
Automatic Reduction in CTL Composit ional
Model Checking

Thomas R. Shiple* Massimiliano Chiodot
Alberto L. Sangiovanni-Vincentelli* Robert K. Brayton*

*Department of EECS, University of California, Berkeley, CA 94720
tMagneti Marelli, Pavia, Italy

Abstract . We describe a method for reducing the complexity of temporal
logic model checking of a system of interacting finite state machines, and prove
that it yields correct results. The method consists essentially of reducing each
component machine with respect to the property we want to verify, and then
verifying the property on the composition of the reduced components. We
demonstrate the method on a simple example. We assess the potential of o u r

approach on real-world examples.

1 I n t r o d u c t i o n

Temporal logic model checking procedures are potentially powerful verification tools
for finite state systems. However, when the system under examination consists of
several communicating parallel machines, the potential arises for an explosion in the
size of the representation of the composition. Traditionally, the size of a system is
identified with the number of states, and hence the issue is referred to as the state-
explosion problem. The introduction of symbolic representations, based on binary
decision diagrams (BDDs) [1], and symbolic verification procedures [8, 15, 2], made
it possible to verify complex systems that could not be handled by techniques based
on explicit representations [5]. However, just as with explicit representations, the size
of the parallel composition may still be too large to handle.

Methods proposed to avoid the construction of the complete state graph, and
therefore to avoid the representation explosion, can be split into two categories, com-
positional verification and compositional minimization [9]. In the first category, one
tries to deduce properties of a composition of processes by reasoning on the individ-
ual components and their interactions, without ever building the composed system.
In the second category, one tries to reduce or minimize the components in such a way
that their composition yields a smaller yet semantically equivalent model of the total
system.

As an example of the first, Wolper [16] inductively verifies complex systems by
looking for network invariants, that is properties that, if satisfied by a network of n
identical processes, will be satisfied by a network of n + 1 processes. Kurshan and
McMillan have attempted a similar approach [12].

As for compositional minimization, Kurshan [13] uses homomorphic reductions,
which "relax" the behavior of the component machines, to produce component ma-
chines that have fewer states than the original ones. The w-regular properties he
wants to verify are preserved under such user-provided reductions. Similarly, Clarke
el al. [10, 7] define subsets of the logics CTL ~ and CTL, namely VCTL* and VCTL,

235

where only universal path quantification is allowed. For these logics, satisfaction is
preserved under composition and homomorphic reduction. However, these logics are
strictly less expressive than CTL* and CTL, respectively.

As additional examples of compositional minimization, the compositional model
checking algorithm based on the interface rule, proposed by Clarke et aL [6], is a
technique that allows verification of a CTL property [5] on a single (main) machine
within a system of interacting machines. Here, the other (side) machines are reduced
by hiding those output variables of the side machines which the main machine cannot
observe. This reduction is property independent in that the reduction is valid for any
property on the main machine. The main limitation of this approach is that it can-
not handle CTL formulas which specify properties of multiple interacting machines.
Butch describes a technique for efficiently computing the existential quantification
of variables from a product of component transition relations, a central computation
in symbolic model checking [3]. By quantifying out variables from such a product as
early as possible, one can avoid forming explicitly the complete product machine, and
hence, potentially avoid an explosion in the BDDs. However, the applicability of this
technique, and the amount of reduction achieved, depend heavily on the structure of
the system and on the user-supplied order in which the component transition relations
are processed.

It is our opinion that to make formal verification a usable tool in design, fully
automatic techniques whose details are transparent to the user must be developed
to attack large, complex problems typical of electronic system design. Our goal is to
verify CTL properties on a system of interacting finite state machines.

The approach we take is to extract from the component macMnes the informa-
tion relevant to the verification of a given property, and use only this to build the
representation of a reduced system that preserves all of the behavior needed to verify
the property. In this regard, our approach falls into the compositional minimization
category. Our approach is fully automated and returns an exact result; that is the re-
duced system is verified if and only if the complete system is verified. Our finite state
machine model allows non-deterministic transitions and incomplete specification, and
thus can be used to represent reduced machines.

