
A Case Study in Safety-Critical Design

Glenn Bruns

Department of Computer Science, University of Edinburgh
Edinburgh EH9 3JZ, UK

A b s t r a c t . We have modelled the design of a safety-critical railway sys-
tem in the process calculus CCS, described important properties of the
design in temporal logic, and verified with the Concurrency Workbench
that some of the properties hold of the model. Verifying properties of a
design, rather than an implementation, presented special problems, par-
ticularly in capturing in the formal model the kinds of abstraction found
in the design, and in showing that the verified properties would also hold
in all implementations of the design.

1 Introduction

Many case studies demonstrating the verification of distributed systems involve
communication protocols, low-level algorithms, or hardware. A less-studied topic
is the verification of system designs. A design describes structure, such as the
top-level components of a system and their interconnection, as well as beha-
viour, such as the responses of components to inputs. Verifying properties of
a design allows design decisions to be checked before spending much, possibly
wasted, implementation effort. Since the design contains less detail than a full
implementation, the verification task may also be more tractable.

We describe here our experience in at tempting to verify properties of the
design of a safety-critical system. We had three specific goals. First, to formalize
the key parts of the system design as a CCS process, leaving more detailed design
issues open. Second, to formalize safety-critical properties of the system as tem-
poral logic formulas and show, using an automatic verification tool, tha t these
properties hold of the model. Finally, to prove that any "acceptable implement-
ation" would also possess the properties shown to hold of the design model. By
"acceptable implementation" we are intentionally vague. Such an implement-
ation could be one reached from the design systematically according to a set
of refinement rules, or simply one satisfying certain ad-hoc, application-specific
constraints.

2 Background

The function of British Rail's Solid State Interlocking (SSI) [7] is to adjust, at the
request of the signal operator, the settings of signals and points in the railway to
permit the safe passage of trains. "Safe", in this context, means that the system
will protect the signal operator from inadvertently sending trains along routes

221

tha t could lead to a collision or derailment. The entire BR network is controlled
by many SSI's, each responsible for one sub-network.

Figure 1 depicts an SSI and the devices it controls. Safe commands issued
from the control panel are allowed to effect signals and points via messages sent
over a high-speed communication link to trackside functional modules (TFM's).
Each message is received by all TFM's connected to the link, but only acted on
by the TFM with the address specified in the message.

Pig. 1. The SSI and its environment

D

high-speed link

A safety-related features of the SSI is its pat tern of communication with the
TFM's. Instead of sending signal or point commands only as needed, the SSI
sends a message of the form (TFM address, state) to each attached TFM about
once every second, giving the intended current setting. These messages are sent
in a predefined cyclic pat tern, called a major cycle, one TFM after another. After
sending a message, the SSI waits at most a few milliseconds for the addressed
TFM to respond with the current state of the device. This scheme allows failures
of the TFM's and communication link to be detected quickly, and forces devices
tha t have autonomously changed state to return to their proper state.

In some sections of the BR network, many miles of track lie between TFM's,
making the high-speed link very expensive. A cheaper low-speed link could not
be directly adopted as it would not provide the bandwidth needed for the TFM
command cycling scheme. On the other hand, dropping the scheme would com-
promise safety and force changes to the SSI and TFM's. A solution is to employ
a slow-scan system, built of a low-speed link (also called a low-grade link, or
LGL) with protocol converters at each end (see Figure 2). The SSI-side pro-
tocol converter (SPC) accepts TFM commands once every second, and responds
immediately with trackside device status, but only sends the TFM command
along the low-grade link occasionally. The TFM-side protocol converter (TPC)
sends a command to each attached TFM once every second. Responses from
the TFM's are occasionally sent by the TPC to the SPC, in order to update
the SPC's device status information. Because the SPC mimics a TFM, and the
T P C mimics an SSI, the slow-scan system can replace a section of high-speed
link, although the safety and performance properties will be altered.

