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Abs t rac t .  We describe some examples using an extension of Kurshan's 
COSPAN system to verify bounded delay constraints in a dense time 
model, based on the method proposed by Dill for adding timing con- 
straints to Biichi automata. The S/R model and COSPAN are reviewed 
as background, then we describe how timing can be incorporated into 
S/R processes, and briefly describe the modified verification algorithm. 
The examples consist of several time-dependent versions of the Alternat- 
ing Bit Protocol and the Fiber Distributed Data Interface (FDDI). 

1 I n t r o d u c t i o n  

It is widely recognized that  the design of protocols and concurrent algorithms is 
a subtle art. Human designers seem to have difficulty anticipating all the possible 
interactions among processes operating in parallel. The result is that  many or 
perhaps most protocols and algorithms in use contain bugs resulting from un- 
forseen interactions among their components. These design errors are extremely 
difficult to detect and debug by simulation or even by running an implemen- 
tation of the system, because such systems are nondeterministic; problems are 
likely to be intermittent  and non-repeatable. 

A partial solution to this problem is to use an automatic protocol verification 
program to assure the correctness of the system. Such programs take advantage 
of the finite-state nature of many of these problems to enumerate all of the states 
of the system, which checking for violations of a user-provided specification. 
When a violation of the specification is discovered, the verifier can report an 
execution history that  shows how the violation could occur. 

Currently, one of the most sophisticated verification programs is COSPAN, 
developed by R. Kurshan and others at AT&T Bell Laboratories. COSPAN 
has been used to verify many protocols and hardware designs. COSPAN 
[HK89, KK86, ZII90] is based on a model which specifies the system in terms of 
finite-state machines coupled with a powerful communication mechanism. The 
model is powerful enough so that  COSPAN can express and validate any finite- 
state property (more precisely, any property that corresponds to an w-regular 
language). 

* This work supported in part by the BRA ESPRIT project REACT, and by the 
Office of the Chief of Naval Research, Grant number N00014-91-J-1901-P00001. This 
publication does not necessarily reflect the position or policy of the U.S. Government. 
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In general, the models used by protocol verifiers abstract away from time - -  
they model the ordermgs of events, but not their times of occurrence. However, 
this is not adequate for verifying protocols or algorithms that depend on timing 
constraints crucially for their correct operation, or that must satisfy timing re- 
quirements imposed by the external environment. As computers and networks 
interact more with physical devices and processes, it will become increasingly 
difficult to hide or ignore timing properties. But obtaining correct real-time sys- 
tems is especially difficult, because timing constraints amplify the complexity of 
the interactions that can occur. Hence, automatic verifiers for real-time systems 
would be very valuable. 

The nature of time is a central question that must be addressed in any system 
for reasoning about time. There have been many proposals for frameworks for 
verifying timing properties. These can be grouped into three major categories 
according to their underlying models of time, which we call discrete time [JM86, 
HPOG89], which considers time to be isomorphic to the integers; fictitious clock 
[AK83, AHg0, Bur89, Ostg0] which measures time by comparing system events 
with a fictitious tick event that occurs at regular intervals; and dense time, 
which allows an unbounded number of events to occur between two different 
times lAD90, Alu91, ACD90, ACD91a, ACD91b]. 

Each model has its adherents, and space does not permit a comparative 
analysis. Suffice it to say that the model used here is dense time, because (in the 
authors' opinion) it is easier to justify in terms of physical processes. 

Real-time COSPAN is an extension of the COSPAN verifier to support rea- 
soning about systems with timing constraints, where the constraints are un- 
known but bounded delays. A detailed description of real-time COSPAN, along 
with some examples, appears elsewhere [CDT]. The focus in this paper is on 
more significant examples that have been done with the verifier. Our exten- 
sion of COSPAN uses a method similar to those proposed by Berthomieu and 
Menasche [BM83], time-constrained Biichi automata [Di189], and asynchronous 
circuits with interval~bounded delays [Lew89]. The method uses a collection of 
real-valued variables that keep track of the difference between the current time 
and the time at which certain future events will occur. The analysis algorithm 
uses systems of linear inequalities to represent sets of assignments to these vari- 
ables. Since there happen to be a finite number of such systems of inequalities 
an analysis algorithm is possible. 