In Section 2 we present an overview of our approach, with references to the sections
where the topics are addressed in detail. Section 3 gives definitions that will be used in
the paper. In Section 4 we fully describe the details of our technique. In Section 5, we
apply our technique to a simple example and discuss the results. Finally, in Section 6
we present conclusions and future developments. Detailed proofs of the theorems
presented in the body of the paper are given in [4].

2 O v e r v i e w

Techniques for CTL model checking on a single finite state machine are well known:
given the transition relation for a single machine, and a CTL property on the machine,
a single machine model checker will return the set of states of the machine which
satisfy the property. The model checker operates on the BDD of the characteristic
function of the transition relation.

Our goal is to perform CTL model checking on a system of interacting FSMs, where
the CTL formulas express properties of the entire system, and not just of a component
of the system. This is known as compositional model checking. In this setting, we

236

are given the transition relation for each component machine. Since the interaction
between the components affects the behavior of each component, we cannot directly
apply the single machine model checker to each component. Nonetheless, by forming
the complete product of all the ~component transition relations, we can produce a
single transition relation which can be used as input to the model checker. Itowever,
this is a naive approach, because there is a distinct possibility that the size of the
representation for the product machine will explode. In other words, the size of the
representation for each component may be reasonable, but the size of the product
may be intractable.

In our approach to compositional model checking, we use the single machine model
checker, but not applied to the complete product of the component machines. Instead,
we first extract the "interesting" part of each component to yield a "reduced" tran-
sition relation for each component. We then take the product of the reduced compo-
nents, and finally, apply the model checker to the reduced product. In this manner,
we hope to avoid an explosion in the size of the product machine.

We have reformulated the single machine model checker computations to better
suit our needs for compositional model checking (Section 4.1). Specifically, the output
it produces is a transition relation rather than a set of states. To produce the set of
states which satisfy a formula, we simply project the transition relation onto the state
space. Thus, our model checker takes a CTL formula F and a transition relation T
as input, and produces a transition relation T* as output. The proof of correctness
of our compositional model checker relies on two important properties of our single
machine model checker. The first is that T contains T*. The second is that we can
delete transitions from T before passing it to the model checker, and still get the same
final result, as long as we do not delete any transitions that would be in 7"*.

A novel aspect of our approach is how we determine the interesting part of each
component machine. For a state in the product machine to satisfy a given formula,
each state component of the global state must satisfy the formula projected onto
the state component's associated machine. Thus, for each component, we project
the CTL formula of interest onto the component (Section 4.2), and then apply the
model checker to the component machine with the projected formula. The output of
the model checker will have the same or fewer transitions than the input transition
relation. Hence, by first eliminating some transitions from each component, the hope
is that the size of the reduced product machine will be smaller than the complete
product machine. Since the reduction of each component depends on the property of
interest, we say that the reduction is property dependent.

To see why this technique gives the correct result, that is, computes the set of
states of the product machine satisfying the input CTL formula, consider Figure 1.
We are given a system M composed of interacting machines A and B, and a CTL
formula F. The state space of M is the entire box, and the state space of A is the
projection of the box onto any horizontal line. Likewise, the state space of B is any
vertical line. Let QM be the set of states of M satisfying F. Consider the formula
FA produced by projecting the formula F onto machine A. By applying the model
checker to machine A with formula Fa, we find the set of states QA of A which satisfy
the projected formula, disregarding the interaction of A and B. Similarly, we produce
QB by applying the model checker to B with Fs . By this procedure, Qa • QB D QM.
Finally, we apply the model checker to the product of the subset of A containing QA,
and the subset of B containing QB, to yield QM (Section 4.2).

237

In addition to the property-dependent reduction of each component machine de-
scribed above, we apply several other techniques to reduce the size of each component
before forming the product machine (Sections 4.2 and 4.2). If we were using an ex-
plicit representation (e.g. state transition graph) for the transition relations, then just
by removing transitions, we would be decreasing the size of the representation. How-
ever, we are using an implicit representation, namely BDDs. Therefore, our actual
goal is to find the smallest possible subset, containing the interesting behavior, of
the original transition relations. This gives us a large don't care set within which to
choose a transition relation with a small BDD representation.