The slow-scan system must also mimic the high-speed link in its failure be-

222

~ c. panel] high-speed link
II �9 sl �9

low-grade
SSI-side link TFM-side

protocol converter protocol converter

Fig. 2. The slow-scan system

haviour. For example, if the high-speed link fails so that the attached TFM's
stop receiving messages, then the TFM's will detect the problem and put their
outputs to a safe state: signals to red; points locked in their current setting.
Therefore, if the low-grade link of the slow-scan system fails, the TP C should
stop sending commands to the attached TFM's.

3 Safety Considerations

The development of any formal model is guided by the purposes to which that
model will be put. Here we are interested in showing safety-critical properties
of our model, so before building the model we should consider the kinds of
properties tha t we will t ry to show.

Taken on its own, the slow-scan system cannot be considered safety-critical,
since it does not directly control physical devices. However, by first looking at
the safety-critical properties of the train routing system as a whole, and then
working through the levels of the system, it is possible to obtain derived safety
requirements of the slow-scan system. There is not room here to present such
a hierarchical safety analysis. We will simply observe that the safe routing of
trains depends on the timely and error-free delivery of commands and timely
detection of failures.

The SSI can satisfy these requirements if a high-speed link is used. The
bandwidth of the link and the error coding of messages ensures tha t the first
requirement is met. The TFM-command cycling scheme ensures the second is
met. Both requirements are threatened by slow-scan, however. Its low-grade link
slows the delivery of messages and lacks the bandwidth needed to send many
redundant messages. In this study, we focus on failures of the low-grade link and
their detection by the slow-scan system.

4 A S imple M o d e l of Slow-Scan

We first present a simple model of the slow-scan system and then show how the
model can be extended to include the occurrence and handling of LGL failures.

223

Our goal is to capture the aspects of the design relevant to the safety-critical
properties of interest, and to leave detailed design issue open. For example, we
would like our model to be independent of a policy that determines when TFM
commands should be p~ssed along the low-grade link. Furthermore, we want
to keep the model simple enough to enable mechanical verification with the
Concurrency Workbench.

We will model the stow-scan system as CCS processes. Only a brief and
informal overview of CCS will be given here.

Processes are described in CCS by terms for which the only possible beha-
viour is to perform actions, which are either names (a,b,c,...), co-names (~,b,~,...),
or the special action ~-.

Process terms have the following syntax, where L ranges over sets of actions
and f ranges over functions from actions to actions:

P ::= O la.P I P1 + P2 I P1 I Pz I P \L I P[f]

The term 0 denotes the nil process, which can perform no actions. The oper-
a to r . expresses sequential action. The process a.P can perform the action a and
thereby become process P. The operator + expresses choice. If P1 can perform
a and become P~, then so can P1 + P2, and similarly for P2. The operator I
expresses parallel execution. If process P1 can perform a and become P~, then
191 I P2 can perform a and become P~ I P2, and similarly for/~ Furthermore, if
/91 can perform a and become P~, and 192 can perform ~ and become P~, then
P1 I P2 can perform r and become P~ I P2. The operator \ expresses the restric-
tion of actions. If P can perform a and become P~, then P\L can only perform
a to become P'\L if a ,~ r L. Finally, P[f] expresses the relabelling of actions, if
P can perform a and become P ' , then p[/] can perform y(a) and become P ' [f] .
A relabelling function f has the property that f(T) = % and f(K) = f - ~ .

The idea of repetition is captured by allowing recursive process definitions

of the form P de=~ E, where P ' i s a process constant and E is a process term

possibly containing P . For example, the process defined by P d___~f a.P + b.O has
the possibility of performing either a or b, and continues to have this possibility as
long as action a is performed. Once action b is performed, the process terminates.

The set of actions that can be eventually performed by a process is called its

sort. For example, the sort of p. a_~f a.P + b.O is {a, b}.
We are ready to present the first, simple model of the slow-scan system. The

flow diagram for our first model (see Figure 3) shows that the SSI and TFM's
are considered outside the boundary of the slow-scan system. Because we are
using CCS to model the system, we will admittedly be able to say little about
real-time and probabilistic aspects of the system's behaviour.