The basic approach is to augment the description of the system with an 
automatically-generated "monitor" that excludes event orderings that are in- 
consistent with a set of given timing constraints. The monitor works by keeping 
track of systems of linear inequalities. We have implemented the above ideas 
as an independent module without changing the COSPAN code. In general, we 
believe that the same approach can be used to splice timing analysis into other 
finite-state verification tools without making major changes to other parts of the 
system. 

The paper is organized as follows. In order to make the paper self-contained 
we first describe the finite-state machine model and the COSPAN system. Then 
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we explain how timing constraints are added, and give several nontrivial example 
verifications of systems with timing constraints. 

2 The S;/R Model and the COS;PAN System 

2.1 T h e  S e l e c t i o n / R e s o l u t i o n  M o d e l  

The selection/resolution (S/R) model [AKS83, AC85, GK80, Kur90, ABM86] 
provides a method of describing a complex system as a set of coordinating finite 
state machines. SIR facilitates concise and understandable specifications by us- 
ing logical predicates to describe coordination between machines. The model is 
described here only intuitively. More details are available in the above references. 

In the SIR model, a system is decomposed into a set of simple components 
called processes; each process is an edge-labeled directed graph, (see Figure 1). 
The vertices of the graph are states of the process. Each process has a name 
and a selection variable, whose name is the process name followed by # .  Each 
directed edge describes a state transition that is possible in one computation 
step; it is labeled with a predicate on selection variables. To make the examples 
easier to read, we adopt the convention that  a "self-loop" transition with the 
label "else" is labeled with the negation of the sum of the labels of the outgoing 
transition. 

( T R ~ - ~  eis e 

IDLE {pause,start } 

DELAY {pause,deliver} DELIVER {msg!} 

else ~ H # = d e l i v e ~ ~  else 

~ ~  WAIT {pause, msg?} r 
EMPTY {msg?} 

Transmitter (TR) Channel (CH) Receiver (REC) 

Fig. 1. A Delay Channel Example. The channel process delays the message by selecting 
pause. 

A collection of processes characterizes a set of infinite linear histories, called 
chains. Formally, a chain is an infinite sequence of state/selection pairs c(0) = 
(v(0), s(0)), c(1) = (v(1), s(1)) , . . . .  The chains of a collection of several processes 
P1, �9 �9 Pn running in parallel are generated as follows. A product state is a vector 
of states of the individual processes, which summarizes the state of the entire 
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system. Every chain starts with the product  state which consists of the initial 
states of the individual processes. Thereafter,  each process chooses a value from 
among the possible selections in its current state to assign to its selection variable 
(this step is called selection). Then, each process chooses an edge label that  is 
true for the combined values of all the selection variables (this step is called 
resolution). P~esolution causes the processes to enter simultaneously the next 
states corresponding to their chosen edges. 

Coordination between processes occurs because processes usually refer to the 
selection variables of other processes in their edge predicates. For example, in 
figure 1, the transmit ter  may select "msg!", in which case the resolution will 
involve the edge from state DELAY to state E M P T Y  in process CH. 

As a convenience feature, COSPAN also allows edge labels to refer to the 
state variables of the processes as well as their selections. 

The product just  described models processes running in lock-step, so it is 
called the synchronous product. It is easy to model asynchronous processes by 
adding a selection called pause to each process and arranging the edge labels so 
that  selecting pause causes a self-loop. This has the desired effect of allowing one 
process to take arbitrarily many steps while other processes are pausing. This 
feature is used in figure 1 in several places, for example to allow the transmit ter  
TI~ to wait for an arbitrary amount  of t ime in state IDLE before deciding to 
start  transmitting. 

One of the features of COSPAN is that  a collection of processes can be 
combined into a single process with the same behavior, using the operation 
@. The resulting process has states which are vectors of the individual states, 
selections which combine the individual selection, etc. The chains of a composite 
process are exactly those described above. 

2.2 M o n i t o r  P r o c e s s e s  a n d  P r o v i n g  C o r r e c t n e s s  

A monitor is a process whose selections are not used by other processes; it is 
a task that  observes, but does not participate in, the execution of the system. 
Monitors can be used to constrain the behavior of other processes. If M does 
not accept all of the chains of a process P, P | M will contain only the chains 
contained by both P and M.  For example, we use this feature to incorporate 
timing constraints into a process. 