It is important to note that in our work, "reduction" of a machine means reducing
the size of the representation of the machine by removing "uninteresting" behavior.
This differs, for example, from the usage of the term reduction ill COSPAN [13], where
reduction means making a machine smaller by adding behavior.

By avoiding the possible explosion in the size of the product machine, we hope
to verify complex systems that cannot be verified with present techniques. There are
two important features of our method to bear in mind. First, our reduction is fully
automatic- it requires no guidance from the user. Second, our approach gives an exact
result: it produces exactly the set of states satisfying a given CTL formula.

State space
olB

%

State space
of A

, /
1
I
r - -

i.
I
L
|~ QA ~--

State space of M
(the whole box)

Fig. 1. State spaces in a system of interacting FSMs

3 B a c k g r o u n d

In the sequel, we use the following notation: The symbol "." is used for Boolean AND,
the symbol "+" for Boolean OR, and the symbols '%" and overbar for Boolean NOT.
[T]~y denotes the substitution of each occurrence of the variable x in the function
T, by the variable y.

238

SzT denotes the smoothing of the relation T by z, computed as S , T = T~+ Tt,
where Tx is the cofactor of T with respect to z [15]. This is interpreted as the pro-
jection of T onto the subspace orthogonal to x, or equivalently as the existential
quantification of the variable x on the relation T. We will make use of the following
properties of the smoothing operator: (a) S~f is the smallest function independent of
z that contains f , and (b) S~,v] = S~:(Svf) = Sv(S~.f).

Our model of finite state machines is based on the Moore model. A synchronous
finile slate machine with states X and inputs I is specified by a transilion relation
T C X x I x X. Each (x, i, x I) E T is a transition from present stale z E X to next
state z' G X enabled by input i. We require each state to have a next state. Otherwise,
we allow non-deterministic and incompletely specified machines. Lastly, in place of
the Moore model's explicit outputs, which are functions of the state variables, our
model simply allows the environment to directly observe the state variables.

In a system of interacting FSMs, the input to each component machine consists
of the present states of the other components, plus external inputs. The definition of
the parallel composition of two interacting machines follows.

Def in i t ion l . Let A(x, i ,x ') and B(y, j ,y ') be transition relations describing two
interacting FSMs. Furthermore, let z,a: ~ E X, i G Y x I, y,y~ E Y, and j E X x I.
The transition relation M defining the behavior of the parallel composition of the two
synchronous machines A and B is given by a subset of (X x Y) x I x (X • Y) where

v), k, v')) e M ifr (v, k), x') e A
and (V, k), V') e B. �9

This definition is easily extended to a system of n interacting machines AI, Ax , . . . , An.
Each machine Ai has present state variable xl G Xi and next state variable x~ G Xi,
and takes as input x_# i = [xl, �9 �9 ", xl-1, xi+l, �9 �9 ", xn], the present state variables of the
other machines. The global state of the system is x_ = [Xl, . . . ,zn] E X = XI x X2 x
. . . x Xn. We restrict our attention to closed systems, that is systems that do not take
inputs from the external environment. Interaction with the external environment is
modeled by other state machines that produce (possibly non-deterministically) the
inputs to which the system is sensitive. Thus we can represent each Ai by the transition
relation Ai(xi, ~-~i, x~) = Ai(~, x~) (see Figure 2).

In Section 4, we use the notion of path to define the output of the model checker
computations.

De f in i t i on2 . A path on the transition relation T, from state z0 to state zk and of
length k, is a finite sequence of transitions < (zo, i o , z l) , (z l , i l , z2) , . . . ,
(z~-l , ik-~,zk) >. (A path may have cycles.) If zk belongs to a cycle, the path is
said to be infinite. �9

Note that every set of transitions, be it a transition relation or a path, is denoted by
its characteristic function implemented as a BDD.

