + b.O is {a, b}. 
We are ready to present the first, simple model of the slow-scan system. The 

flow diagram for our first model (see Figure 3) shows that  the SSI and TFM's  
are considered outside the boundary of the slow-scan system. Because we are 
using CCS to model the system, we will admittedly be able to say little about  
real-time and probabilistic aspects of the system's behaviour. 

The LGL component of the model will be formalized first. Few details about  
the LGL interface are given in the high-level design, so the model is based on 
what one might expect in a typical communication link. For example, messages 
can be written to the input port  or read from the output  port  at any time. This 
feature ensures tha t  the protocol converters need never wait on the LGL ports. 
We would like our model to say as little as possible about  the content of messages 
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Fig. 3. Flow diagram for a simple slow-scan model 

and the message buffering capacity of the LGL, although we naturally expect it 
to have only finite buffering capacity. Our CCS model of the LGL is as follows: 

LGL def Comm[cl/in,  c2/out, c2Joug,] I Comm[sl/in,  s2/out, s2Jout~] 
d e f .  t Comm = m.Comm + "~-tu.Comrn 
d e f .  t Comm'  = zn.Comm +-o'~.Cornrn 

The model  contains two concurrent processes, one for each direction of mes- 
sage flow. Messages are modelled simply as content-less"pulses". Each link pro- 
cess can buffer a single message, because it is not possible in CCS to describe a 
buffer with finite but  a rb i t ra ry  capacity. I f  a message arrives at the input por t  of 
a link already buffering a message, the buffer is overwritten. If  the output  port  
of a link is read while the link is empty,  the special action ~-L~ occurs. 

The  slow-scan design requires of the SPC tha t  SSI commands  are responded 
to immedia te ly  with T F M  status  information. This requirement ensures tha t  the 
slow-scan system properly mimics the behaviour of a high-speed link. The design 
also s ta tes  tha t  the SPC must  pass commands  along the LGL to the TFM, but 
the policy for determining which commands  should be passed, and when they 
should be passed, is left open. Similarly, the policy for updat ing TFM status  
information with messages sent from the T F M  is left open in the design. The 
CCS process tha t  models  the SPC is as follows< 

def  S P C  = comm_in.stat_out.SPC + 

-ci.SPC + s2.SPC + s2,,.SPC 

We have a t t e m p t e d  to leave a policy for passing command  and status mes- 
sages open by allowing actions c-7 and s2 to occur at  any t ime (except just  after 
the receipt of an SSI command) .  This SPC model says too little about  a message- 
passing policy in one sense - since our model need never pass command  messages 
along - and too much in another  sense - since a message-passing policy need not 
be capable of sending a command  at every instant. Unfortunately, it does not 
seem possible to express the model we would like with a process algebra such as 
CCS. 

The  T P C  is modelled much like the SPC. Here we would like the model to say 
nothing abou t  passing s ta tus  information along the T F M  and reading command  
information from the LGL. Our CCS model of the T P C  is as follows: 

T P C  d~_~f comm_out.stat_in.TPC + 

-si.TPC + c2.TPC + c2,,.TPC 
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By composing processes TPC,  LGL, and SPC, we get the complete model 
SS,  with sort  ~ comm_in, comm_out, stat_in, star_out). 

SS  dej (SPC I LGL I TPC) \ (c l ,  c2, c2~, sl, s2, s2~) 

5 Modelling Low-grade Link Failures 

Our simple model captures the basic operation of the slow-scan system: the 
SPC immediately  responds to SSI commands with T F M  state information; the 
SPC and T P C  occasionally write command or s ta tus  messages to the LGL input 
ports; and the SPC and T P C  occasionally read the LGL output  ports.  The slow- 
scan design additionally discusses failure detection, but  does not describe any 
specific failure detection mechanisms. Since we are most interested in the safety- 
critical aspects of the system, we will add some failure modes to our model, and 
a mechanism for failure detection and handling. 

