
Property preserving simulations*

S. Bensalem A. Bouajjani C. Loiseaux J. Sifakis

IMAG-LGI, BP 53X, F-38041 Grenoble
e-maih {bensalem,bouajjan,loiseaux,sifakis } @imag.imag.fr

Abs t rac t . We study property preserving transformations for reactive
systems. A key idea is the use of ~ ~o, ~ ~-simulations which are simula-
tions parameterized by a Galois connection (~, ~b), relating the lattices
of properties of two systems.
We propose and study a notion of preservation of properties expressed
by formulas of a logic, by a function ~0 mapping sets of states of a system
S into sets of states of a system S'. Roughly speaking, ~a preserves f if
the satisfaction of f at some state of S implies that f is satisfied by any
state in the image of this state by ~.
The main results concern the preservation of properties expressed in
sublauguages of the branching time p-calculus when two systems • and
S' are related via < ~0, ~b >-simulations. They can be used in particular
to verify a property for a system by proving this property on a simpler
system which is an abstraction of it.

1 I n t r o d u c t i o n

A central idea in a rigorous program development methodology is that a de-
signer starting from a formal requirements specification obtains an implemen-
tation by performing successive semantics preserving transformations. In this
process, semantics can be expressed by a set of properties specified as formulas
of an appropriate program logic; the transformations applied should preserve
these properties.

The investigation of property preserving implementations or abstractions of
reactive systems has been the object of intensive research during the last years.
However, the existing theoretical results are too fragmented. They strongly de-
pend on the choice of the specification formalism and the underlying semantics.

Some results [Kur89,AL88,LT88] adopt a linear time semantics framework
where specifications are the conjunction of a safety and a liveness property. The
safety part is usually expressed as a transition relation (automaton) while the
liveness constraint is characterized either by an acceptance condition on the
states or by a formula. The notions of implementation p.roposed are based on
the use of structure or language homomorphisms preserving correctness.

For process algebras the problem of the adequacy of a logic used to ex-
press process properties, has been studied [HM85,GS86b,GS86a,NV90]. Ade-
quacy means compatibility of the behavioral equivalence of the process algebra
with the semantics of the logic. That is, equivalent processes satisfy the same
formulas and consequently cannot be distinguished in the logic. Clearly, ade-
quacy corresponds to a particular case of property preservation; in general, the

* This work was partially supported by ESPRIT Basic Research Action "SPEC"

261

property preserving relations need not to be equivalences.

This paper is based on ideas originally presented in [Sif82a,Sif83]. We propose
a notion of preservation of a property f by an arbitrary function ~o from the
powerset of the states of a program St to the powerset of the states of a program
$2. The function ~o is said to preserve f if for any state of $1 which satisfies f ,
all the states of $2 in its image satisfy f too. If the converse is also true, then
we say that ~o strongly preserves f . Some general results are provided allowing
to prove that a given function preserves (or strongly preserves) the meaning of
the formulas of a language by induction on its structure.

These results are applied to show both preservation and strong preservation
of sublanguages of the branching time p-calculns for functions that represent
some general form of homomorphism between the transition structures of the
considered programs. Homomorphisms or simulation relations between transi-
tion structures are at the base of the definitions of most of the relations used to
compare behaviors [Bra78,KM?9,MiI71]. Their use allows the application of al-
gebraic techniques and reduces the study of a relation on programs to the study
of relations on elements of their structure.

The simulation relations used are parameterized by a pair of functions (~a, r
which defines a Galois connection between powersets of the state sets of the
programs considered. The results presented concern preservation of properties
expressed in fragments of the #-calculus when programs are related via < ~o, r >-
simulations. The functions ~o and r determine precisely state correspondences
that preserve the satisfaction of formulas.

These results generalize some results in [CGL92] where this problem is stud-
ied in the particular case where the restriction of the property preserving function
~a on the states is an abstraction. The idea of using simulations parameterized by
Oalois connections is quite natural as connections have been proven to be very
useful for studying correspondences between partially ordered structures lOre44],
in our case the lattices of state properties of two programs. In the domain of
verification and abstract interpretation of programs they have been extensively
used by Patrick and Khadia Cousot (see for example [CC79,CC90]). Our results
specialize their approach as far as < ~o, r >-simulations induce a particular case
of abstract interpretations. These interpretations under some additional condi-
tions preserve the validity of properties on abstractions.

The paper is organized as follows. Section 2 presents the notion of property
preservation and general results allowing to prove that a function preserves the
validity of formulas of a given language. In section 3, the definition and properties
of < ~o, r >-simulations are given. Section 4 gives results about the preservation
of sublanguages of the p-calculus. Section 5 shows how the results can be applied
to obtain abstractions or implementations of a given program.

2 G e n e r a l resul t s on p r o p e r t y preserva t ion

A program is considered to be a transition system defined as follows:

Definit ion 1. A transition system is a tuple S : (Q, R), where Q is a set of
states and R is a transition relation on Q (R C_ Q x Q).

We adopt the following conventions and notations:

- We identify a unary predicate on Q with its characteristic set as the lattice
of unary predicates is isomorphic to 2 q. Thus, for a unary predicate P and
a state q E Q, the notations P(q) : true, P(q) and q E P are equivalent.