To verify correctness of a system, we need a formal specification of its desired 
properties. In COSPAN, these properties are called the task. As in other systems 
based on a linear-time models of behavior, a process satisfies a property if all 
of its chains satisfy the property, so the task represents the set of all desirable 
chains. 

When verifying in COSPAN, the implementation is usually a product  of 
processes P = | Verification is especially simple if the monitor  (call it 
TC) actually describes the undesirable chains 2. Then, instead of checking that  

2 COSPAN can also deal with tasks that are given in uncomplemented form. We don't 
use this feature here, so we will not discuss it further. 
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every chain of P is desirable, we can check whether there exists an undesirable 
chain; in other words, check whether the set of chains accepted by P | TC is 
empty. Emptiness can be checked in time proportional to the product of the 
sizes of t he  implementation processes and TC. 

Frequently, a task is expressed as a product of several smaller tasks, T = 
T1 | T2 |  @ Tk. In this case, we can independently check if P | TCi is empty 
for i = 1 , . . . ,  k for each complemented task TCi. This is more efficient than 
checking for the emptiness of P | TC, since it reduces the size of the sets of 
global states that  must be constructed. Furthermore, constructing each TCI is 
much easier than constructing TC. 

2.3 L ive ne s s  C o n d i t i o n s  

A liveness condition specifies that  an event happens "eventually" without putt ing 
a specific finite bound on it. An example is a channel that  is guaranteed to 
deliver a message eventually, but may delay arbitrary before doing so. Liveness 
properties cannot he specified with processes as defined above, because allowing 
an arbitrary finite delay necessarily entails allowing an infinite delay, also. 

Liveness properties in COSPAN are handled using two additional components 
of a process: a finite set of cysets (for "cycling sets") C]~, i = 1 , . . . ,  m, and a 
set of recur edges RE.  Cysets and recur edges are used to restrict the infinite 
behaviors of chains: a chain c of P is accepted iff its state component satisfies 
the following conditions: (a) it does not eventually stay in some cyset C]~, i = 
1 , . . . , m ,  and (b) it does not perform infinitely often transitions from the set 
RE. 

t '7 
1 _/(TR#=-smrt) 

else ~ (TR#=-start) 
else 0 ( ~ . .  ~ 

el(?~Nms~(RE0 ~ ,  ~=msg?) 

Receiver Monitor (M REC ) Transmitter Monitor (M TR ) Task Complement Monitor (TC) 

CY={ 11 CY={0,2I CY={0I 

Fig. 2. The Liveness Conditions for the Specification of the Delay Channel. MREC ac- 

cepts  all chains in which not eventually always REC# = pause. MTR accepts all chains 
in which the transmitter eventually sends a message and then stops. MTC accepts all 
chains in which the message is never received by the receiver. 
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Figure 2 shows an example of how to verify some liveness properties for 
the delay channel example in figure 1. The specification of the system assumes 
that  (a) the receiver always eventually checks for incoming messages, (b) the 
transmitter eventually transmits a unique message, and (c) the channel does not 
delay a message forever. These conditions are specified using the monitors MREC, 
MTR in Figure 2, and by associating the cyset {DELAY} with the channel 
process CH (we follow the convention of eliminating one set of braces when 
C Y  contains only a single set). The task is that the message will be eventually 
received. This is encoded by the task complement monitor MTC. 

3 The Timing Extension 

The approach we use to incorporate timing into COSPAN adds to the system 
description a set of monitor processes which accept only the chains that  are 
consistent with the specified timing constraints. 

The specifications of a timed process consist of two parts: the time- 
independent part and the lime-dependent parl. The time-independent part spec- 
ifies a superset of the possible chains that  can occur in the actual system, which 
includes some chains that are not consistent with the timing constraints. 

The time-dependent part is represented by a set of constraints of the form 
"if c(i) satisfies property Q and c(j), i < j, satisfies property R, then 1 < 
t(j) - t ( i )  <_ u", where c(i) and e(j) are elements of the chain of the timing- 
independent process and l and u are constants. For example, to model a traffic 
light for which the duration of the green light is between 2 and 3 seconds, Q and 
R can be defined respectively as "in c(i) the light turns green", "c(j) is the first 
chain state after c(i) in which the light is red", we get a timing constraint of the 
form mentioned above with l = 2, u = 3. 