We will consider two LGL failure modes. The LGL can fail if its buffering 
capacity is exceeded, and it can fail spontaneously because of a break in the 
communicat ion medium. We assume tha t  once a failure occurs the LGL will 
continue to accept messages, but  will never deliver messages. The revised model 
of the LGL incorporating these failure modes is as follows: 

LG L de=~ Comm[cl / in, c2/ out, c2~,/ ou~] [ Comm[sl / in, s2/ out, s2~,/ out~] 
def  Comm = in.Comm ~ + outu.Comm + fail.Comm" 

- - ~  - -  �9 I I  Comm I def in .~l .Comm" + out.Comm + fad.Comm 
def  Comm" = in.Comm" + OUtu.Comm" 

The new action fail occurs when a failure occurs on either of the links com- 
prising the LGL. 

Because the slow-scan system is intended to simulate a high-speed link, an 
LGL failure should cause the slow-scan system to simulate a high-speed link 
failure. The SSI detects such a failure when the TFM fails to respond to a 
command.  Conversely, the TFM detects a high-speed link error when the SSI 
fails to send a command.  Ther~ore ,  once an LGL failure is detected, the slow- 
scan system should stop responding to SSI commands and stop sending T F M  
commands.  

The problem in detecting an LGL failure in the basic slow-scan model is tha t  
the LGL may be inactive for long periods in the normal course of events. An 
LGL failure detection s t ra tegy cannot report  tha t  a failure has occurred simply 
because no message has been received over the LGL after some period of time. 
Thus, to detect failures, additional messages have to be introduced along the 
LGL. 

Consider the more general problem of having two distributed processes de- 
tect  failures in a communication medium connecting them. Assume tha t  both  
processes receive pulses from a clock. I f  one process sends a message once every 
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clock pulse, and the other process increments a local counter once every clock 
pulse (clearing the counter if a message is received), then a failure must  have 
occurred in the medium if the counter exceeds a certain bound. The following 
process Mon illustrates this idea, with S as the sending process and R(i) as the 
receiving process having local counter value i: 

Clock ae=f t-i-~ck.~.~.Clock 
def  S = ts.-g~.S 

R(i) a___a tr .(  i f i  > n t h e n  )/--~.R(0) 

e lse  R(i + 1)) 

+in.R(o) 
Mon dej (Clock[ S lR(O))\{tr, ts} 

Some new notat ional  features have been introdilced here: parameter ized ac- 
tions and conditional s ta tements .  The process t e rm R(i) can be regarded as 
shor thand for the indexed process constant Ri. The te rm i f  b t h e n  P1 else P2 
behaves as process P1 if the boolean expression b evaluates to true, or as the 
process P2 if b evaluates to false. 

Two such distr ibuted channel monitors can be combined, with a single clock, 
to check bo th  directions of a bidirectional channel. Each process sends a message 
each clock pulse and expects to receive a message at least every n clock pulses. 
Note  tha t  al though the synchronizing process is named 'Clock',  there is no notion 
of real t ime in the model. 

Incorpora t ing  this channel monitoring s t rategy into our simple model of the 
slow-scan system, we get the following SSI-side protocol converter process: 

SPC(i) ~-~ comm_in.stat_ouLSPC(i) 
+-~.SPC(i) + s2.SPC(O) + s2~,.SPC(i) 
+mcs.-~.( i f i  > n t h e n  de---~t.SP else SPC(i + 1)) 

SPCF ~f  comm_in.SPCF + s2.SPCF + s2~.SPCF + mcs.SPCF 

As before, the SPC accepts commands  from the SSI, responds to the SSI 
with T F M  sta tus  information, and sometimes sends a command over the LGL. 
In this new model,  the SPC is guaranteed to send at least one message over the 
LGL each clock tick. Also, if n clock ticks pass without the receipt of a message 
f rom the T P C ,  then the SPC enters failure mode,  in which it never again sends 
messages to the SSI or LGL. Of  course, a more detailed model would contain a 
mechanism by which the SPC could exit failure mode. 