3.1 C o m p u t a t i o n Tree Logic

In this work we use Computation Tree Logic, or CTL [5], to specify properties of
FSMs. The set of all CTL formulas can be defined inductively in terms of a subset of

239

A 1

x, 2

I
\

Fig. 2. Interacting Finite State Machines

I__1

Ix

X

X'
n

clk

base CTL formulas. The choice of the subset is not unique. In the following definition,
an atomic proposition f is a function of the state variables of a FSM. That is, f is
true in a state z E X if f (z) = 1.

Def in i t i on3 . The set of CTL formulas ~r is defined inductively as follows:

1. Every atomic proposition f is a CTL formula.
2. If f and g are CTL formulas, then -,f, f �9 g, 3X f , 3G f , and 3[fRg] are CTL

formulas. �9

The formula BX.f is true in a state s if f is true in some successor of s. The formula
B G f is true in a state s if f is true in every state of some infinite path beginning with
s. The formula B [f R g] is true in a state s if f is true in s and there is some path
beginning with a successor of s along which f is true in every state until g is true.

Tile basis we have chosen is the same as tile one presented by other researchers [5,
2] except that the until operator 3[fVg] is replaced by the repeat operator 3[fRg] (see
Figure 3). The semantics of 3[fRg] is similar to that of 3[fUg], but the paths must
have length at least one. More formally, 3[fgg] = 3[fRg] + g.

Syntactic abbreviations, such as VFf, which is equivalent to "~3G-,f, are often used
for notational convenience. We assume the semantics of CTL formulas is known to
the reader. For example, the formula VG-2/Fenabled specifies that the signal e n a b l e d
holds infinitely often along every computation path.

A non-nested CTL formula, that is one whose arguments f and g are atomic
propositions (where g may be NIL, as in the case of qGf), will be referred to as a
simple formula.

4 M o d e l C h e c k i n g

4.1 Single M a c h i n e M o d e l C h e c k e r

The input to our single machine model checker is a transition relation T and a base
CTL formula F. The output is a set of transitions T* such that F holds at the present
state of each transition.

240

Defin i t ion4 . The model checker implements a function mc : 2 (x x l x x) x ~" --~
2(x x I • X). We denote the output of the model checker as T*, that is, T* = mc(T, F). �9

Since the output is a set of transitions, we have chosen for Definition 3 a set of base
formulas that expresses all of CTL logic and can be given semantics in terms of sets
of transitions. In this way we can easily define which paths, and consequently, which
transitions, are relevant to each property.

3xf 3Gf 3IraQI

Fig. 3. Base CTL Formul~

Def in i t ionS. (BXf) : T* = me(T, 3 X f) contains all transitions (z, i, z ') 6 T such
that f (z ') = 1. T* is computed as T* = f (z ') . T �9

Def in i t lon6 . (3Gf): T* = me(T, 3G f) contains all transitions (z, i , z ') 6 T that
belong to some infinite path on which f is true at each state. T* is computed by the
following greatest fixed point computation.

To = T . f (x) . f (z ')

T.+I = T . . [&. . , (T.)] . . . ,

T* =T,, s.t.T,+, =T, �9

Defin i t ion 7. (3 [f R g]): T* = mc(T, 3[fRg]) contains all transitions (z, i, z ') 6 r
that have present state in f and belong to some path where f is true until g is true.
T* is computed by the following least fixed point computation.

= T . f (x) . / (z ')

T0 = T . f (z) . g(z ')

T,+, = T. [SI.,,(T,)]~-.., + T,

T* = T., s.t. T, = T,+ , �9

Since the set T is finite, the fixed point computations are guaranteed to terminate.
We prove two properties on the relation between the input and output of the

model checker.

P r o p o s i t i o n 8. Let T* = me(T, F). Then T* C T, for any base CTL formula F.

This result follows since the model checker only removes transitions from T; it never
adds transitions. As a consequence, the transition relation returned by the model
checker generally describes an incompletely specified machine.

P r o p o s i t i o n 9. Let T* = me(T, F). If M is another transition relation such that
T* C M C_ T, then me(M, F) = T*.

241

Think o f T as the full transition relation for a machine. As usual, 7'* is the output of
the model checker when T is the input. Proposition 9 tells us that we can use as input
to the model checker any transition relation M that is contained in T and contains T*,
and still get T* as output. This result will be used in the compositional model checker
to justify the removal of "uninteresting" transitions from the component machines.

