
Verification wi th R e a l - T i m e C O S P A N *

C. Courcoubetis 1 D. Dill 2 M. Chatzaki I P. Tzounakis 1

1Department of Computer Science, University of Crete
and Institute of Computer Science, FORTH.

Department of Computer Science, Stanford University.

Abs t rac t . We describe some examples using an extension of Kurshan's
COSPAN system to verify bounded delay constraints in a dense time
model, based on the method proposed by Dill for adding timing con-
straints to Biichi automata. The S/R model and COSPAN are reviewed
as background, then we describe how timing can be incorporated into
S/R processes, and briefly describe the modified verification algorithm.
The examples consist of several time-dependent versions of the Alternat-
ing Bit Protocol and the Fiber Distributed Data Interface (FDDI).

1 I n t r o d u c t i o n

It is widely recognized that the design of protocols and concurrent algorithms is
a subtle art. Human designers seem to have difficulty anticipating all the possible
interactions among processes operating in parallel. The result is that many or
perhaps most protocols and algorithms in use contain bugs resulting from un-
forseen interactions among their components. These design errors are extremely
difficult to detect and debug by simulation or even by running an implemen-
tation of the system, because such systems are nondeterministic; problems are
likely to be intermittent and non-repeatable.

A partial solution to this problem is to use an automatic protocol verification
program to assure the correctness of the system. Such programs take advantage
of the finite-state nature of many of these problems to enumerate all of the states
of the system, which checking for violations of a user-provided specification.
When a violation of the specification is discovered, the verifier can report an
execution history that shows how the violation could occur.

Currently, one of the most sophisticated verification programs is COSPAN,
developed by R. Kurshan and others at AT&T Bell Laboratories. COSPAN
has been used to verify many protocols and hardware designs. COSPAN
[HK89, KK86, ZII90] is based on a model which specifies the system in terms of
finite-state machines coupled with a powerful communication mechanism. The
model is powerful enough so that COSPAN can express and validate any finite-
state property (more precisely, any property that corresponds to an w-regular
language).

* This work supported in part by the BRA ESPRIT project REACT, and by the
Office of the Chief of Naval Research, Grant number N00014-91-J-1901-P00001. This
publication does not necessarily reflect the position or policy of the U.S. Government.

275

In general, the models used by protocol verifiers abstract away from time - -
they model the ordermgs of events, but not their times of occurrence. However,
this is not adequate for verifying protocols or algorithms that depend on timing
constraints crucially for their correct operation, or that must satisfy timing re-
quirements imposed by the external environment. As computers and networks
interact more with physical devices and processes, it will become increasingly
difficult to hide or ignore timing properties. But obtaining correct real-time sys-
tems is especially difficult, because timing constraints amplify the complexity of
the interactions that can occur. Hence, automatic verifiers for real-time systems
would be very valuable.

The nature of time is a central question that must be addressed in any system
for reasoning about time. There have been many proposals for frameworks for
verifying timing properties. These can be grouped into three major categories
according to their underlying models of time, which we call discrete time [JM86,
HPOG89], which considers time to be isomorphic to the integers; fictitious clock
[AK83, AHg0, Bur89, Ostg0] which measures time by comparing system events
with a fictitious tick event that occurs at regular intervals; and dense time,
which allows an unbounded number of events to occur between two different
times lAD90, Alu91, ACD90, ACD91a, ACD91b].

Each model has its adherents, and space does not permit a comparative
analysis. Suffice it to say that the model used here is dense time, because (in the
authors' opinion) it is easier to justify in terms of physical processes.

Real-time COSPAN is an extension of the COSPAN verifier to support rea-
soning about systems with timing constraints, where the constraints are un-
known but bounded delays. A detailed description of real-time COSPAN, along
with some examples, appears elsewhere [CDT]. The focus in this paper is on
more significant examples that have been done with the verifier. Our exten-
sion of COSPAN uses a method similar to those proposed by Berthomieu and
Menasche [BM83], time-constrained Biichi automata [Di189], and asynchronous
circuits with interval~bounded delays [Lew89]. The method uses a collection of
real-valued variables that keep track of the difference between the current time
and the time at which certain future events will occur. The analysis algorithm
uses systems of linear inequalities to represent sets of assignments to these vari-
ables. Since there happen to be a finite number of such systems of inequalities
an analysis algorithm is possible.