Similarly, the TFM-side protocol converter process is as follows: 

TPC(i) def_____ comm_out.stat_in.TPC(i) 
+'M.TPC(i) + c2.TPC(O) + c2,,.TPC(i) 
+mct.-M.( i f / >  n t h e n  de'-'t.TPCF else TPC(i + 1)) 

def T P C F  = stat_in.TPCF + c2.TPCF + e2~,.TPCF + ract.TPCF 
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The clock process is as follows: 

Clock ~f tick.-~-~.mct.Clock 

The complete model of the slow-scan with LGL failure detection: 

SS d~=f (SPC(O) l LGL i TPC(O) ] Clock)\{cl, c2, c2~, sl, s2, s2~, mcs, tact} 

6 A n a l y s i s  o f  t h e  M o d e l  

6.1 F o r m a l i z i n g  t h e  Sa fe ty  P r o p e r t i e s  

We will t ry  to show that  two safety-critical properties hold of our slow-scan 
model: 

- After a low-grade link fails, the slow-scan system will eventually detect the 
failure and stop responding to the SSI and TFM. 

- A failure is detected only if a failure has actually occurred. 

We use the modal mu-calculus [10] in a slightly extended form [15] as a 
temporal  logic to formalize behavioural properties. The syntax of the mu-calculus 
is as follows, where L ranges over sets of actions and Z ranges over variables: 

r ::=-1r ] r ^r I [L]r I Z I 1]Z.r 

Informally, the formula -1r holds of a process P if r does not hold of P.  
The formula r A r holds of P if both r and r hold of P.  The formula [L]r 
holds of P if r holds for all processes P~ that  can be reached from P through 
the performance of action a E L. The formula uZ.r is the greatest fixed point 
of the recursive modal equation Z -- r where Z appears in r Some intuition 
about  fixed point formulas can be gained by keeping in mind that  uZ.r can be 
replaced by its "unfolding": the formula r with Z replaced by uZ.r itself. Thus, 
vZ . r  A [{a}]Z -- r A [{a}](vZ.r A [{a}]Z) = r A [{a}](r A [{a}](uZ.r A [{a}lZ)) -- 
. . .  holds of any process for which lb holds along any execution path of a actions. 

The operators V, (a), and # can be defined as duals to existing operators 
(where r162 is the property obtained by substituting Ib for free occurrences of 
Z in r 

(L)r  dej -~[L]~r 

d e f  

Informally (L)r  holds of a process that  can perform an action in L and 
thereby evolve to a process satisfying r As with vZ.r the formula pZ.r  can 
be understood through unfolding, except here only finitely many unfoldings can 
be made. Thus, #Z4b V ({a})Z holds of a process tha t  can evolve to a process 
satisfying r after finitely many occurrences of action a. 
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These additional abbreviations are also convenient (where L ranges over sets 
of actions, and Act is the set of CCS actions): 

[O~1,.-., Otn]r dem_f [{O~1,..., o~n}]~b 

[_]r de=  [Attic 
[ -L ] r  dej [Act - L]r 

def def 
The booleans are defined as abbreviations: t t  = ~Z.Z, f f  = ~ t t .  An 

example using these abbreviations is (a, b) t t ,  which holds of processes that  can 
perform either an a or a b action. As another  example, the formula v Z . ( - ) t t  A 
[ - ] Z  holds of deadlock-free processes. 