4.2 Compos i t i ona l Mode l Checker

The input to the compositional model checker is an array of transition relations spec-
ifying a system of n interacting machines At, A2, . . . , An and a base CTL formula F.
The output is the set of states of the global system that satisfy F.

Def in i t ion 10. The compositional model checkerimplements a function cmc : 2X--xX•
~" --, 2 x . We denote the output of the compositional model checker as Q(x_) =
cmc(At , . . . , An, F). I

function cmc(array[Ai], F) {
1 for i f 1 to n { /* project F on Ai and run mc on Ai */

a~ = me(Ai, FA,);
}

2 R = I'~(S=~A:); / * compute reducing term */
for i = 1 to n { /* find minimm onset of Ai */

A~' = A~'. R;
}

3 f o r i = l t o n { /* use d o n ' t c a r e s to minimize BDD f o r Ai */
Ai = miu~dd(Ai, A();

}
J~! = m c (g i Ai, F); /* run mc on reduced product */
Q =S~,M; / . s t a t e s tha t s a t i s f y F */
return Q;

Fig. 4. Compositional Model Checker

Tim compositional model checker procedure cmc consists of four phases (Figure 4).

P h a s e 1 The first phase is to check the components independently. For each machine
Ai we compute the reduced component A[by applying the model checker to Ai and
the projection of F onto Ai.

Defin i t ion 11. Let Ai(zi , ~4i, zl) be a transition relation in a system At, A2, . . . , An.
Let F be a base CTL formula with atomic propositions f (g) and g(z). The projection
FA~ of F onto Ai is obtained by replacing f(x_) with f (x i) = S ~ f (z) and g(x_) with
g(xi) = S~_#,g(x_) in F.

242

P h a s e 2 The second phase is to reduce statically each component with respect to
the interaction of the other components.

P r o p o s i t i o n 12. Consider a system of interacting machines A1, A2, . . . , An. Let

t l

= II(S ;Ai)
j = l

Then A~ = Ai./~ is the smallest subset of Ai which contains 1-I Aj and is independent
of . ~ i .

We apply this proposition in this phase by intersecting each A~' with R(z_) = ~ (S r ; A~)

to obtain A~'. The transition relations of these machines contain the smallest possible
sets of transitions (the minimum onsets) that are needed to verify the given property
F.

P h a s e 3 In the worst case, the size of the AND of two BDDs is the product of the
number of nodes of each BDD. Hence, in the third phase, we want to minimize the size
of the component BDDs by applying heuristics such as the restrict operator [8]. Given
an incompletely specified function with onset f �9 c and don't care set ~, the restrict
operator Pcf is a function f �9 c C P~f C f + "~ that in most cases has a smaller
BDD than f . Itere, the don't care set derived from phases 1 and 2 is ~ = Ai - A~'.
Thus, we apply the restrict operator to each transition relation with f = A~ / and
c = A"i + A~', to yield Ai. Unfortunately, minimizing the sizes of the BDDs for the
Ai's does not guarantee that we are minimizing the size of the BDD for the product.
Only thorough experimentation will indicate the effectiveness of this heuristic.

P h a s e 4 The fourth and final phase of the procedure cmc is to apply the single ma-
chine model checker to the original formula F and the product 1-I At of the minimized
components, to determine tile states of the product machine that satisfy F. In fact,
we can form the product of the minimized components incrementally, applying the
model checker after taking the composition with each component. The following the-
orem states that applying the model checker to the reduced product, gives the same
result as if we had taken the naive approach and applied the model checker to the
complete product machine.

T h e o r e m 13. Consider a system of interacting machines AI, A2, . . . , An. Let F be
any base CTL formula. Then

n n

m c (H At, F) = m c (H At, F).
i = 1 i = 1

The correctness of our technique relies on our choice of the base formulas for CTL.
By allowing only existential path quantifiers in our base formulas, we can guarantee
that each reduced component A* contains every transition that would be present in
the output of the model checker when applied to the complete product machine. The
intuition behind this is that a component "loses behavior" when composed with the
rest of the system, relative to its behavior when viewed independently of the system.