The LGL component of the model will be formalized first. Few details about
the LGL interface are given in the high-level design, so the model is based on
what one might expect in a typical communication link. For example, messages
can be written to the input port or read from the output port at any time. This
feature ensures tha t the protocol converters need never wait on the LGL ports.
We would like our model to say as little as possible about the content of messages

224

c o m m A n c l c 2 c o m m _ o u t

stat_out s2 sl s ta l in

Fig. 3. Flow diagram for a simple slow-scan model

and the message buffering capacity of the LGL, although we naturally expect it
to have only finite buffering capacity. Our CCS model of the LGL is as follows:

LGL def Comm[cl/in, c2/out, c2Joug,] I Comm[sl/in, s2/out, s2Jout~]
d e f . t Comm = m.Comm + "~-tu.Comrn
d e f . t Comm' = zn.Comm +-o'~.Cornrn

The model contains two concurrent processes, one for each direction of mes-
sage flow. Messages are modelled simply as content-less"pulses". Each link pro-
cess can buffer a single message, because it is not possible in CCS to describe a
buffer with finite but a rb i t ra ry capacity. I f a message arrives at the input por t of
a link already buffering a message, the buffer is overwritten. If the output port
of a link is read while the link is empty, the special action ~-L~ occurs.

The slow-scan design requires of the SPC tha t SSI commands are responded
to immedia te ly with T F M status information. This requirement ensures tha t the
slow-scan system properly mimics the behaviour of a high-speed link. The design
also s ta tes tha t the SPC must pass commands along the LGL to the TFM, but
the policy for determining which commands should be passed, and when they
should be passed, is left open. Similarly, the policy for updat ing TFM status
information with messages sent from the T F M is left open in the design. The
CCS process tha t models the SPC is as follows<

def S P C = comm_in.stat_out.SPC +

-ci.SPC + s2.SPC + s2,,.SPC

We have a t t e m p t e d to leave a policy for passing command and status mes-
sages open by allowing actions c-7 and s2 to occur at any t ime (except just after
the receipt of an SSI command) . This SPC model says too little about a message-
passing policy in one sense - since our model need never pass command messages
along - and too much in another sense - since a message-passing policy need not
be capable of sending a command at every instant. Unfortunately, it does not
seem possible to express the model we would like with a process algebra such as
CCS.

The T P C is modelled much like the SPC. Here we would like the model to say
nothing abou t passing s ta tus information along the T F M and reading command
information from the LGL. Our CCS model of the T P C is as follows:

T P C d~_~f comm_out.stat_in.TPC +

-si.TPC + c2.TPC + c2,,.TPC

225

By composing processes TPC, LGL, and SPC, we get the complete model
SS, with sort ~ comm_in, comm_out, stat_in, star_out).

SS dej (SPC I LGL I TPC) \ (c l , c2, c2~, sl, s2, s2~)

5 Modelling Low-grade Link Failures

Our simple model captures the basic operation of the slow-scan system: the
SPC immediately responds to SSI commands with T F M state information; the
SPC and T P C occasionally write command or s ta tus messages to the LGL input
ports; and the SPC and T P C occasionally read the LGL output ports. The slow-
scan design additionally discusses failure detection, but does not describe any
specific failure detection mechanisms. Since we are most interested in the safety-
critical aspects of the system, we will add some failure modes to our model, and
a mechanism for failure detection and handling.

We will consider two LGL failure modes. The LGL can fail if its buffering
capacity is exceeded, and it can fail spontaneously because of a break in the
communicat ion medium. We assume tha t once a failure occurs the LGL will
continue to accept messages, but will never deliver messages. The revised model
of the LGL incorporating these failure modes is as follows:

LG L de=~ Comm[cl / in, c2/ out, c2~,/ ou~] [Comm[sl / in, s2/ out, s2~,/ out~]
def Comm = in.Comm ~ + outu.Comm + fail.Comm"

- - ~ - - �9 I I Comm I def in .~l .Comm" + out.Comm + fad.Comm
def Comm" = in.Comm" + OUtu.Comm"

The new action fail occurs when a failure occurs on either of the links com-
prising the LGL.