The basic approach is to augment the description of the system with an
automatically-generated "monitor" that excludes event orderings that are in-
consistent with a set of given timing constraints. The monitor works by keeping
track of systems of linear inequalities. We have implemented the above ideas
as an independent module without changing the COSPAN code. In general, we
believe that the same approach can be used to splice timing analysis into other
finite-state verification tools without making major changes to other parts of the
system.

The paper is organized as follows. In order to make the paper self-contained
we first describe the finite-state machine model and the COSPAN system. Then

276

we explain how timing constraints are added, and give several nontrivial example
verifications of systems with timing constraints.

2 The S;/R Model and the COS;PAN System

2.1 T h e S e l e c t i o n / R e s o l u t i o n M o d e l

The selection/resolution (S/R) model [AKS83, AC85, GK80, Kur90, ABM86]
provides a method of describing a complex system as a set of coordinating finite
state machines. SIR facilitates concise and understandable specifications by us-
ing logical predicates to describe coordination between machines. The model is
described here only intuitively. More details are available in the above references.

In the SIR model, a system is decomposed into a set of simple components
called processes; each process is an edge-labeled directed graph, (see Figure 1).
The vertices of the graph are states of the process. Each process has a name
and a selection variable, whose name is the process name followed by # . Each
directed edge describes a state transition that is possible in one computation
step; it is labeled with a predicate on selection variables. To make the examples
easier to read, we adopt the convention that a "self-loop" transition with the
label "else" is labeled with the negation of the sum of the labels of the outgoing
transition.

(T R ~ - ~ eis e

IDLE {pause,start }

DELAY {pause,deliver} DELIVER {msg!}

else ~ H # = d e l i v e ~ ~ else

~ ~ WAIT {pause, msg?} r
EMPTY {msg?}

Transmitter (TR) Channel (CH) Receiver (REC)

Fig. 1. A Delay Channel Example. The channel process delays the message by selecting
pause.

A collection of processes characterizes a set of infinite linear histories, called
chains. Formally, a chain is an infinite sequence of state/selection pairs c(0) =
(v(0), s(0)), c(1) = (v(1), s(1)) , The chains of a collection of several processes
P1, �9 �9 Pn running in parallel are generated as follows. A product state is a vector
of states of the individual processes, which summarizes the state of the entire

277

system. Every chain starts with the product state which consists of the initial
states of the individual processes. Thereafter, each process chooses a value from
among the possible selections in its current state to assign to its selection variable
(this step is called selection). Then, each process chooses an edge label that is
true for the combined values of all the selection variables (this step is called
resolution). P~esolution causes the processes to enter simultaneously the next
states corresponding to their chosen edges.

Coordination between processes occurs because processes usually refer to the
selection variables of other processes in their edge predicates. For example, in
figure 1, the transmit ter may select "msg!", in which case the resolution will
involve the edge from state DELAY to state E M P T Y in process CH.

As a convenience feature, COSPAN also allows edge labels to refer to the
state variables of the processes as well as their selections.

The product just described models processes running in lock-step, so it is
called the synchronous product. It is easy to model asynchronous processes by
adding a selection called pause to each process and arranging the edge labels so
that selecting pause causes a self-loop. This has the desired effect of allowing one
process to take arbitrarily many steps while other processes are pausing. This
feature is used in figure 1 in several places, for example to allow the transmit ter
TI~ to wait for an arbitrary amount of t ime in state IDLE before deciding to
start transmitting.

One of the features of COSPAN is that a collection of processes can be
combined into a single process with the same behavior, using the operation
@. The resulting process has states which are vectors of the individual states,
selections which combine the individual selection, etc. The chains of a composite
process are exactly those described above.

2.2 M o n i t o r P r o c e s s e s a n d P r o v i n g C o r r e c t n e s s

A monitor is a process whose selections are not used by other processes; it is
a task that observes, but does not participate in, the execution of the system.
Monitors can be used to constrain the behavior of other processes. If M does
not accept all of the chains of a process P, P | M will contain only the chains
contained by both P and M. For example, we use this feature to incorporate
timing constraints into a process.