262

- Given two sets Q1 and Q2, we represent by [Q1--'Q2] (resp. [Q1 ~ Q2]) the
set of (resp. monotonic) functions from Q1 to Q2.

- We denote by Id the identity function on 2 Q. For a set 11 C Q, we denote
by I d u the restriction of Id to 2//.

We suppose that program properties are expressed by formulas of a logical lan-
guage :7--(:P) where P = {Pl, P2,-..} is a set of propositional variables. For a given
system S = (Q, R) and an interpretation function Z e [7~2Q] , the semantics
of ~-(7 ~) is given by means of a function I Is,~ ~ This function is
such that VP E P , IPls,z = 2-(P). Furthermore, it associates with a formula its
characteristic set i.e., the set of states satisfying it.
To simplify notations, either one or both of the subscripts S and 2: in If Is,= will
be omitted whenever their values can be determined by the context.

D e f i n i t i o n 2 . Let f E ~'(:P) be a formula, $I = (Q1,R1) and $2 = (Q~,R2)
be two transition s y s t e m s , / / b e a subset of Q1 2- G [7~--,2 Q1] an interpretation

function and ~o E [2Q1 --~2Q2]. We say that ~o preserves (resp. strongly preserves)
f for 2" on 11 if and only if for any q G 11,

q G Ifts,,z implies (resp. iff) ~o({q}) C_ Ifls2,~oz.

I f / / = Qx, we omit to precize that the preservation is on 11.

D e f l n l t i o n 3 . Let f E 3r(P) be a formula, S~ = (QI ,Rx) and S~ = (Q2,R2)

be two transition systems, 2" E [~--~2 Q1] be an interpretation function and

e [2Ql-,2Q'].
We say that ~o semi.commutes (resp. commutes) with] for 2" if and only if

In these definitions, the function ~o establishes a correspondence between prop-
erties of $1 and properties of Sz. Preservation means that the function ~ is
compatible with the satisfaction relation. The notion of semi-commutativity is
used in the sequel to prove preservation. The following lemma relates preserva-
tion and commutativity.

L e m m a 4 . Let f be a formula of~C(7~), ~ G [2 Q1 --~ 2Q2] a monotonic function

and 2- E [7~--.2Q1].

1. I f ~a semi.commutes with f for :~ then ~ preserves f for 2".
~. I f ~ commutes with]]or 2", ~ is one-to-one and ~o -~ is monotonic then

strongly preserves f for 2".

Proof. The first point is immediate, from q G Iflz, we obtai n by monotonicity
of ~o and its semi-commutativity with f , ~o({q}) C_ ~o(tflz) C Ill,oz.
For the second point it remains to prove that for any q e Q~, ~0({q}) c_c_ Ifl~oz
implies q e]fiz. ~o({q}) C_ [f]~ox = ~o(]fiz) by commutativity of~o with f . From
~o({q}) C_ ~o([f]z) we deduce that q e [fix as ~o -~ is monotonic and ~o is one-to-
one.

T h e o r e m S . Let S1 = (Q1,R1) and $2 = (Q2,R2) be two transition systems.
For any set H C_ QI and for any monotonic functions ~ E [2QI -~ 2Q2] and
r E |2Qz --~ 2Q1] such that r o ~a o r = ~b and Id/ / C ~b o ~a, if ~ semi.commutes
with "f for2- E [7~--'Im(r and r semi-commutes w,~h f for ~ o $ then ~ strongly
preserves f for 2- on I1.

263

Proof. The preservation is obtained by lemma 4 since ~o semi-commutes with f
for 2".
In order to show strong preservation, suppose that, for q � 9 ~o({q}) C_ Ifl~o z.
We have,

r o ~o({q}) C_ r (monotonicity of r
q �9 r ,oz) (Id~ C_ r o ~o),
q e Ifl~o~oz (semi-commutativity of r for ~o o 27).

Since Z E [P--*Im(r there exists an interpretation function 2 ~ E [7~--.2 Q2]
such that Z = r o 2 ~. Thus r o ~o o 27 = r o ~o o r o 2 ~ = r o 2 ~ = 27 which implies
q �9 l.fl~.

3 S imulat ions based on connec t ions (< ~ , ~, > -
s imulat ions)

The notion of < ~o, r >-simulation plays a central role for the preservation of
properties of two transition systems Sz = (Q1,R1) and S2 = (Q2,R2). To
introduce it, the following definitions and well-known results are needed.

Def in i t ion ft. Given a relation R from a set Q1 to a set Q2 (R C QI • we de-

fine two predicate transformers we[R] �9 [2Q2 --*2Q'] and post[R] �9 [2Q1 --.2Q=]:

we[R]d~=I AX. {ql E Q1 : 3q2 �9 X A ql R q~}

post[R] d~----l AX. {q2 �9 Q2 : 3qt E X A ql R q2}

In the sequel, we denote by ~ the dual of a function ~o �9 [Qx-.Q~] that is

~, %s :~x.-~,(-~x).
Notice that for Q2' c Q,., pre[R](Q2') represents the set of "predecessors" of the
states of Q2' via the relation R and for QI' c_ Q1, post[R](Qx') represents the
set of "successors" of the states of Q1 ~ via R. The following proposition states
that the operator pre is strict and distributive over union.