Because the slow-scan system is intended to simulate a high-speed link, an
LGL failure should cause the slow-scan system to simulate a high-speed link
failure. The SSI detects such a failure when the TFM fails to respond to a
command. Conversely, the TFM detects a high-speed link error when the SSI
fails to send a command. Ther~ore , once an LGL failure is detected, the slow-
scan system should stop responding to SSI commands and stop sending T F M
commands.

The problem in detecting an LGL failure in the basic slow-scan model is tha t
the LGL may be inactive for long periods in the normal course of events. An
LGL failure detection s t ra tegy cannot report tha t a failure has occurred simply
because no message has been received over the LGL after some period of time.
Thus, to detect failures, additional messages have to be introduced along the
LGL.

Consider the more general problem of having two distributed processes de-
tect failures in a communication medium connecting them. Assume tha t both
processes receive pulses from a clock. I f one process sends a message once every

226

clock pulse, and the other process increments a local counter once every clock
pulse (clearing the counter if a message is received), then a failure must have
occurred in the medium if the counter exceeds a certain bound. The following
process Mon illustrates this idea, with S as the sending process and R(i) as the
receiving process having local counter value i:

Clock ae=f t-i-~ck.~.~.Clock
def S = ts.-g~.S

R(i) a___a tr .(i f i > n t h e n)/--~.R(0)

e lse R(i + 1))

+in.R(o)
Mon dej (Clock[S lR(O))\{tr, ts}

Some new notat ional features have been introdilced here: parameter ized ac-
tions and conditional s ta tements . The process t e rm R(i) can be regarded as
shor thand for the indexed process constant Ri. The te rm i f b t h e n P1 else P2
behaves as process P1 if the boolean expression b evaluates to true, or as the
process P2 if b evaluates to false.

Two such distr ibuted channel monitors can be combined, with a single clock,
to check bo th directions of a bidirectional channel. Each process sends a message
each clock pulse and expects to receive a message at least every n clock pulses.
Note tha t al though the synchronizing process is named 'Clock', there is no notion
of real t ime in the model.

Incorpora t ing this channel monitoring s t rategy into our simple model of the
slow-scan system, we get the following SSI-side protocol converter process:

SPC(i) ~-~ comm_in.stat_ouLSPC(i)
+-~.SPC(i) + s2.SPC(O) + s2~,.SPC(i)
+mcs.-~.(i f i > n t h e n de---~t.SP else SPC(i + 1))

SPCF ~f comm_in.SPCF + s2.SPCF + s2~.SPCF + mcs.SPCF

As before, the SPC accepts commands from the SSI, responds to the SSI
with T F M sta tus information, and sometimes sends a command over the LGL.
In this new model, the SPC is guaranteed to send at least one message over the
LGL each clock tick. Also, if n clock ticks pass without the receipt of a message
f rom the T P C , then the SPC enters failure mode, in which it never again sends
messages to the SSI or LGL. Of course, a more detailed model would contain a
mechanism by which the SPC could exit failure mode.

Similarly, the TFM-side protocol converter process is as follows:

TPC(i) def_____ comm_out.stat_in.TPC(i)
+'M.TPC(i) + c2.TPC(O) + c2,,.TPC(i)
+mct.-M.(i f / > n t h e n de'-'t.TPCF else TPC(i + 1))

def T P C F = stat_in.TPCF + c2.TPCF + e2~,.TPCF + ract.TPCF

227

The clock process is as follows:

Clock ~f tick.-~-~.mct.Clock

The complete model of the slow-scan with LGL failure detection:

SS d~=f (SPC(O) l LGL i TPC(O)] Clock)\{cl, c2, c2~, sl, s2, s2~, mcs, tact}

6 A n a l y s i s o f t h e M o d e l

6.1 F o r m a l i z i n g t h e Sa fe ty P r o p e r t i e s

We will t ry to show that two safety-critical properties hold of our slow-scan
model:

- After a low-grade link fails, the slow-scan system will eventually detect the
failure and stop responding to the SSI and TFM.