To verify correctness of a system, we need a formal specification of its desired
properties. In COSPAN, these properties are called the task. As in other systems
based on a linear-time models of behavior, a process satisfies a property if all
of its chains satisfy the property, so the task represents the set of all desirable
chains.

When verifying in COSPAN, the implementation is usually a product of
processes P = | Verification is especially simple if the monitor (call it
TC) actually describes the undesirable chains 2. Then, instead of checking that

2 COSPAN can also deal with tasks that are given in uncomplemented form. We don't
use this feature here, so we will not discuss it further.

278

every chain of P is desirable, we can check whether there exists an undesirable
chain; in other words, check whether the set of chains accepted by P | TC is
empty. Emptiness can be checked in time proportional to the product of the
sizes of t he implementation processes and TC.

Frequently, a task is expressed as a product of several smaller tasks, T =
T1 | T2 | @ Tk. In this case, we can independently check if P | TCi is empty
for i = 1 , . . . , k for each complemented task TCi. This is more efficient than
checking for the emptiness of P | TC, since it reduces the size of the sets of
global states that must be constructed. Furthermore, constructing each TCI is
much easier than constructing TC.

2.3 L ive ne s s C o n d i t i o n s

A liveness condition specifies that an event happens "eventually" without putt ing
a specific finite bound on it. An example is a channel that is guaranteed to
deliver a message eventually, but may delay arbitrary before doing so. Liveness
properties cannot he specified with processes as defined above, because allowing
an arbitrary finite delay necessarily entails allowing an infinite delay, also.

Liveness properties in COSPAN are handled using two additional components
of a process: a finite set of cysets (for "cycling sets") C]~, i = 1 , . . . , m, and a
set of recur edges RE. Cysets and recur edges are used to restrict the infinite
behaviors of chains: a chain c of P is accepted iff its state component satisfies
the following conditions: (a) it does not eventually stay in some cyset C]~, i =
1 , . . . , m , and (b) it does not perform infinitely often transitions from the set
RE.

t '7
1 _/(TR#=-smrt)

else ~ (TR#=-start)
else 0 (~ . . ~

el(?~Nms~(RE0 ~ , ~=msg?)

Receiver Monitor (M REC) Transmitter Monitor (M TR) Task Complement Monitor (TC)

CY={ 11 CY={0,2I CY={0I

Fig. 2. The Liveness Conditions for the Specification of the Delay Channel. MREC ac-

cepts all chains in which not eventually always REC# = pause. MTR accepts all chains
in which the transmitter eventually sends a message and then stops. MTC accepts all
chains in which the message is never received by the receiver.

279

Figure 2 shows an example of how to verify some liveness properties for
the delay channel example in figure 1. The specification of the system assumes
that (a) the receiver always eventually checks for incoming messages, (b) the
transmitter eventually transmits a unique message, and (c) the channel does not
delay a message forever. These conditions are specified using the monitors MREC,
MTR in Figure 2, and by associating the cyset {DELAY} with the channel
process CH (we follow the convention of eliminating one set of braces when
C Y contains only a single set). The task is that the message will be eventually
received. This is encoded by the task complement monitor MTC.

3 The Timing Extension

The approach we use to incorporate timing into COSPAN adds to the system
description a set of monitor processes which accept only the chains that are
consistent with the specified timing constraints.

The specifications of a timed process consist of two parts: the time-
independent part and the lime-dependent parl. The time-independent part spec-
ifies a superset of the possible chains that can occur in the actual system, which
includes some chains that are not consistent with the timing constraints.

The time-dependent part is represented by a set of constraints of the form
"if c(i) satisfies property Q and c(j), i < j, satisfies property R, then 1 <
t(j) - t (i) <_ u", where c(i) and e(j) are elements of the chain of the timing-
independent process and l and u are constants. For example, to model a traffic
light for which the duration of the green light is between 2 and 3 seconds, Q and
R can be defined respectively as "in c(i) the light turns green", "c(j) is the first
chain state after c(i) in which the light is red", we get a timing constraint of the
form mentioned above with l = 2, u = 3.

Each timing constraint is encoded by a logical timer T. T has a set condition
which is property Q, an expire condition which is property R, and an inlerval
specification which (in the above example) corresponds to the interval [2, 3]. The
interpretation is that when T is set, it will expire at some arbitrary time in the
interval [2, 3] from the time it was set. If needed, we associate with a logical
timer a cancel condition; when such condition is satisfied after the timer is set,
it deactivates the timer (no expiration will take place in the future).