P r o p o s i t i o n ~'. For any relation R from a set Q1 to a set Q2 (R c_ Qx x Q2),
we have:

1. v~e[R](~) = O,
2. For anyXl , X , ,ub~ets of O,, V~e[R](Xl U X~)= we[R](Xl)U We[R](X,),

Def in i t ion 8. A connection from 2Q I and 2Q2 is a pair of monotonic functions
(~o,r ~o �9 [2Q z ~ 2Q~] and r �9 [2Q 2 -~ 2Q1], such that Idql C_ r o ~o and
~o o r C_ IdQ2.

P r o p o s i t i o n 9. [San77] Let ~ and r be two monotonic fnnctions
�9 [201 _~ 202], r �9 [202 -~ 201]. 1I(9,r i, a connection bet=een 2Q1 and

2Q 2 then ~ is distributive w.r.t, union and r is distributive w.r.t, intersection.

P r o p o s i t i o n 10. Let p be a relation from a set Q: to a set Q2 (R C Qx x Q=),
the wi,'~ (po~tlv],f'~[p]) ann (V"~[p],V~t[p]) ~ conn~t io=.

264

Now, we define a notion of simulation and bisimulation parameterized by con-
nections relating the lattices of properties of two transition systems.

Defini t ion 11. Let St = (Qz,Rt) and $2 = (Q~,R2), two transition systems
and (~, r a connection from 2Q 1 to 2Q~.

- St < ~o,r >-simulates $2 if ~o opre[Rt] o r C_ pre[R~]
St < ~, r >-bisimulates S~ if St < ~o, r >-simulates S~ and
S2 < r ~ >-simulates St.

Sz Sz

Fig. 1. < ~, r >-simulation

Notice that the definition above implies that for any < ~, r >-simulation, we
have necessarily ~(r = 0 since pre[R~](0) = ~} and ~ is monotonic. In that case,
as ~ is distributive for U, it can be shown that there exists a relation p C_ Qz • Q2
such that ~ = post[p] [Sif82b]. Indeed, we have for any qt E Qx and q2 E Q2,
qzpq2 if and only if q2 E ~(qx).

We show below that the notion of < ~, r >-simulation is equivalent to the
standard notion of simulation [MilT1]: St simulates S~ if there exists some rela-
tion p C Qt • Q2 such that Rt -zp C pR~ -1. That is, if qt P q2 then for any q~
such that qtRtq'~ there exists q~ sucl~ that q~R~q~ and q~pq2 ~ .

Suppose that for some relation p C_ Qt • Q2, St < post[p],f~e[p] >-simulates
$2, i.e.

post[p] o e[Rt] o c Be [R ,] .

Then, as post[p] is monotonic and IdQ1 C_ o post[p], we obtain,

post[p] o pre[Rt] o ~ ' ~] o post~] C_ pre[R2] o post[p] which implies
post[p]opre[Rz] C_ pre[R2]opost[p] which is equivalent to Rz-z p C_ pR2-x.

Thus, if Sz <post[p],f'~[p] >-simulates $2, then Sz simulates $2 in the sense of
[MilT1]. It can be shown in a similar way that the converse also holds. A direct
consequence of this is that Sz < post[p], ~ [p] >-bisimulates S2 for some p iff Sz
bisimulates S~.

Notice also that < ~o, r >-simulations define abstract interpretations in the sense
of [CC79,CC90]. So, they should allow to establish relationships between on one
hand, theories based on behavioral equivalences expressed in term of simulations
and on the other hand, existing powerful results on program analysis using ab-
stract interpretation.

The following proposition gives a useful dual condition for the definition of
< ~, r >-simulation:

265

Proposition 12. For Sx = (Qx, R1) and S2 = (Q~, R2) two transition systera8

and (~a, r) a connection from 2Q1 to 2Q2,
owe[R1] o r C we[R] C r owe[R,] o

Proof. From ~o o pre[Rz] o ~ C pre[R2] and monotouicity of ~o and ~b one can
deduce that %b o ~o o we[R1] o r o ~p C_ r o we[Rz] o ~o. As IdQ1 C_ r o ~o one
obtains we[Rt] C r o we[R2] o ~o. It is easy to show that the latter implies
~o o w e [R ,] o r C_ we[Rz]. Thus, the two conditions are equivalent.

4 Preservat ion of the p-calculus

We consider the problem of preservation of the properties expressible in the
branching-time propositional p-calculus L~ [Koz83]. We recall that this logic
subsumes in expressiveness all the commonly used specification logics as the
branching-time temporal logics CTL [CES83] and CTL* [EH83] and also the
linear-time temporal logics as P T L [Pnu77] and E T L [Wo183]. We define two
fragments of the p-calculus called ~#-calculus (DL~) and <)p-calculus (~L/,)
and we show that when a system Sx < ~o, r >-simulates another system S2, the
function ~o (resp. r preserves ~L~ (resp. [3L~,). We obtain strong preservation
of these fragments in case of a simulation equivalence, i.e., existence of simu-
lations in both directions. Furthermore, we show that in the case of < ~o, r >-
bisimnlation, the two functions mentioned above preserve the whole L~, and that
under some conditions they strongly preserve it.