- A failure is detected only if a failure has actually occurred.

We use the modal mu-calculus [10] in a slightly extended form [15] as a
temporal logic to formalize behavioural properties. The syntax of the mu-calculus
is as follows, where L ranges over sets of actions and Z ranges over variables:

r ::=-1r] r ^r I [L]r I Z I 1]Z.r

Informally, the formula -1r holds of a process P if r does not hold of P.
The formula r A r holds of P if both r and r hold of P. The formula [L]r
holds of P if r holds for all processes P~ that can be reached from P through
the performance of action a E L. The formula uZ.r is the greatest fixed point
of the recursive modal equation Z -- r where Z appears in r Some intuition
about fixed point formulas can be gained by keeping in mind that uZ.r can be
replaced by its "unfolding": the formula r with Z replaced by uZ.r itself. Thus,
vZ . r A [{a}]Z -- r A [{a}](vZ.r A [{a}]Z) = r A [{a}](r A [{a}](uZ.r A [{a}lZ)) --
. . . holds of any process for which lb holds along any execution path of a actions.

The operators V, (a), and # can be defined as duals to existing operators
(where r162 is the property obtained by substituting Ib for free occurrences of
Z in r

(L)r dej -~[L]~r

d e f

Informally (L)r holds of a process that can perform an action in L and
thereby evolve to a process satisfying r As with vZ.r the formula pZ.r can
be understood through unfolding, except here only finitely many unfoldings can
be made. Thus, #Z4b V ({a})Z holds of a process tha t can evolve to a process
satisfying r after finitely many occurrences of action a.

228

These additional abbreviations are also convenient (where L ranges over sets
of actions, and Act is the set of CCS actions):

[O~1,.-., Otn]r dem_f [{O~1,..., o~n}]~b

[_]r de= [Attic
[-L] r dej [Act - L]r

def def
The booleans are defined as abbreviations: t t = ~Z.Z, f f = ~ t t . An

example using these abbreviations is (a, b) t t , which holds of processes that can
perform either an a or a b action. As another example, the formula v Z . (-) t t A
[-] Z holds of deadlock-free processes.

The mu-calculus along with the abbreviations presented so far constitutes an
expressive but still low-level temporal logic for describing properties of processes.
In practice it is usually convenient to define additional abbreviations that capture
impor tant concepts of the application. Before considering specific properties of
the slow-scan system we present two more abbreviations that often make it
possible to avoid the fixed-point operators:

[L]OO~b dej vZ.r A [L]Z

(L)*r ~ / z Z . r V (L)Z

Informally, [L]~176 holds if r always holds along all paths composed of actions
in the set L. For example, the absence of deadlock can be written [-] ~ 1 7 6 - -
in every state some action is possible. The dual operator (L)*r holds of processes
having a finite execution path composed of actions from L leading to a state in

which r holds.
We are ready now to formalize the two important slow-scan properties. Recall

the first property:

After either of the low-grade links fail, the slow-scan system will even-
tually detect the failure and stop responding to the SSI and TFM.

There are two distinct parts to this property: a) failures are eventually de-
tected, and b) after detection eventually no responses are made to the TFM's. or
SSI. On the way to formalizing the first part, we have the idea "after a fail action
occurs then eventually a de--t action occurs". Care needs to be taken here with
the notion of eventuality, however, because we want to consider only executions
in which the clock continues to tick. Our CCS model contains execution paths in
which the clock does not continue to tick, and we do not expect det to eventually
occur in all these paths. The next step is therefore to define an abbreviation for
the proper ty "if the clock continues to tick then eventually action a will occur":

even(~) aej ,Z.[-*Wk~k, ~] ~ [~] Z

A reasonable translation of this formula to English is "no execution path
exists containing infinitely many tick actions and no a actions". A useful and

229

closely-related abbreviat ion captures the proper ty "if the clock continues to tick
then eventually proper ty r holds":

even(C) %f ~Z.(vY.r V ([ticklZ A [-ticklY))

Now we can formalize "after a fail action occurs then eventually a det action
occurs""

failures-detected doj [-fail [fai eve (det)

The formula begins with [-fai~ ~176 rather than [_]co because we are concerned
only with the first failure tha t occurs.