2 4 3

On the other hand, our technique fails if we choose as our base formulas those with
universal path quantifiers (e.g. VXp). To illustrate this, in the example of Figure 5 we
have communicating machines A(x, y, x') and B(y, x, yt) and propositions p(x) and
q(y). State (0,0) in the product machine A . B satisfies the formula VG(p. q), even
though no state of A satisfies the projected formula VGp. In the notation of Section 2,
QA = ~, and thus, QM (~ QA x QB C_ X x Y.

~ ---0

Ir t le

A.B

P,q true

B

q line

Fig. 5. Interacting FSMs (state (1,0) is not reachable)

4.3 N e s t e d F o r m u l a s

A general CTL formula can be nested, that is the propositions can either be ex-
plicit sets of states or formulas to be computed. For example, the CTL formula
F = VG(req --* VFack) is a nested formula. For this reason, a general CTL for-
mula is represented as a binary tree. Each node of the tree is a structure composed
of a type (e.g. 3G), and two pointers (f and g) to sub-formulas which can either
be atomic propositions or other CTL formulas. As in [5], we verify a nested CTL
formula by traversing the formula from the leaves to the root. At each level of nest-
ing, we verify one or more simple CTL formulas whose propositions are either given
or computed from the previous level. In the example above, the atomic proposi-
tions req, ack, and re se t are given as BDDs. The formula is then verified as fol-
lows. Let M = array[Ai]. The formula F = VG(req ~ VFack) can be rewritten as
-,(3[1R-~(req ~ "~3G-~ack)] + -~(req ~ "~3G-~aek)), and is satisfied by the set Q of
states of M given by:

Qo = cmc(M, F = -~ack)

Q1 = cmc(M, F = 3GO0)

02 = cme(M, F = ~QI)

Q3 = cmc(M, F = r e q --+ Q2)

04 : cmc(M, F --- ~Oa)

05 = cmc(M, F = 311 R Q4)

244

Q~ = c,,,c(M, F = Q4 + Qs)

Q = cmc(M, F - "~Qs)

To verify a nested formula F , we embed the cmc function, which verifies a simple CTL
formula, in a recursive procedure rcmc (Recursive Compositional Model Checker) that
traverses the tree of the formula F from the leaves to the root (see Figure 6).

funct ion rcmc(array[Ai], F) {
if (NESTED(F . f)) { /* i f f is nested, apply rcmc to .f */

F. I = rcmc(array[Ai], F.f);
}
I f (NESTED(F.g)) { /* i f g is nested, apply rcmc to g */

F.g = rcmc(array[A,], F.g);
}
Q = cmc(array[Ai], F); /* run cmc on root formula */
re turn Q;

}

Fig. 6. Recursive Compositional Model Checker

5 E x a m p l e

In this section, we assess the potential of our compositional technique by verifying a
simple system of four interacting machines.

The structure of the system is shown in Figure 7. A resource server is shared by
two user processes. Each user can request the server at any time. If both require it
at the same time, the server non-deterministically decides which user to serve. Once
acknowledged, a user can release the server at any time, but after a time tmax the
server is automatically released. Tile fourth component is an 8-bit counter that is
started whenever server acknowledges a user, and is reset to to when the server is
released. When the counter reaches the state tmaz the server is forcefully released.
The sizes of the components in BDD nodes are 29 for the server, 14 for each user, and
769 for the counter. The size of the complete product transition relation is 27796. Note
that the counter is the component that most contributes to the size of the system.

We first want to check which states satisfy the following property: i f r eq l is present
and req2 is not present, then ack l must be present sometime in the future. In CTL
notation this is

F :-- r e q I �9 ~ r e q 2 --* VFackl .

This formula is rewritten in base formulas as

F :- req l �9 --req 2 --* -~3G--aCkl.