4.1 Fragments of the propositional p-ca l cu lus

We recall the syntax and the semantics of the propositional p-calculus L~, [Koz83].
Let 73 be a set of atomic propositions, X a set of variables. The set of the formulas
of the p-calculus is defined by the following grammar:

f ::= T J P 6 7) [X 6 X [O f I f V f I -~f [p X . f where f is syntactically
monotonic on X, i.e. any occurrence of X in f is under an even number
of negations.

The notion of free occurrences of variables in a formula is defined as in the
first-order predicate calculus by considering the operator p as a quantifier. As
usually, a formula is closed if there are no variables occurring free in it.

The semantics of the formulas is defined for a given transition system
S = (Q, R) and an interpretation function for the atomic propositions Z 6 [73---,2Q].
A formula with n free variables is interpreted as a function of [(2Q)"~2Q]. In
particular, a closed formula is interpreted as a set of states. The interpretation
function is inductively defined as follows, for a valuation V = (Vt,..., V,) 6 (2Q)"
of the variables occurring free.

Ir is -- Q,
IPI = :-(P),
x l (v) = D,
/1 v f2l~(V) = Ifxl=(V) u If,.l=(V),

l- ft (v) = Q - Ifl (V),
I<>.flz(V) = {q 6 Q : 3q' 6 Q, qRq' and q' 6 I.flz(V)} =we[R](I.flz(V)),
I~X..fl~(v) N{Q' c_ Q : [f iz(Q' ,V) c_ Q'}.

266

We extend the language of L~ by adding the formulas _L, f A g, f =~ g,
vX.f(X), E3f which are respectively abbreviations for ~T, -~(-~f V -~g), ~ f V g,

A formula of this extended language is in positive normal form if and only
if all the negations occurring in it are applied on atomic propositions. It can be
shown that any formula of L~ has an equivalent formula which is in positive
normal form.

We define two fragments of L~, called rTL~ and OLd,. Their sets of formulas
are given respectively by the two following grammars.

g ::=T I • I P I - P I x I Dg I g v 91 g ^ g I x.g I x.g
h : : = T l X l e l - ~ P l X l < > h l h V h l h A h l p X . h l v X . h

Notice that properties expressible in the [~L~ involve only universal quan-
tification on computation sequences (due to the use of the [] operator) whereas
those expressible in <>L~ involve only existential quantification.

We consider the positive fragments []L + and <>L + obtained from the above
languages by forbidding the use of the negation. We consider also the logic L +
corresponding to the subset of L~ formulas in positive normal form without
negations. We can translate any formula of L~ which is in positive normal form
into an equivalent formula in L + by replacing negations of atomic propositions,
i.e, formulas in the form -~P, by new atomic propositions. Thus, since any formula
of L~ has an equivalent formula in positive normal form, we can express in L + any
property expressible in L~, modulo this encoding of the formulas -~P. Obviously,
the same translation can be done from .L~, to ,L + for �9 G {[], <>}.

We can express in []L~ branching-time properties as for instance, the safety
properties w.r.t, the simulation preorder [BFG*91]. The class of these properties
corresponds to the fragment of DL~ without the least fix-point operator p.

Furthermore, it can be shown that any 0J-regular linear-time property, i.e.,
expressible by a nondeterministic Biichi automaton [Buc62], can be expressed in
DL~ [Bou89]. For example, the safety property [Lam77,LPZ85,MP90] "always
P " can be expressed by the formula vX.(PA �9 Moreover, the guarantee prop-
erty (according to [MPg0])"eventually 19 in any Proper t i s in the otlaer classesinfiniteCe~176
can be expressed by the formula pX.(P V []X).
in the hierarchy given in IMP90] are obtained by using alternations of the p and
the z, operators. The formulas of OLd, are equivalent to negations of the DL~
formulas and conversely. However, the formulas of <>L + are equivalent to the
duals of QL + formulas and conversely.

4.2 Preservat ion results
In the sequel we consider only finite branching transition systems, i.e., transi-
tion systems where any state has a finite number of successors. This condition
guaranties that the formulas can be interpreted as continuous functions on sets
of states.

When we consider any interpretation function of the atomic propositions the
preservation and strong preservation results concerns the positive fragments of
the p-calculus. To deal with the fragments where negations of atomic proposi-
tions are allowed, we need the following consistency condition.

Definit ion 13. Let $1 = (Qt, R1) and $2 = (Q2, R2) be two transition systems,
2- E [~~ Q1] be an interpretation and a function ~ G [2Q1--~2q~]. We say that

is consistent with 2" if and only if VP E P. ~(I-~Plsl,z) f3 ~(IF[st,~) = V.

267

We give hereafter the theorems concerning the preservation and strong preser-
vation of t:]Lg, <>L, and L , in presence of < ~, r >-simulations or bisimulations.
We consider in the sequel that the functions ~o E [2Q'---,2 Q2] and r E [2Q3~2 Q1]
forming the < ~, r > simulations and bisimulations satisfy the following condi-
tions: ~v(~) = @, ~(Qt) = q2, r = 0 and r = Qt.