Each timing constraint is encoded by a logical timer T. T has a set condition 
which is property Q, an expire condition which is property R, and an inlerval 
specification which (in the above example) corresponds to the interval [2, 3]. The 
interpretation is that when T is set, it will expire at some arbitrary time in the 
interval [2, 3] from the time it was set. If needed, we associate with a logical 
timer a cancel condition; when such condition is satisfied after the timer is set, 
it deactivates the timer (no expiration will take place in the future). 

The semantics we give to chains is the following. We assume that  a chain 
corresponds to the sampling of the history of the real-time system at the tran- 
sition epochs (i.e., immediately after a transition). We also allow an arbitrary 
number of transitions to occur in zero time. 

This time,dependent part of the specification is translated automatically by 
our extension of the original COSPAN software into a monitor process MT by 
using the approach in [Dil89]. This monitor does not accept the chains of the 
untimed part of the specification which violate the real-time constraints. One 
can prove by using the results in [Dil89] that  the set of timing-consistent chains 
is the intersection of the timing-independent and timing-dependent processes, 
in other words, the chains of P | MT. A timed process has no accepted timed 
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behavior (real-time history) iff there is no timing-consistent chain in P | MT, 
hence iff P | MT is the empty process. 

The monitor works by inferring timing information for the history of timer 
events in the chains. It stores the timing information in its states and uses it to 
decide which timing events are allowed next. If a transition on a particular set 
of timing events is allowed, the monitor updates the state to reflect its inferred 
changes in timing state. If the events are not allowed, the monitor enters and 
remains in a "dead" state in which the chain is not accepted (a cyset). 

For example, in the case of the traffic light, while the snapshots of the system 
satisfy the property that the traffic light is green, the time can not progress by 
more than three seconds. This excludes the occurrence of some other events 
before the light turns red, if the timing information inferred from the occurrence 
of these events contradicts the above information. 

MT not only keeps track of the time, but also enforces some timing- 
independent properties of timers: A timer cannot expire unless it is set, and 
a timer that is set will eventually expire (a liveness condition). 

A product of timed processes can be defined by doing the usual product 
operation on the untimed parts (to give a new untimed part) and taking the 
union of the timers, to give the set of timers of the product. 

Once MT has been constructed and added to the system description, time- 
independent properties, which specify only orderings of system events but not 
time of occurrence, can be verified immediately, using COSPAN as described in 
the previous section. 

A more interesting problem is to verify timed properties, for example, "the 
time between any two consecutive receptions of a message by the receiver is 
always less than 2 seconds", or "no two interrupts are sent within less than 1 
ms". 

Complementing timed processes is very difficult, so we finesse this issue by 
providing the task complement directly by specifying undesirable timed behavior 
in terms of some timed process, and then checking the emptiness of the com- 
position of the timed processes corresponding to the specification of the system 
and the task complement. This approach is valid since if there is some "bad" 
timed behavior, it must satisfy both the timed specification of the system and 
the timed specification of the complement of the task. Of course our approach is 
applicable only when the task complement can be expressed as a timed process. 
In most cases generating a timed task complement is straightforward. 

4 E x a m p l e s  

In this section we present S/R specifications and verification results for two 
well known communication protocols in which real-time is important. Timing 
information has been included in the S/R models for the Fiber Distributed Data 
Interface (FDDI) and the Alternating Bit (ABP) Protocols. There is insufficient 
space to include the full COSPAN specifications, so we summarize here the time 
related modeling details and the verification objectives. 
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4.1 F D D I  C o m m u n i c a t i o n  P r o t o c o l  

Verification of the timing properties of the FDDI timed token access protocol is a 
challenging task. Our effort is to model FDDI and prove the timing requirements 
of the protocol with COSPAN. A brief description of FDDI is given below. 