A potential pitfall is tha t failures-detected is vacuously true if a failure never
occurs. So, for example, the nil process 0 satisfies the formula. The formula is also
vacuously t rue of processes in which the clock cannot continue to tick, such as
fail.tick.O. To ensure tha t the slow-scan model does not satisfy failures-detected
in one of these ways, we can write two more formulas:

failures-possible def= (_). (faiOt t

can-tick ~ f [-]~176 (-)* (t ick)t t

The formula failures-possible says tha t there is some execution pa th contain-
ing the action fail. The formula can-tick says that , from any state, there is some
execution pa th containing the action tick. Note tha t can-tick is stronger than
the proper ty we need: "tick can occur infinitely often after a fail action".

To complete the formalization of the first property, we need to also express
the second part : "after detection eventually no responses are made to the TFM's
or SSI". Using the auxiliary formula silent, the proper ty can be expressed as
follows:

def silent = [-]~176 stat_out]ff

eventually-silent def [_]oo [det]even(silent)

The proper ty silent expresses tha t no occurrence of actions eomm_out or
star_out is ever possible. The first proper ty of interest is thus fully captured
by the conjunction of failures-detected, eventually-silent, failures-possible, and
can-tick.

The second property, '% failure is detected only if a failure has actually
occurred", is much simpler to express:

no-false-alarm, de f [_ fai~OO [det]ff

Other propert ies could be formalized besides the two impor tan t safety-critical
ones. For example, we have already seen tha t the absence of deadlock can be
expressed as [-] ~ However, this proper ty is weaker than the proper ty
can-tick, which states tha t not only is some action possible in every state, but
t ha t actions leading to a tick action are possible in every state.

230

6.2 Checking the Safety Properties

By formalizing the behaviour of the slow-scan design, we enable precise and
even au toma ted reasoning about it. Since the slow-scan model has a finite and
reasonably small s ta te space (of 3842 states), the Concurrency Workbench [6]
can check whether the propert ies formulated in the last section hold of the model.

The complexity of some of the properties means tha t they cannot be checked
by the Workbench in 24 hours on a powerful workstation. For each of these
properties, checking was made of a smaller model derived from the slow-scan
model by hiding actions not relevant to the particular property. Then, by using
a technique [3] tha t cannot be described here because of space, the properties
were shown by hand to hold of the full model if and only if they held in the smaller
model. In what follows, we will write tha t a proper ty was checked indirectly if this
technique was used, and checked directly if the Workbench alone was sufficient.

Recall tha t the first proper ty of interest involved detection of LGL failures.
The proper ty failures-detected was checked indirectly and shown to hold. The
propert ies failures-possible and can-tick were also shown to hold, the first directly
and the second indirectly.

The proper ty eventually-silent, which holds if the slow-scan system eventually
stops performing output actions after a failure is detected, could not practically
be checked even indirectly. The proper ty is expensive to check because after any
det action a complicated eventuality proper ty must be shown to hold.