The semantics we give to chains is the following. We assume that a chain
corresponds to the sampling of the history of the real-time system at the tran-
sition epochs (i.e., immediately after a transition). We also allow an arbitrary
number of transitions to occur in zero time.

This time,dependent part of the specification is translated automatically by
our extension of the original COSPAN software into a monitor process MT by
using the approach in [Dil89]. This monitor does not accept the chains of the
untimed part of the specification which violate the real-time constraints. One
can prove by using the results in [Dil89] that the set of timing-consistent chains
is the intersection of the timing-independent and timing-dependent processes,
in other words, the chains of P | MT. A timed process has no accepted timed

280

behavior (real-time history) iff there is no timing-consistent chain in P | MT,
hence iff P | MT is the empty process.

The monitor works by inferring timing information for the history of timer
events in the chains. It stores the timing information in its states and uses it to
decide which timing events are allowed next. If a transition on a particular set
of timing events is allowed, the monitor updates the state to reflect its inferred
changes in timing state. If the events are not allowed, the monitor enters and
remains in a "dead" state in which the chain is not accepted (a cyset).

For example, in the case of the traffic light, while the snapshots of the system
satisfy the property that the traffic light is green, the time can not progress by
more than three seconds. This excludes the occurrence of some other events
before the light turns red, if the timing information inferred from the occurrence
of these events contradicts the above information.

MT not only keeps track of the time, but also enforces some timing-
independent properties of timers: A timer cannot expire unless it is set, and
a timer that is set will eventually expire (a liveness condition).

A product of timed processes can be defined by doing the usual product
operation on the untimed parts (to give a new untimed part) and taking the
union of the timers, to give the set of timers of the product.

Once MT has been constructed and added to the system description, time-
independent properties, which specify only orderings of system events but not
time of occurrence, can be verified immediately, using COSPAN as described in
the previous section.

A more interesting problem is to verify timed properties, for example, "the
time between any two consecutive receptions of a message by the receiver is
always less than 2 seconds", or "no two interrupts are sent within less than 1
ms".

Complementing timed processes is very difficult, so we finesse this issue by
providing the task complement directly by specifying undesirable timed behavior
in terms of some timed process, and then checking the emptiness of the com-
position of the timed processes corresponding to the specification of the system
and the task complement. This approach is valid since if there is some "bad"
timed behavior, it must satisfy both the timed specification of the system and
the timed specification of the complement of the task. Of course our approach is
applicable only when the task complement can be expressed as a timed process.
In most cases generating a timed task complement is straightforward.

4 E x a m p l e s

In this section we present S/R specifications and verification results for two
well known communication protocols in which real-time is important. Timing
information has been included in the S/R models for the Fiber Distributed Data
Interface (FDDI) and the Alternating Bit (ABP) Protocols. There is insufficient
space to include the full COSPAN specifications, so we summarize here the time
related modeling details and the verification objectives.

281

4.1 F D D I C o m m u n i c a t i o n P r o t o c o l

Verification of the timing properties of the FDDI timed token access protocol is a
challenging task. Our effort is to model FDDI and prove the timing requirements
of the protocol with COSPAN. A brief description of FDDI is given below.

A station that wishes to transmit waits until a token frame is released by the
previous station on the ring. After seizing the token the station may transmit
frames until it has no more data to send or until a token-holding timer expires.
This timer was set at the previous time at which the station received a token,
and expires after some constant amount of time (which is the same for all the
stations on the ring) denoted by TTRT. (This corresponds to the operation of
the station for sending "asynchronous" traffic. The FDDI standard is more com-
plex and allows the transmission of "synchronous" traffic as well. A station can
always send synchronous traffic at the expense of the asynchronous one. We do
not model this for reasons of simplicity, and because to our knowledge, all cur-
rent FDDI implementations do not support synchronous traffic.) An important
property of this protocol is (a) fairness, i.e., each station always eventually gets
the opportunity to t ransmit for some positive amount of time and (b) bounded
medium access time, i.e., the time needed for a station to access the medium is
bounded above by some constant, uniformly for all the stations. We have used
our method to prove that FDDI satisfies the above properties for a large choice of
parameters. Of course our method can not verify the correctness of the protocol
in the general case, since we cannot verify parametric specifications.