A station that  wishes to transmit  waits until a token frame is released by the 
previous station on the ring. After seizing the token the station may transmit  
frames until it has no more data to send or until a token-holding timer expires. 
This timer was set at the previous time at which the station received a token, 
and expires after some constant amount  of time (which is the same for all the 
stations on the ring) denoted by TTRT.  (This corresponds to the operation of 
the station for sending "asynchronous" traffic. The FDDI standard is more com- 
plex and allows the transmission of "synchronous" traffic as well. A station can 
always send synchronous traffic at the expense of the asynchronous one. We do 
not model this for reasons of simplicity, and because to our knowledge, all cur- 
rent FDDI implementations do not support synchronous traffic.) An important  
property of this protocol is (a) fairness, i.e., each station always eventually gets 
the opportunity to t ransmit  for some positive amount of time and (b) bounded 
medium access time, i.e., the time needed for a station to access the medium is 
bounded above by some constant, uniformly for all the stations. We have used 
our method to prove that  FDDI satisfies the above properties for a large choice of 
parameters. Of course our method can not verify the correctness of the protocol 
in the general case, since we cannot verify parametric specifications. 

(ST[i].#=done) 
~R[iI.S----0)*frRT0[i].$=OFF) " - " ~ /  

+(R[i].$= 1 ) *fTRT 1 [i].$=OFF) / 
tree 1 { forever } el, 

TRANSMIT I F  
[ { sendmsg' d~ } ~1~,] 

I (INITIAL'#=t~ \ 

((INITIAL.#=tokcnrel) f ~ ,  
~ , ,  +(S'I'[O] .#=t okem'el) [ \ 

~S'II l].#ffitokenrel)) l 
0 { toklmrel } *(TURN.#=i) 

*(~((R[i].$= 1)*(TRT0[i].$--OFF) 
+(R[i].$ffi0) *(TRT l[i],$ffiOFF) 
*(INI~AL#=tokenrel))) 

TOKEN_REL I tokeaarel } 

((IN1TIAL.#=tokenrel) 
J / +(ST[0].#=tokearel) 

/ -t~ST[ 1 ].#=tokem'el)) 
/ / *ffURN.#=i) 

] J  *((R[il.$=l) *(rRT0[i]$fOFF) 
L / P ~R[i].$=O) *(TRT 1 [i].$--0~') 

*(IN]TIAL.#~=tokearel)) 

okep.mq } 

else 

Process INITIAL Process ST[i] 

Fig. 3. S/R specification of the initialization process and stations' process. 

We have modeled the protocol as follows. The processes of the specification 
are described in figures 3, 4, 5, 6, 7, and 8. A process called ST is used to model 
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((INITIAL,#tokelarel)+(ST[0].#=tokenrel)+(ST[1 ].#=tokcorel)) 
*(TURN.#=i) 

((IN1TIAL.~ok~Lrel)+(ST[0l.#=tok~rel)+(ST[ 1 ] .#=tokmrel)) 
*('IVRN.#=i) 

(I N1TIAL.#=to kearel)+ 
(ST[0].#=tokexLrel)+(ST[1 ].#=toke~rel) 

else ~ _  ~ ' - ~ ~ e l s e  

( INITAL.# =t okeo.r el)+ 
(ST[01.#=tok~el)+(ST[ 1 ].#=mke~rel) 

Process R[i] Process TURN 

Fig.  4. R[i] keeps track of the timer that is going to be set with the next token arrival 
at station i. TURN keeps track of the station that will have the token next time. 

e•.•{ 
count, expire } 

((INITAL.#=tokenrel) / ~ (TRT0[i]:=expire) 
+(ST[0].#=tokenrel) [ 
+ST[1].#=tok~nrel)) ~ / (I'RTO[i].$~=OFF) 
*(TURN.$=i) *R[i].$---0) / *(R[i].$=0) *(ST[i].#--Mone) 

'~ '  OFF {off } 
( _ 3  
else 

(TRT0[i],#=e~pire) / 
*(~(fTRT0[I].$~=OFF) { 

*(R[i].$=0) *(ST[i].#fdone~) -....._.~ 

1 

~ 

else 

Process TRT0[i] Monitor MTRT0[i] 

Fig.  5. Actual timer process TRT0[i]. MTRT0[i] is a monitor that provides the infor- 
mation about the time TRT0[i] switches state to OFF. 