The second property, no-false-alarms, expresses tha t failures cannot be de-
tected before they occur. This proper ty could be checked directly, but was found
not to hold. I t fails to hold because the action fail occurs after a failure, not
simultaneously with it. A failure can be detected, and the corresponding action
det can occur, between the moment of failure and the moment action fail oc-
curs. Using the simulation facility of the Workbench, we were able to guide the
slow-scan model through such a course of events. The state reached immediately
af ter the det action occurred was as follows:

(S P C F I I t.Comm"[f] I ~i .TPC(1) I-m-~.Clock)\L

Knowing tha t no-false-alarms fails to hold, other questions become interest-
ing, such as "can bo th protocol converters signal detection of failure before fail
occurs?", and "if a failure is detected before fail occurs, must fail eventually
occur?". The formula detects-before-failure expresses the proper ty tha t two det
actions can occur before a fail action:

detects-before-failure def= (_faiO. (det) (-faiO* (det) t t

This proper ty was checking indirectly (by hiding all actions except fail and
-d-~) and shown not to hold. However, it was shown in a similar way tha t two
fail actions can occur before any det actions occur.

The tvCo following formulas express the idea tha t det and fail are related
by proper ty "if a fai---] occurs before a de---t, then eventually a de---t will occur, and

231

conversely":

even-detect = - , e v e n

even-fail detl [det]even(?) �9

Note tha t the proper ty fai lures-detected is slightl___y stronger t__ hun even-detect;

the former proper ty requires tha t det occurs after fa i l even if det occurred before
fail. These properties were checked indirectly and shown to hold. To perform
the indirect checking, the actions eomm_in,s tat_in, comm_out , and star_out were
hidden, yielding a model of 641 states.

In summary, we have verified tha t LGL failures are detected in our model.
To ensure tha t this proper ty is meaningful we have also shown tha t in all s tates
the clock can continue to tick, and tha t it is possible for such failures can occur.
However, we have not verified tha t output actions will eventually cease after an
LGL failure is detected.

7 Showing Properties of Implementations

An impor tan t goal of this s tudy was to avoid put t ing features in the model tha t
are not present in the design, so tha t properties shown of the model would hold
of the actual system, regardless of specific choices made during detailed design
and implementat ion. For example, the model of the SPC does not specify when
messages are passed along the LGL, only tha t they can be passed. Less success
was achieved in leaving the LGL buffering capacity unspecified; we settled for
an LGL model with a capacity of one message.

Unfortunately, we cannot claim tha t properties shown of our CCS model will
hold for all slow-scan implementations, in part because we have given no precise
rules governing how a CCS model can be refined.

The observation equivalence relation of CCS is sometimes used to show tha t
a specification and implementat ion (both described as CCS processes) have the
same behaviour. Generally, however, we do not want a refinement relation to
be symmetrical . Instead, we expect refinement to be modelled as a pre-order
relation in which detail can be added in a refinement step according to some
rules.

Bisimulation preorders [16] use the idea tha t a refinement must be "at least
as defined" as a specification. For example, a CCS process tha t evolves to an
error-handling state after an error action occurs is a refinement of a process tha t
evolves to an undefined s ta te after such an action. This preorder relation can be
characterized logically [14]: process P is a refinement of process Q exactly when
P possesses more propert ies than Q. However, the properties here are those
expressible in an intuitionistically-interpreted sub-language of the mu-calculus.
Liveness properties, such as eventual ly-s i lent , cannot be expressed in this logic.

Another refinement preorder comes from the modal process logic of Larsen
and Thomsen [11]. Specifications in this logic resemble CCS processes except
tha t both necessary and admissible actions are possible. A specification R is a

232

refinement of another specification S if R must perform every action S must per-
form, and if S may perform every action R may perform. This preorder also has a
logical characterization [12], but here the logical language is an intuitionistically-
interpreted form of Hennesy-Milner logic, which cannot express the safety and
liveness properties of interest to us.

Holmstrom's refinement calculus [9] allows CCS processes to be refined from
specifications given in Hennessy-Milner logic with recursion. An implementation
is guaranteed to have the property expressed by its specification, but the meaning
of a recursive specification is taken to be its greatest fixed point, and so again
this approach does not allow liveness properties to be expressed.

8 C o n c l u s i o n s

Our aim was to model the slow-scan design as a CCS process, to prove that the
model possessed safety-critical properties expressed in the modal mu-calculus,
and to show that these properties would be possessed by implementations based
on the design model.