The mu-calculus along with the abbreviations presented so far constitutes an 
expressive but  still low-level temporal  logic for describing properties of processes. 
In practice it is usually convenient to define additional abbreviations that  capture 
impor tant  concepts of the application. Before considering specific properties of 
the slow-scan system we present two more abbreviations that  often make it 
possible to avoid the fixed-point operators: 

[L]OO~b dej vZ.r  A [L]Z 

(L)*r ~ / z Z . r  V (L )Z  

Informally, [L]~176 holds if r always holds along all paths composed of actions 
in the set L. For example, the absence of deadlock can be written [ - ] ~ 1 7 6  - -  
in every state some action is possible. The dual operator  (L)*r holds of processes 
having a finite execution path composed of actions from L leading to a state in 

which r holds. 
We are ready now to formalize the two important  slow-scan properties. Recall 

the first property: 

After either of the low-grade links fail, the slow-scan system will even- 
tually detect  the failure and stop responding to the SSI and TFM. 

There  are two distinct parts to this property: a) failures are eventually de- 
tected,  and b) after detection eventually no responses are made to the TFM's. or 
SSI. On the way to formalizing the first part,  we have the idea "after a fail action 
occurs then eventually a de--t action occurs". Care needs to be taken here with 
the notion of eventuality, however, because we want to consider only executions 
in which the clock continues to tick. Our CCS model contains execution paths in 
which the clock does not continue to tick, and we do not  expect det to eventually 
occur in all these paths. The next step is therefore to define an abbreviation for 
the proper ty  "if the clock continues to tick then eventually action a will occur": 

even(~) aej ,Z.[-*Wk~k, ~ ] ~ [ ~ ] Z  

A reasonable translation of this formula to English is "no execution path 
exists containing infinitely many tick actions and no a actions". A useful and 
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closely-related abbreviat ion captures the proper ty  "if the clock continues to tick 
then eventually proper ty  r holds": 

even(C) %f ~Z.(vY.r  V ([ticklZ A [-ticklY) ) 

Now we can formalize "after a fail action occurs then eventually a det action 
occurs"" 

failures-detected doj [-fail  [fai eve (det) 

The formula begins with [-fai~ ~176 rather  than  [_]co because we are concerned 
only with the first failure tha t  occurs. 

A potential  pitfall is tha t  failures-detected is vacuously true if a failure never 
occurs. So, for example, the nil process 0 satisfies the formula. The formula is also 
vacuously t rue of processes in which the clock cannot continue to tick, such as 
fail.tick.O. To ensure tha t  the slow-scan model does not satisfy failures-detected 
in one of these ways, we can write two more formulas: 

failures-possible def= (_ ). (faiOt t 

can-tick ~ f  [-]~176 ( -  )* ( t ick)t t  

The formula failures-possible says tha t  there is some execution pa th  contain- 
ing the action fail. The formula can-tick says that ,  from any state, there is some 
execution pa th  containing the action tick. Note tha t  can-tick is stronger than  
the proper ty  we need: "tick can occur infinitely often after a fail action". 

To complete the formalization of the first property, we need to also express 
the second part :  "after  detection eventually no responses are made to the TFM's  
or SSI". Using the auxiliary formula silent, the proper ty  can be expressed as 
follows: 

def  silent = [-]~176 stat_out]ff 

eventually-silent def [_]oo [ det]even( silent) 

The proper ty  silent expresses tha t  no occurrence of actions eomm_out or 
star_out is ever possible. The first proper ty  of interest is thus fully captured 
by the conjunction of failures-detected, eventually-silent, failures-possible, and 
can-tick. 

The second property, '% failure is detected only if a failure has actually 
occurred",  is much simpler to express: 

no-false-alarm, de f [_ fai~OO [ det]ff 

Other  propert ies could be formalized besides the two impor tan t  safety-critical 
ones. For example,  we have already seen tha t  the absence of deadlock can be 
expressed as [ - ] ~  However, this proper ty  is weaker than  the proper ty  
can-tick, which states tha t  not only is some action possible in every state,  but 
t ha t  actions leading to a tick action are possible in every state. 
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6.2 Checking the Safety Properties 

By formalizing the behaviour of the slow-scan design, we enable precise and 
even au toma ted  reasoning about  it. Since the slow-scan model has a finite and 
reasonably small s ta te  space (of 3842 states),  the Concurrency Workbench [6] 
can check whether  the propert ies formulated in the last section hold of the model. 