e • N  { count, expire } 

+(ST[0].#=tokenrel) ((INITAL.#=tokunrel) / [ ~ (TRTI [i~#=explre) 

+ST[l].#ffitok~el)) ~ ] ffaT10].S-=OFF)* 
*frURN.$=i) \ (R[i].$= l)*(ST[i].#---done) 
*(R[i]~=l) ~ . . . ~  

(INITIAL.S=tokear~/ ~ OFF {off } 

v t. 

else 

t 

(TRTI[i].#=e/ / 
*(--(flRT1 [i].$~=OF~) 

*(R[il.$ffil) \ Woe 
* ( S T [ i ] . # ~  

Z( 0 

else 

Process TRTI[i] Monitor MTRTI[i] 

Fig.  6. Actual timer process TRTI[i]. MTRTI[i] is a monitor that provides the infor- 
mation about the time TRTI[i] switches state to OFF. 



283 

else 

(ST[ i l .$~=IDL(  

else 

1 
1 C 

INITIAL.# 

'0 

5 0 

else 

Monitor MZERO[i]  Monitor ZEROINITIAL 

Fig. 7. Monitor process M_ZERO[i] that provides the information about the first time 
ST[i] goes to IDLE state. Monitor process ZEROINITIAL that provides the information 
about the first time INITIAL goes to state 1. 

else 
=TRANSM IT ) 

true 

NSMIT) 

else 

CY={0.3} 

((INITIAL.#~okenrel)+ 
(( INITIAL.#=toke~rel)+ (ST[0] .#=toke~el)§ 

(ST[0l.#=~okcm'el)+ (ST[ l].#=toke~el)) 

(ST[1 ].#--tokenrr else *(TURN.#=0) true 

hue (ST[ I ].#~oke'm'el)) 
((I NITIAL.#=tokenrr *(TtJRN.#=I ) 
(ST[0].#=tokenrel)* 

(ST[ I ].#=tokenrel)) 
CY={0,1,2A,6} *ffURN.#=I) 

Monitor TC Monitor MTC 

Fig. 8, Task Complement. TC accepts all chains in which some station will transmit 
finitely many times. MTC is . monitor which tags two consecutive token reception by 
a station. 

stations on the ring. A station can be either in an idle state where it requests for 
the token, in a t ransmit t ing state where it can t ransmit  frames, or in a token- 
releasing s tate  where it passes the token to the next station. A process called 
T U R N  keeps track of which station is going to receive the token next t ime (for 
modeling the ring topology). The most  interesting part  of our specification is 
the modeling of the timers which are a combination of actual and logical timers. 
This combination is explained below. Each station has two actual t imers which 
are modeled by the processes TRT0,  TRT1.  Whenever a token arrives to stat ion 
i, either TRT0 or TRT1 is set, depending on which state process R is in; R keeps 
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track on the timer that is going to be set by the next token arrival, and there is 
one such process per station. In our specification TRT0 (TRT1) is set at every 
odd (even) numbered token arrival at the station. For initialization, TRT1 is set 
at time 0 for all stations in the ring. 

After receiving the token for the k-th time; a station has permission to trans- 
mit until the relevant timer expires: if k is odd (even) the relevant timer is TRT1 
(TRT0). If this timer has already expired, when the token arrives, the station 
must immediately release the token without going through the TRANSMIT 
state. Attached to each actual timer is a logical timer called L_TR_TIMER0, 
L_TR_TIMER1 respectively, which is set whenever the respective actual timer 
is set, expires when the respective timer expires, and counts exactly TTRT time 
units. 

An other assumption in our model is that our ring has negligible propagation 
delays (small with respect to TTRT; this is a valid assumption for most practical 
cases). We model this by associating logical timers of zero duration with the 
transitions modeling the exchange of the token by two stations. We also add 
such a logical timer to model the fact that when the corresponding timer has 
expired and the station must release the token, this occurs within zero time (fast 
hardware). 