(ST[i].#=done)
~R[iI.S----0)*frRT0[i].$=OFF) " - " ~ /

+(R[i].$= 1) *fTRT 1 [i].$=OFF) /
tree 1 { forever } el,

TRANSMIT I F
[{ sendmsg' d~ } ~1~,]

I (INITIAL'#=t~ \

((INITIAL.#=tokcnrel) f ~ ,
~ , , +(S'I'[O] .#=t okem'el) [\

~S'II l].#ffitokenrel)) l
0 { toklmrel } *(TURN.#=i)

(~((R[i].$= 1)(TRT0[i].$--OFF)
+(R[i].$ffi0) *(TRT l[i],$ffiOFF)
*(INI~AL#=tokenrel)))

TOKEN_REL I tokeaarel }

((IN1TIAL.#=tokenrel)
J / +(ST[0].#=tokearel)

/ -t~ST[1].#=tokem'el))
/ / *ffURN.#=i)

] J *((R[il.$=l) *(rRT0[i]$fOFF)
L / P ~R[i].$=O) *(TRT 1 [i].$--0~')

*(IN]TIAL.#~=tokearel))

okep.mq }

else

Process INITIAL Process ST[i]

Fig. 3. S/R specification of the initialization process and stations' process.

We have modeled the protocol as follows. The processes of the specification
are described in figures 3, 4, 5, 6, 7, and 8. A process called ST is used to model

282

((INITIAL,#tokelarel)+(ST[0].#=tokenrel)+(ST[1].#=tokcorel))
*(TURN.#=i)

((IN1TIAL.~ok~Lrel)+(ST[0l.#=tok~rel)+(ST[1] .#=tokmrel))
*('IVRN.#=i)

(I N1TIAL.#=to kearel)+
(ST[0].#=tokexLrel)+(ST[1].#=toke~rel)

else ~ _ ~ ' - ~ ~ e l s e

(INITAL.# =t okeo.r el)+
(ST[01.#=tok~el)+(ST[1].#=mke~rel)

Process R[i] Process TURN

Fig. 4. R[i] keeps track of the timer that is going to be set with the next token arrival
at station i. TURN keeps track of the station that will have the token next time.

e•.•{
count, expire }

((INITAL.#=tokenrel) / ~ (TRT0[i]:=expire)
+(ST[0].#=tokenrel) [
+ST[1].#=tok~nrel)) ~ / (I'RTO[i].$~=OFF)
*(TURN.$=i) *R[i].$---0) / *(R[i].$=0) *(ST[i].#--Mone)

'~ ' OFF {off }
(_ 3
else

(TRT0[i],#=e~pire) /
*(~(fTRT0[I].$~=OFF) {

*(R[i].$=0) *(ST[i].#fdone~) -....._.~

1

~

else

Process TRT0[i] Monitor MTRT0[i]

Fig. 5. Actual timer process TRT0[i]. MTRT0[i] is a monitor that provides the infor-
mation about the time TRT0[i] switches state to OFF.

e • N { count, expire }

+(ST[0].#=tokenrel) ((INITAL.#=tokunrel) / [~ (TRTI [i~#=explre)

+ST[l].#ffitok~el)) ~] ffaT10].S-=OFF)*
frURN.$=i) \ (R[i].$= l)(ST[i].#---done)
*(R[i]~=l) ~ . . . ~

(INITIAL.S=tokear~/ ~ OFF {off }

v t.

else

t

(TRTI[i].#=e/ /
*(--(flRT1 [i].$~=OF~)

*(R[il.$ffil) \ Woe
* (S T [i] . # ~

Z(0

else

Process TRTI[i] Monitor MTRTI[i]

Fig. 6. Actual timer process TRTI[i]. MTRTI[i] is a monitor that provides the infor-
mation about the time TRTI[i] switches state to OFF.