The complexity of some of the properties means tha t  they cannot be checked 
by the Workbench in 24 hours on a powerful workstation. For each of these 
properties,  checking was made of a smaller model derived from the slow-scan 
model by hiding actions not relevant to the particular property. Then, by using 
a technique [3] tha t  cannot be described here because of space, the properties 
were shown by hand to hold of the full model if and only if they held in the smaller 
model. In what  follows, we will write tha t  a proper ty  was checked indirectly if this 
technique was used, and checked directly if the Workbench alone was sufficient. 

Recall tha t  the first proper ty  of interest involved detection of LGL failures. 
The proper ty  failures-detected was checked indirectly and shown to hold. The 
propert ies  failures-possible and can-tick were also shown to hold, the first directly 
and the second indirectly. 

The  proper ty  eventually-silent, which holds if the slow-scan system eventually 
stops performing output  actions after a failure is detected, could not practically 
be checked even indirectly. The proper ty  is expensive to check because after any 
det action a complicated eventuality proper ty  must be shown to hold. 

The  second property,  no-false-alarms, expresses tha t  failures cannot be de- 
tected before they occur. This proper ty  could be checked directly, but was found 
not to hold. I t  fails to hold because the action fail occurs after a failure, not 
simultaneously with it. A failure can be detected, and the corresponding action 
det can occur, between the moment  of failure and the moment  action fail oc- 
curs. Using the simulation facility of the Workbench, we were able to guide the 
slow-scan model through such a course of events. The state reached immediately 
af ter  the det action occurred was as follows: 

( S P C F  I I  t.Comm"[f] I ~i .TPC(1) I-m-~.Clock)\L 

Knowing tha t  no-false-alarms fails to hold, other questions become interest- 
ing, such as "can bo th  protocol converters signal detection of failure before fail 
occurs?",  and "if a failure is detected before fail occurs, must fail eventually 
occur?".  The formula detects-before-failure expresses the proper ty  tha t  two det 
actions can occur before a fail action: 

detects-before-failure def= (_faiO. ( det) (-faiO* ( det) t t  

This proper ty  was checking indirectly (by hiding all actions except fail and 
-d-~) and shown not to hold. However, it was shown in a similar way tha t  two 
fail actions can occur before any det actions occur. 

The tvCo following formulas express the idea tha t  det and fail are related 
by proper ty  "if a fai---] occurs before a de---t, then eventually a de---t will occur, and 
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conversely": 

even-detect  = - , e v e n  

even-fail detl  [det]even(? ) �9 

Note tha t  the proper ty  fai lures-detected is slightl___y stronger t__ hun even-detect; 

the former proper ty  requires tha t  det occurs after fa i l  even if det occurred before 
fail. These properties were checked indirectly and shown to hold. To perform 
the indirect checking, the actions eomm_in,s tat_in,  comm_out ,  and star_out were 
hidden, yielding a model of 641 states. 

In summary,  we have verified tha t  LGL failures are detected in our model. 
To ensure tha t  this proper ty  is meaningful we have also shown tha t  in all s tates 
the clock can continue to tick, and tha t  it is possible for such failures can occur. 
However, we have not verified tha t  output  actions will eventually cease after an 
LGL failure is detected. 

7 Showing Properties of Implementations 

An impor tan t  goal of this s tudy was to avoid put t ing features in the model tha t  
are not present in the design, so tha t  properties shown of the model would hold 
of the actual  system, regardless of specific choices made during detailed design 
and implementat ion.  For example, the model of the SPC does not specify when 
messages are passed along the LGL, only tha t  they can be passed. Less success 
was achieved in leaving the LGL buffering capacity unspecified; we settled for 
an LGL model with a capacity of one message. 