We prove the two tasks mentioned above by using the task-complement 
monitor processes TC and MTC respectively. The first, TC, guarantees that our 
protocol is fair, which means that always eventually all the stations have the 
opportunity to transmit frames (i.e., go to the TRANSMIT state), while the 
second is a timed task which verifies that 2*TTRT is an upper bound of the 
token rotation time, that is between any two consecutive token receptions by 
a station. TC accepts all histories in which for some station state TRANSMIT 
appears finitely many times. MTC "tags" nondeterministically two consecutive 
token receptions by some station. We use the logical timers L_TIMER_MTC (one 
per station) with interval specification (2.  TTRT, c~] to count the time between 
the above events. Hence MTC accepts all histories for which there is a station 
which receives the token in two consecutive times in more than 2 * TTRT time 
units apart. 

The reader will notice that in order to model set and expire conditions for 
logical timers of the form "process X enters state Y", we need to add monitors 
which capture the first such time in the chain that process X finds itself in state 
Y, for each different sojourn of the process in this state. As a final remark, for 
simplicity our specification is given in terms of a ring consisting of two station. 
This can be easily upgraded to an arbitrary number of stations. 

4.2 Alternat ing-Bit  Communicat ion Protocol  

Our model of the alternating-bit protocol is essentially based on the one pre- 
sented in [ACW90]. Upper layers of this protocol are modeled by two processes 
called S and R, that generate and receive messages respectively. Two groups of 
processes model the transmitting and receiving part of the protocol in a peer 
to peer level. Finally, the lower layers constisting of two half-duplex communi- 
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cation channels that  may lose messages and acknowledgements, are modeled by 
two corresponding channel processes. 

Several logical timers have been introduced in order to add timing con- 
straints. These include: 

1. The resetable logical timer TICLK. This logical t imer is used to supply the 
real-time information to the retransmission timer TI  of the protocol. Its 
set condition is the same as the set condition of TI, and its expire condi- 
tion is the expiration of TI, i.e. ( T I . #  = to). Its interval specification is 
[TIME, TIME], which implies that  the expiration event will occur exactly 
TIME t ime units after the set event. Finally, if the correct acknowledge- 
ment is received before TI  expired (and hence before TICLK expired), then 
TICLK is canceled. 

2. The logical timer CHO_TIMER. This logical timer models the transmission 
delay of the outgoing channel where messages are sent. CHO_TIMER is set 
whenever the outgoing channel is handed a message and expires when the 
outgoing channel delivers or looses the message. 

3. The logical timer CHI_TIMER. This logical timer models the transmission 
delay of the incoming channel where acknowledgements are sent. It is set 
when the incoming channel is handed an acknowledgement and expires when 
this acknowledgement is delivered or lost. 

These three timers suffice to proof correctness of the protocol, e.g. in-order 
message delivery. The task complement used in this case is TC as in [ACW90]. 
However to prove that  a message is delivered within specific t ime bounds, we have 
to use another logical timer DELIV_TIME, and a new task complement monitor  
DELIVERY_TIME. This timer is set when the sender decides to send a tagged 
message, and expires when the message reaches the receiver. Another property 
to check is whether duplicate copies of a message are ever sent through the 
outgoing channel under the assumption that  the incoming channel does not loose 
acknowledgements. We have showed that  presence of duplicate messages depends 
on the relation of the t imeout value TIME to the sum of the communication 
channels delays. To prove this we added a new logical timer ZERORECDELAY 
which ensures that  the receiving protocol processes messages in zero time, and 
we used the monitor DUPLICATES for the task complement. This monitor  goes 
to an error state when a duplicate of a message arrives at the receiving end. 

Next we used an extension of the ABP to include the upper protocol layers, 
in order to study buffer occupancy at the interface above ABP. We added an 
external message producer PROD, an external message buffer BUF, and we have 
changed sender S to send messages that  PROD generates (this version of the 
sender process is in the appendix). In this model a message coming from PROD 
is either temporari ly held in BUF in case communication channels are busy, or 
is directly handed to the transmission protocol using a cut-through mechanism. 
An logical timer PROD_TIMER controls the rate at which PROD generates 
messages and a new task complement BUFTHRESHOLD checks whether the 
buffer occupancy ever exceeds a certain threshold under the assumption that  
no messages or acknowledgements are lost (this version of the communication 
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channels are in the appendix). Clearly, this depends on the rate at which the 
producer process generates messages and on the delay characteristics of the 
channels. We have checked the buffer occupancy for a large range of system 
parameters .  
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