We start with two theorems concerning the preservation of [:3L t, and OL t,
respectively by r and ~o when < ~o, r > is a simulation. Their proofs are given in
the appendix.

T h e o r e m l 4 . Let St = (Q t , R t) and $2 = (Q2,R2) be two transition systems.
I f S 1 < ~0, • >-simulates S 2 then ~ preserves the /orD'tulas of flL~ for any in-

terpretation function Z E [:p--+2Q~]. Furthermore, if r is consistent with Z then
preserves DL~, for Z.

T h e o r e m l S . Let St = (Q t , R t) and $2 = (Q2,R2) be two transition systems.
I f St < ~, r >-simulates $2 then ~ preserves the formulas of <>L + for any in-
terpretation function :T E [p~2Q,]. Furthermore, if ~ is consistent with Z, then
~o preserves <> L• for :T.

Now, we give a theorem about strong preservation of t2Lg and <>Lg in case of a
simulation equivalence.

T h e o r e m l 6 . Let S t = (Qt ,R1) and $2 = (Q2,R2) be two transition systems.
I f St < ~, r >-simulates $2 and S~ < ~o', r >.simulates S1 then

1. For any set 11 C_ Q1, if ~o' o to o ~o' = ~' and Idzt C_ ~' o ~o, then ~ strongly
preserves OL + on 11 for any interpretation Z E [~---~Im(~o')]. Furthermore,
if ~o (resp. ~o') is consistent with Z (resp. ~o o Z) then ~o strongly preserves
<>L, for Z on 17.

2. For any set 1I C_ Q~, if r o r o r = ~b' and Id~ C_ r o r then r strongly
preserves DL + on 11 for any interpretation Z e [T'--*Im(r Furthermore,

if r (resp. r is consistent with Z (resp. r o ~) then r strongly preserves
n L , for :T on 11.

Proof. Direct application of the theorem 5 using the theorems 14 and 15.

We consider now the case of bisimulation connections. The following theorems
concerns the preservation and the strong preservation of the whole p-calculus in
presence of such connections.

T h e o r e m l T . Let St = (Q1,Rt) and $2 : (Q2,Rz) be two transition systems.

I f St < ~o, r >.bisimulates S2 then ~o (resp. r preserves L + for any interpreta-
tion hnc t i on Zt E [~~ (resp. Z2 E [~~

r Furthermore, if ~o (resp. is consistent with Zt (resp. Zz) then ~o (resp. ~b)
preserves L u for :Tt (resp. Z~.).

Proof. The proof is a combination of the proofs of the theorems 14, 15 and the
definition of the bisimulation (see defitaition 8).

T h e o r e m l 8 . Let St = (Qt ,Rt) and S~ = (Q~,R~) be two transition systems.
I f St < ~o, r >-bisimulates S~ then

268

1. z [IdQ, c_ o and o o = then ,tron0Zy p ,e oe, L+

consistent with Zt and ~o o Zt, then ~o strongly preserves L t, for I t .
2. ffZdQ, C_ r andZdQ~ C ~or then for any interpretation~x E [~--,Im(r

~o (resp. r strongly preserve L + for :~t (resp. ~o o Zt).

Furthermore, i] ~o (resp. r is consistent with ~t (resp. ~o o I t) then ~o (resp.
r strongly preserves L~, for ~1 (resp. ~o o Xt).

Proof. The first point is obtained by direct application of theorem 5 and using
the proof of theorem 17 showing actually semi-commutativity which is stronger
than preservation. The secondpoint is also obtained by direct application of
theorem 5, given that IdQ, C_ r and IdQ, C ~oor that r 1 6 2 =

and ~o o r ~o = ~o.

5 A p p l i c a t i o n s

In this section we consider that the functions ~o and r are defined in terms of
a relation p C_ Qt x Q2 relating states of two transition systems St = (Qa,Rt)
and S,. = (Q2,R2).

As the pair (post[p],f~[p]) is a connection from 2Qt to 2Q2, it is natural to
consider <post[p], ~'~[p] >-simulations from St to S~. In this context the results
presented can be applied to tackle two problems: the implementation problem
and the abstraction problem.

5.1 I m p l e m e n t a t i o n

Problem: given a transition system 82 = (Q,., R2), a set of states Qt and a rela-
tion p C_ Q1 X Q2, find a transition system St = (Qt ,R t) implementing 82 via
p that is, a system Sl such that Sl <post[p],~'~[p] >-simulates S2.

From the relation pre[R1] C ~ [p] o pre[R2] o postLo], one gets that in general
there may be many solutions (relations RI). However, there exists a largest rela-
tion. It is obtained by computing the largest function F such that F C ~ o] o
pre[R~] opost[p] which is distributive with respect to union and strict (F(0) = 0).
As it is shown in [Sif82b], for any such function there exists a unique relation
pre[Rt] such that pre[Rt] = F. This function is defined by taking F(0) = 0,
F(P) = Vq E P H(q), where H = ~'~[p] o trre[R2] o post[p].