The largest BDD computed in this verification has a size of 15405 nodes, which is
about 55% of the complete product machine. This BDD is computed in verifying the

245

sub-formula 3G-~ackl, which is the only significant sub-formulain this case. Analyzing
the component reductions, we find that only server is actually reduced (from 29 to 16
nodes). In fact, the paths in server that visit aekl are removed. The other components,
including the counter, remain unchanged. This is because the variable aekl depends on
server only. The projection of the sub-formula 3G",ackl onto the other components is
3G1, which means: there exists some infinite path. Consequently, since all components
are completely specified, all transitions belong to some infinite path, and therefore no
reduction is achieved. In general, a formula with propositions that depend on only a
few machines will yield less reduction than one with propositions on many machines.

I reql
User 1 1

j~ ackl

l~ ack2

User 2 j~
!

J req2

Fig. 7. Four machine system

Sewer

�9 n a b _ [

Counter

This result seems promising. However, it is not hard to come up with a case where
there is no reduction. For example, let us check for which states the property above
is globally true. That is: for all states of all paths, i f r eq l is present and req2 is not
present, then ack l must be present sometime in the future. In CTL notation we have

H = VG(reql �9 ~req2 ~ VFackl)

rewritten as
H = --(311 R -~F] + --,r),

where F is defined as above. This property is not satisfied by any state of the system.
In fact, from every state of the product machine, there is at least one path to a state
where the implication above does not hold. In this case, the complete product machine
must be computed. This happens because the sub-formula 311 R --F] + --F, which
reads there exists some palh to --,F, is trivially true for every state of a strongly
connected system where --F is true in at least one state. Thus, no paths are removed
and no reduction is achieved in verifying this sub-formula.

This example shows]low the amount of reduction depends on the structure of the
machine being checked and on the formula being verified. If the machine is strongly
connected, little reduction is expected because the paths tend to span the machine.
On the other hand, if the machine is not strongly connected, then more reduction may
be possible because the paths may be bound to some regions of the graph. Formulas
that have the tautology as a proposition (notably VGp rewritten as 311 R -~p] + -',p)
are most sensitive to the structure of the machine.

In this exmnple, if we could compute VGF directly, without reexpressing it in
terms of a formula with an existential path quantifier, then we would achieve some
reduction. However, this does not fit in our method because Theorem 13 does not hold

246

under the universal path quantifier. Nonetheless, in many cases it may be useful to
trade off the exact (i.e. necessary and sufficient) result for a sufficient but computable
result.

6 C o n c l u s i o n s

We have described a method for verifying a CTL property on a system of interacting
FSMs. It turns out that for some properties, by first applying property-dependent
reductions to the component machines before building the product machine, we will be
able to verify larger systems than is currently possible. Our method is fully automatic,
and produces tile exact set of states which satisfy a given CTL property.

The core of the compositional model checker has been implemented. It remains to
provide an interface to the verification system being developed at UC Berkeley, a sys-
tem that will be tightly linked with the Sequential Interactive Synthesis system [14].
Once this interface is completed, we plan to test thoroughly the effectiveness of our
method on large examples.

Several ideas to increase the power of our approach deserve investigation. Clarke's
interface rule could be added as a preprocessor to our approach for those properties
on a single machine, and Burch's method for computing relational products could be
used to handle the product of the reduced components. Another idea is to add transi-
tions to each component to reduce the size of the BDDs. Of course, these transitions
must be chosen judiciously so that the final result is not altered. We would like to
further investigate the general problem of finding a cover, with a minimal BDD rep-
resentation, of an incompletely specified function. Also, using a formula as a criterion
for repartitioning the original system into a new set of FSMs, may lead to smaller
BDDs for each component.

We could relax the exact nature of our approach by never taking the product of
the reduced components. In this case, we would be limited to stating conclusively
that a certain state does not satisfy a given property. Conversely, as suggested by
the example, we could compute the universally quantified properties directly, as in
COSPAN, and be content with knowing that a certain state does satisfy a given prop-
erty, although others may also. Similarly, another interesting development would be
to combine automatic reduction with homomorphic abstraction. Finally, we may con-
sider extending our approach to other logics, such as ECTL and w-regular languages.

7 A c k n o w l e d g e m e n t s

We wish to thank Kolar L. Kodandapani for his contribution in the early stages of
this work, and Bob Kurshan for stinmlating discussions which sparked our interest in
automatic reduction.