We were able to model most of the slow-scan design directly in CCS. Timing
and probabilistic aspects of the design could obviously not be captured. As has
been described elsewhere [11], CCS agents are not ideal for specifying systems,
since only a single process can be described (up to equivalence), while one often
would like to describe a broad class of processes. A notion of priority [4] or of
interrupt [2] would have been useful in modelling the tick action of the clock
process. It would have also been convenient to ascribe simple process fairness
[8] to the model, allowing simpler expression of the eventuality properties. In
adding a failure detection mechanism to the basic slow-scan model, a notion of
superposition [5] would have been helpful. However, a notation with all of these
features would lack the appealing simplicity of CCS.

The slow-scan model lacked some features described in the design, such as
system initialization. The modelling of failures and failure detection was also
overly simple. In particular, many more failure modes of the system could be
modelled, and the failure modes could be made more realistic. For example, it
may not be valid to assume that the LGL is quiet after failure.

In specifying the safety-critical properties of the system, the modal mu-
calculus was expressive enough to capture all the properties of interest. Abbre-
viations were necessary to keep the formulas small and understandable. As just
mentioned, the eventuality properties were complicated by the lack of priority
and fairness in the design model. The inability of the Concurrency Workbench
to check certain properties in a reasonable period of time reflects both the com-
plexity of the properties and the relative lack of concern with efficiency issues in
the development of the Workbench.

Probably the biggest shortcoming of the study was our failure to show that
properties of our design model also hold for for slow-scan implementations. This
problem is the subject of current study. Also to be studied is the applicability
of timed process calculi [1, 13] to this system.

233

Acknowledgements

We thank Ian Mitchell, Chris Gurney, and others at British Rail Research,
Derby, for their help, and Stuart Anderson, Terry Stroup, Colin Stirling and
Mat thew Morley of Edinburgh, for their comments. The comments of the an-
onymous referees were also helpful. This work was supported by SERC grant
"Mathematical ly-Proven Safety Systems", IED SE/1224.

References

1. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3, 1991.

2. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Technical Report CS-R8503, CWI,
Amsterdam, 1985.

3. Glenn Bruns. Verifying properties of large systems by abstraction. To be submit-
ted for publication, 1991.

4. Juanito Camilleri. A conditional operator for CCS. In Proceedings of CONCUR
'91. Springer Verlag, 1991.

5. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison Wesley,
1988.

6. Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics based tool for the verification of concurrent systems. Technical
Report ECS-LFCS-89-83, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1989.

7. A.H. Cribbens. Solid-state interlocking (SSI): an integrated electronic signalling
system for mainline railways. IEE Proceedings, 134(3), May 1987.

8. Nissim Francez. Fairness. Springer-Verlag, 1986.
9. SSren HSlmstrom. A refinement calculus for specifications in hennessy-milner logic

with recursion. Formal Aspects of Computing, 1:242-272, 1989.
10. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-

ence, 27:333-354, 1983.
11. Kim G. Larsen and Bent Thomsen. A modal process logic. In Proceedings of the

Third Annual Symposium on Logic in Computer Science, 1988.
12. Kim Guldstrand Larsen. Modal specifications. Technical Report 89-9, Institute for

Electronic Systems, Department of Mathematics and Computer Science, Denmark,
1989.

13. F. MoUer and C. Torts. A temporal calculus of communicating systems. In Pro-
ceedings of CONCUR 'go. Springer-Verlag, 1990.

14. Bernhard Steffen. Characteristic formulae for CCS with divergence. Technical
Report ECS-LFCS-89-76, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1989.

15. Colin Stirling. An introduction to modal and temporal logics for CCS. In
A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and Architec.
ture. Springer Verlag, 1989. Lecture Notes in Computer Science, volume 391.

16. D. J. Walker. Bisimulations and divergence. In Proceedings of the Third Annual
Symposium on Logic in Computer Science, 1988.