5,2 A b s t r a c t i o n

Problem: given a transition system St = (Qt, Rt), a set of state Q2 and a relation
p C_ Q1 x Q2, find a transition system S~ = (Q2, R2) which is an abstraction of Sx
via p. That is, a transition system S2 such that $1 <post[p],~o] >-simulates
82.

Obviously, the relation post[p] o pre[R1] o ~'~[p] C pre[R2] may have several so-
lutions (i.e., relations R~). We are interested in solutions which are sufficiently
faithful to $1. In general, a least solution does not exists ; however, ifp is total on
Q2, we have ~ [p] C_ we[p] and taking post[p]opre[R1]opre~o] = pre[R2] defines

269

an acceptable abstraction of S1. The least abstraction exists if p is taken to be
a total function. Then, ~'~[p] = Fre[p] and post[p] o pre[R1] o preLo] = Fre[R2].

We compute the abstraction of a program w.r.t, to a relation p using symbolic
representations for both the program and its abstraction.

Consider a program $1 defined on a tuple of variables X = (X1, X 2 , . . . , X ,)
ranging on a domain D = D1 x D~. x . . . x D , , represented by guarded commands:

do od

where the Ci's are predicates on X and the a~'s are assignements defining func-
tions of [D-*D].

Symbolically, sets of states of $1 are represented by predicates on X and the
transitions between these sets are given by the function pre[R1] which, for any
predicate P (X) (representing a set of states), is defined by:

pre[Rll(P(X)) k = V~=I C~ ^ P [~ (X) / X] .

The abstraction $2 is a program on a tuple of variables Y = (Y1, Y2, . . . , Yrn)
ranging on an abstract domain ' ' ' D = D I • 2 1 5 2 1 5

Given a relation p between the domains D ans D ' expressed by a predicate
on X and Y, the symbolic representation of $2 is defined by :

We[R2] = post[p](c, ^

In [CGL92] a construction of a program abstraction is described. Given a
system $1 and a function h from the domain of the program variables to an
abstract domain, a system $2 is constructed in such a manner that h induces
a homomorphism from $1 to $2. The notion of homomorphism corresponds in
our approach to a < ~, r >-simulation where ~o = post[p] and ~b = ~'~[p] for p

a total function and ~ and r are respectively consistent with the interpretation
functions of the atomic propositions :T and ~o o T In that case, it is shown that
the logic VCTL* is preserved from $2 to $1. This result is generalized by the
theorem 14 since ~La is more expressive than VCTL*.

Furthermore, the notion of ezaet homomorphiam considered in this paper
corresponds to a < ~ , r >-bisimulation where ~ = post[p] and r = ~'~[p] for

p a total function, ~o and r are consistent respectively with the interpretation
functions 2: and ~ o :T. If $1 and $2 are related by an exact homomorphism,
the logic CTL* is strongly preserved. This result is generalized by the theo-
rem 18 since La is more expressive than CTL* (notice that this theorem can
be applied as p is a total relation and this implies IdQl C_ pre~p] o post[p] and
IdQ~ C_ post[p] opre[p]).

5.3 Example

The motion of a mobile on a grid is controlled so as to visit cyclically the points
C D A C D A Initially the mobile is within the rectangle defined by the points
(A , B , C , D) .

The following program describes the mobile's motion where Ctrl is a control
variable with domain {A, C, D} recording the most recently visited point and
X, Y are its discrete coordinates with gespective domains [0, .., X0] and [0, .., Y0].

270

do
(clot = .4) ^ (o <_ x < Xo) --, (x, Y, ct,.l) := (x + 1, Y, ct,.l)
(Ctvl = a) A (O < Y < Yo) --, (X , Y , Ctrl) := (X , Y + I, Ctrl)
(Ctrl = A) ^ (X = Xo) ^ (Y = Yo) ---, (X ,Y , Ctrl) := (X - 1, Y, C)
(Ctrl = C) ^ (X > O) ~ (X, Y, Ctrl) := (X - 1, Y, Ctrl)
(Ctrl = C) A (X = O) ---, (X, Y, Ctrl) := (X, Y - 1, D)
(Ctrl = D) ^ (Y > O) --* (X, Y, Ctrl) := (X, Y - 1, Ctrl)
(Ctrl = D) A (Y = O) ---, (X, Y, Ctrl) := (X, Y, A)

od

An abstraction of this system with two three-valued variables h and v of do-
mains respectively {ha, hi, h2 } and {v0, vl, v2 }, is defined via the relation p:

(X, Y, Ctrl) p (h, v, Ctrl) iff
[(X = 0 A h = h 0) V (0 < X < X 0 A h = h l) V (X = X 0 A h = h 2) l A
[(Y=OAv=vo)V(O<r<roAv=vl)V(Y=YoAv=vz)]

~ h o , v 2 , C)

J
Fig. 2. Abstract mobile system

This abstraction is represented by the finite transition system given in figure 2.
Consider the formula,

! = not (Ctrl = A) to (C t d : D) unless (Ctrl = C) ^
not (Ctrl = C) to (Ctrl = A) unless (Ctrl = D)A
,~ot (Ctrl = D) to (Ctrl = C) ,,,~less (Ctrt = A)

where not P1 to Pz unless P3 is an abbreviation of the rnL~ formula
P1 ~ vx.(- ,P~ ^ (P3 v nx)).
It can be seen that the function pre[p] is consistent with the interpretation of
the atomic propositions used in f on the abstract mobile system. We verify that
f is true on the abstract system and by theorem 14, we deduce that it is true
for the initial mobile system.