R e f e r e n c e s

1. R. E. Bryant, "Graph-Baaed Algorithms for Boolean Function Manipulation, ~ IEEE
Trans. on Computers, C-35(8), pp. 677-691, Aug. 1986.

2. J. R. Butch, E. M. Clarke, K. L. McMillan, and D. L. Dill, "Sequential Circuit Verifica-
tion Using Symbolic Model Checking, ~ in Proc. o] ~Tth Design Automation ConJerence,
pp. 46-51, June 1990.

247

3. J. R. Bureh, E. M. Clarke, and D. E. Long, "Representing Circuits More Efficiently in
Symbolic Model Checking," in Proc. of s Design Automation Conference, pp. 403-407,
June 1991.

4. M. Chiodo, T. It. Shiple, A. Sangiovanni-Vincentelli, and It. K. Brayton, "Automatic Re-
duction in CTL Compositional Model Checking," Memorandum No. UCB/ERL M92/55,
Electronics Research Laboratory, College of Engineering, University of California, Berke-
ley, Jan. 1992.

5. E. M. Clarke, E. A. Emerson, and P. Sistla, "Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications," ACM Trans. Prog. Lang.
Syst., 8(2), pp. 244-263, 1986.

6. E. M. Clarke, D. E. Long, and K. L. McMillau, "Compositional Model Checking," in
Proc. of the .~th Annual Symposium on Logic in Computer Science, Asilomar, CA, June
1989.

7. E. M. Clarke, O. Grumberg and D. E. Long, ~Model Checking and Abstraction," in
Proc. of Principles of Programming Languages, Jan. 1992.

8. O. Coudert, C. Berthet, and J. C. Madre, "Verification of Synchronous Sequential Ma-
chines Based oil Symbolic Execution," in Lecture Notes in Computer Science: Automatic
Verification Methods for Finite State Systems, vol. 407, editor J. Sifakis, Springer-Verlag,
pp. 365-373, June 1989.

9. S. Graf and B. Steffen, "Compositional Minimization of Finite State Systems," in Lecture
Notes in Computer Science: Proc. of the 1990 Workshop on Computer-Aided Verifica-
tion, vol. 531, editors R. P. Kurshan and E. M. Clarke, Springer-Verlag, pp. 186-196,
June 1990.

10. O. Grumberg and D. E. Long, "Model Checking and Modular Verification," in Lec.
ture Notes in Computer Science: Proc. CONCUR '91: ~nd Inter. Conf. on Concurrency
Theory, vol. 527, editors J. C. M. Baeten and J. F. Groote, Springer-Verlag, Aug. 1991.

11. J. E. Hoperoft, "An slog n Algorithm for Minimizing the States in a Finite Automaton,"
in The Theory of Machines and Computation, New York: Academic Press, pp. 189-196,
1971.

12. R.. P. Kurshau and K. L. McMillan, "A Structural Induction Theorem for Processes," in
Proc. of 8th A CM Syrup. on Principles of Distributed Computing, Aug. 1989.

13. R. P. Kurshan, "Analysis of Discrete Event Coordination," in Lecture Notes in Computer
Science: Proc. REX Workshop on Stepwise Refinement of Distributed Systems, Models,
Formalisms, Correctness, vol. 430, editors J. W. de Bakker, W. -P. de Roever, and G.
Rozeuberg, Springer-Verlag, May 1989.

14. E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Braytou, and A. Sangiovanni-
Vincentelli, "Sequential Circuit Design Using Synthesis and Optinfization," in Proc. of
International Conference on Computer Design, Oct. 1992.

15. H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli, "hnplicit
State Enumeration of Finite State Machines using BDDs," in Proc. of IEEE Interna-
tional Conference on Computer-Aided Design, pp. 130-133, Nov. 1990.

16. P. Wolper and V. Lovinfosse, "Verifying Properties of Large Sets of Processes with Net-
work lnvariants," in Lecture Notes in Computer Science: Automatic Verification Methods
for Finite State Systems, vol. 407, editor J. Sifakis, Springer-Verlag, pp. 68-80, June 1989.