Unfortunately,  we cannot claim tha t  properties shown of our CCS model will 
hold for all slow-scan implementations,  in part  because we have given no precise 
rules governing how a CCS model can be refined. 

The  observation equivalence relation of CCS is sometimes used to show tha t  
a specification and implementat ion (both described as CCS processes) have the 
same behaviour. Generally, however, we do not want a refinement relation to 
be symmetrical .  Instead,  we expect refinement to be modelled as a pre-order 
relation in which detail can be added in a refinement step according to some 
rules. 

Bisimulation preorders [16] use the idea tha t  a refinement must be "at  least 
as defined" as a specification. For example, a CCS process tha t  evolves to an 
error-handling state after an error action occurs is a refinement of a process tha t  
evolves to an undefined s ta te  after such an action. This preorder relation can be 
characterized logically [14]: process P is a refinement of process Q exactly when 
P possesses more propert ies than Q. However, the properties here are those 
expressible in an intuitionistically-interpreted sub-language of the mu-calculus. 
Liveness properties,  such as eventual ly-s i lent ,  cannot be expressed in this logic. 

Another  refinement preorder comes from the modal process logic of Larsen 
and Thomsen [11]. Specifications in this logic resemble CCS processes except 
tha t  both  necessary  and admissible actions are possible. A specification R is a 
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refinement of another specification S if R must perform every action S must per- 
form, and if S may perform every action R may perform. This preorder also has a 
logical characterization [12], but here the logical language is an intuitionistically- 
interpreted form of Hennesy-Milner logic, which cannot express the safety and 
liveness properties of interest to us. 

Holmstrom's refinement calculus [9] allows CCS processes to be refined from 
specifications given in Hennessy-Milner logic with recursion. An implementation 
is guaranteed to have the property expressed by its specification, but the meaning 
of a recursive specification is taken to be its greatest fixed point, and so again 
this approach does not allow liveness properties to be expressed. 

8 C o n c l u s i o n s  

Our aim was to model the slow-scan design as a CCS process, to prove that the 
model possessed safety-critical properties expressed in the modal mu-calculus, 
and to show that these properties would be possessed by implementations based 
on the design model. 

We were able to model most of the slow-scan design directly in CCS. Timing 
and probabilistic aspects of the design could obviously not be captured. As has 
been described elsewhere [11], CCS agents are not ideal for specifying systems, 
since only a single process can be described (up to equivalence), while one often 
would like to describe a broad class of processes. A notion of priority [4] or of 
interrupt [2] would have been useful in modelling the tick action of the clock 
process. It would have also been convenient to ascribe simple process fairness 
[8] to the model, allowing simpler expression of the eventuality properties. In 
adding a failure detection mechanism to the basic slow-scan model, a notion of 
superposition [5] would have been helpful. However, a notation with all of these 
features would lack the appealing simplicity of CCS. 

The slow-scan model lacked some features described in the design, such as 
system initialization. The modelling of failures and failure detection was also 
overly simple. In particular, many more failure modes of the system could be 
modelled, and the failure modes could be made more realistic. For example, it 
may not be valid to assume that the LGL is quiet after failure. 

In specifying the safety-critical properties of the system, the modal mu- 
calculus was expressive enough to capture all the properties of interest. Abbre- 
viations were necessary to keep the formulas small and understandable. As just 
mentioned, the eventuality properties were complicated by the lack of priority 
and fairness in the design model. The inability of the Concurrency Workbench 
to check certain properties in a reasonable period of time reflects both the com- 
plexity of the properties and the relative lack of concern with efficiency issues in 
the development of the Workbench. 

Probably the biggest shortcoming of the study was our failure to show that 
properties of our design model also hold for for slow-scan implementations. This 
problem is the subject of current study. Also to be studied is the applicability 
of timed process calculi [1, 13] to this system. 
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