6 C o n c l u s i o n

The paper studies property preserving transformations for reactive systems. A
key idea is the use of < ~, ~ >-simulations which are compatible with the stan-
dard notion of simulation (structure homomorphism) often used to define imple-
mentations. Furthermore, < ~ , ~ >-simulations induce abstract interpretations

la Cousot and this allows to apply an existing powerful theory for program
analysis.

The theory is developed on transition systems but it can be trivially ex-

271

tended to labeled transition systems by requiring < to, ~b >-simulation of the
corresponding labeled relations. Also this theory can be adapted so as to be
applied to preorders and equivalences that can be expressed in terms of simula-
tions or bisimulations by. adopting some abstraction criterion. For instance, one
can define a < to, ~b >-observational equivalence by considering as models, labeled
transition systems with silent actions and using the well-known fact that obser-
vational equivalence is strong blsimulation equivalence on a modified transition
relation.

As a continuation of this work, we intend to focus on the applicability of
the results for the verification of properties of reactive systems described as the
composition of simple programs with guarded commands.

A c k n o w l e d g e m e n t s

We thank Susanne Graf for many helpful discussions and judicious remarks.

References

[AL88]

[BFG*91]

[Bou89]

[Bra78]

[Buc62]

[cc79]

[ccgo]

[CES83]

[CGL92]

[EH83]

[GS868]

[GS86b]

M. Abadi and L. Lamport. The ezistence of Refinement Mappings. SRC 29,
Digital Equipment Corporation, Systems Research Center, August 1988.
A. Bouajjani, S.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakls. Safety

for branching time semantics. In J.L. Albert, B. Monein, and M.R. Ar-
talejo, editors, 18th ICALP, pages 76-92, LNCS 510, Springer-Verlag, Octo-
ber 1991.
A. Bouajjani. From Linear-Time Propositional Temporal Logics to a
Branching.Time I~-calcnlus. RTC 15, LGI-IMAG, Grenoble, 1989.
D. Brand. Algebraic simulation between parallel programs. RC 7206 30923,
IBM, Yorktown Heights, 1978.
J.R. Biiehi. On a decision method in restricted second order arithmetic. In
Intern. Cong. Logic, Method and Philos. Sci., Stantford Univ. Press, 1962.
P. Cousot and R. Cousot. Systematic design of program analysis framework.
In Proc. 6th A CM Syrup. on Principle of Programming Languages, 1979.
P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-
lug/Narrowing Approaches to Abstract Interpretation. Technical Report,
LIX, Ecole Polyteehuique, May 1990.
E. M. Clarke, E. A. Emerson, and E. Sistla. Automatic Verification of Finite
State Concurrent Systems using Temporal Logic Specifications: A Practical
Approach. In lOth Symposium on Principles of Programming Languages
(POPL 83), ACM, 1983. Complete version published in ACM TOPLAS,
8(2):244-263, April 1986.
E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
In Symposium on Principles of Programming Languages (POPL g~), ACM,
October 1992.
E.A. Emerson and 3. Y. Halpern. 'sometimes' and 'not never' revisited: on
branching versus linear tithe logic. In lOth. Annual Syrup. on Principles of
Programming Languages, 1983.
S. Graf and J. Sifakls. A logic for the specification and proof of regular
controllable processes of CCS. Acta Informatica, 23, 1986.
S. Graf and J. Sifakis. A modal characterization of observational congruence
on finite terms of CCS. Information and Control, 68, 1986.

[HM85]

[KM79]

[Koz83]

[Kur89]

[Lam77]

[LPZ85]

[LT88]

[Mi171]

[MPgO]

[NV90]

[Ore44]

[Pnu77]

[San77]

[Si.f82a]

[Sif82b]

[5~3]

[Wo18~]

272

M. Hennessy and R. Milner. Algebraic laws for nondetermlnlsm and con-
currency. Journal of the Association for Computing Machinery, 32:137-161,
1985.
T. Kasai and R.E. Miller. Homomorphisms between models of parallel com-
putation. RC 7796 33742, IBM, Yorktown Heights, 1979.
D. Kozen. Results on the propositional p-calculus. In Theoretical Computer
Science, North-Holland, 1983.
R.P. Kursham Analysis of Discrete Event Coordination. LNCS 430,
Springer-Verlag, May 1989.
L. Lamport. Proving the correctness of multiproeess programs. IEEE Trans.
actions on Software Engineering, SE-3(2):125-143, 1977.
O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past~ In Conference
on Logics of Programs, LNCS 194, Springer Verlag, 1985.
N.A. Lynch and M.R. Tattle. An introduction to Input/Ouput Automata.
MIT/LCS/TM 373, MIT, Cambridge, Massachussetts, November 1988.
R. Milner. An algebraic definition of simulation between programs. In Proc.
Second Int. Joint Conf. on Artificial Intelligence, pages 481-489, BCS, 1971.
Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. 9th
ACM Syrup. on Princ. of Dist. Comp., 1990.
R. De Nicola and F. Vaaudrager. Three logics for branching bisimulation.
In Proc. of Fifth Syrup. on Logic in Computer Science, Computer Society
Press, 1990.
O. Ore. Galois connex]ons. Trans. Amer. Math. Soc, 55:493-513, February
1944.
A. Pnueli. The Temporal Logic of Programs. In 18th Symposium on Foun-
dations of Computer Science (FOCS 77), IEEE, 1977. Revised version pub-
lished in Theoretical Computer Science, 13:45-60, 1981.
Luis E. Sanchis. Data types as lattices: retractions, projection and projec-
tion. In RAIRO Theorical computer science, vol 1I, nomber 4, pages 339-
344, 1977.
J. Sifakis. Property preserving homomorphisms and a notion of simulation
of transition systems. RR IMAG 332, IMAG, November 1982.
J. Sifakis. A unified approach for studying the properties of transition sys-
tems. Theorical Computer Science, 18, 1982.
J. Sifakis. Property preserving homomorphisms of transition systems. In E.
Clarke and D. Kozen, editors, Workshop on logics of programs, LNCS 164,
Springer-Verlag , 1983.
P. Wolper. Temporal logic can be more expreessive. Inform. Contr., 56,
1983.

A p p e n d i x
We give hereafter the proofs of the theorems 14 and 15. These proofs are based
on an induction argument using a weU-founded ordering on L~ formulas defined
below. We suppose that the formulas are in positive normal form. Consider the
binary relation defined for any formulas f and g by : f t> g if and only if either

- f is a subformula of g or
- g = # X . h (resp. g = uX.h) and 3k >_ O. f = h~[3-/X] (resp. f = hk[T/X]) .

Now, we consider the order ___ defined as the transitive closure of the relation D.

273

P r o o f of T h e o r e m 14 Let us prove the first part of the theorem. Consider an
interpretation function ~ ~ [~-*2Q~]. By lemma 4, it is sufficient to prove that
for any formula f in OL~ + and for any valuation V, we have

~(If]s~,z(V)) C]fls:,goz(~(V))" The proof is by induction on the order ~_ de-
fined above. To simplify the notations, we omit the valuation V whenever it is
not relevant in a proof.

- ~ (I - L I , , , ,) = I . .Ll , , ,~o, and ~ (I T I s , , ,) = ITI..,,,~'o.,. as r162 = e and
~ (~ ,) = ~ .

- ~(IPl~ ,z) --IPls~,~o z by definition of the interpretation function.

- ~ (I X ~ l ~ , , ~ (v)) = ,~(v~) = iX~l~,,~-o~(,~(v))

- ~(]~f[~=,~) = ~o f '~[R2](fl~-~) since ~ is monotonic and by definition of
the interpretation function. ~1~ dual of the < p, ~ >-simulation condition is
p'~[R2] C_ ~ op"~[Rt] o~. We get, ~(][3/Is~,z) C_ ~ o ~ o ~ [R t] o ~ (I / I s ~ , z) .
As ~ o ~ C IdQ1 , we obtain ~(IrTfl~,,z) c_ p%[Rz]o~(Ifls,,~). By induction
hypothesis, we have ~(Ifl~,~) _c Ifl~,,g~. Thus, we have

~(l[3fls,,=) C_ ~[R1](Ifls~,~o~) equivalent to ~(IE3fls3,=) C_ l[3fls~,~o .

6(If~ v/~1~,,~) = ~(I/xl~,~ u 1/21~,~) by definition of the interpretation
function. As g is distributive with respect to U, we have g(I/~ v/~1~,,~) --
~(IAI~,~) u 6(I/zl~,,~). By induction hypothesis, we obtain

r V f ' l~,~) C_ IAl~,,g~ o Ifzl~,,~-o~ =] A v fzls, ,g~.

- The proof for I~X./and v X . f is based on the fact that, since the formulas can
be interpreted as continuous functions on sets of states we have IpX. / l~,z =

Uh>0]f/'ls=,z(0) and luX.fls,, = = ~/l>0 Ifhl~,,~(Qa), '~(0) = 0, 6(Qa) = Qz,
g is monotonic and that the formulas fk[..L/X] and fk[T/X] are strictly
inferior w.r.t. _ to p X . f and v X . f respectively.

Now, if ~ is consistent with I , it is straightforward to deduce that
~([-'PI~,~) C]~Pls,,goz"

P r o o f of T h e o r e m 15 Similar to the proof of theorem 14.
The semi-commutativity with the O operator is proved in the following manner.
Let 2" E [~---2 QI]. By definition of the interpretation function of the formulas, we
have ~([~flsl,=) = ~o opre[R1]([fls~,z). As IdQ~ C ~o~o, we get ~o(IOfls~,z) C
~oopre[R1]o~o~o(iflsl,z). Since < ~o,~b > is a simulation, ~oopre[R1]o~b C_ pre[R2].
Thus, we get ~o([Oflsl,z) C_ pre[R2] o ~o(Iflst,z). Furthermore, by induction hy-
pothesis, ~o([flsl,=) C_ [fls,,,o=. Thus, we have
~o(lc/Is,,,) c prr = 1r