283

else

(ST[i l .$~=IDL(

else

1
1 C

INITIAL.#

'0

5 0

else

Monitor MZERO[i] Monitor ZEROINITIAL

Fig. 7. Monitor process M_ZERO[i] that provides the information about the first time
ST[i] goes to IDLE state. Monitor process ZEROINITIAL that provides the information
about the first time INITIAL goes to state 1.

else
=TRANSM IT)

true

NSMIT)

else

CY={0.3}

((INITIAL.#~okenrel)+
((INITIAL.#=toke~rel)+ (ST[0] .#=toke~el)§

(ST[0l.#=~okcm'el)+ (ST[l].#=toke~el))

(ST[1].#--tokenrr else *(TURN.#=0) true

hue (ST[I].#~oke'm'el))
((I NITIAL.#=tokenrr *(TtJRN.#=I)
(ST[0].#=tokenrel)*

(ST[I].#=tokenrel))
CY={0,1,2A,6} *ffURN.#=I)

Monitor TC Monitor MTC

Fig. 8, Task Complement. TC accepts all chains in which some station will transmit
finitely many times. MTC is . monitor which tags two consecutive token reception by
a station.

stations on the ring. A station can be either in an idle state where it requests for
the token, in a t ransmit t ing state where it can t ransmit frames, or in a token-
releasing s tate where it passes the token to the next station. A process called
T U R N keeps track of which station is going to receive the token next t ime (for
modeling the ring topology). The most interesting part of our specification is
the modeling of the timers which are a combination of actual and logical timers.
This combination is explained below. Each station has two actual t imers which
are modeled by the processes TRT0, TRT1. Whenever a token arrives to stat ion
i, either TRT0 or TRT1 is set, depending on which state process R is in; R keeps

284

track on the timer that is going to be set by the next token arrival, and there is
one such process per station. In our specification TRT0 (TRT1) is set at every
odd (even) numbered token arrival at the station. For initialization, TRT1 is set
at time 0 for all stations in the ring.

After receiving the token for the k-th time; a station has permission to trans-
mit until the relevant timer expires: if k is odd (even) the relevant timer is TRT1
(TRT0). If this timer has already expired, when the token arrives, the station
must immediately release the token without going through the TRANSMIT
state. Attached to each actual timer is a logical timer called L_TR_TIMER0,
L_TR_TIMER1 respectively, which is set whenever the respective actual timer
is set, expires when the respective timer expires, and counts exactly TTRT time
units.

An other assumption in our model is that our ring has negligible propagation
delays (small with respect to TTRT; this is a valid assumption for most practical
cases). We model this by associating logical timers of zero duration with the
transitions modeling the exchange of the token by two stations. We also add
such a logical timer to model the fact that when the corresponding timer has
expired and the station must release the token, this occurs within zero time (fast
hardware).

We prove the two tasks mentioned above by using the task-complement
monitor processes TC and MTC respectively. The first, TC, guarantees that our
protocol is fair, which means that always eventually all the stations have the
opportunity to transmit frames (i.e., go to the TRANSMIT state), while the
second is a timed task which verifies that 2*TTRT is an upper bound of the
token rotation time, that is between any two consecutive token receptions by
a station. TC accepts all histories in which for some station state TRANSMIT
appears finitely many times. MTC "tags" nondeterministically two consecutive
token receptions by some station. We use the logical timers L_TIMER_MTC (one
per station) with interval specification (2. TTRT, c~] to count the time between
the above events. Hence MTC accepts all histories for which there is a station
which receives the token in two consecutive times in more than 2 * TTRT time
units apart.

The reader will notice that in order to model set and expire conditions for
logical timers of the form "process X enters state Y", we need to add monitors
which capture the first such time in the chain that process X finds itself in state
Y, for each different sojourn of the process in this state. As a final remark, for
simplicity our specification is given in terms of a ring consisting of two station.
This can be easily upgraded to an arbitrary number of stations.

4.2 Alternat ing-Bit Communicat ion Protocol

Our model of the alternating-bit protocol is essentially based on the one pre-
sented in [ACW90]. Upper layers of this protocol are modeled by two processes
called S and R, that generate and receive messages respectively. Two groups of
processes model the transmitting and receiving part of the protocol in a peer
to peer level. Finally, the lower layers constisting of two half-duplex communi-

285

cation channels that may lose messages and acknowledgements, are modeled by
two corresponding channel processes.

Several logical timers have been introduced in order to add timing con-
straints. These include:

1. The resetable logical timer TICLK. This logical t imer is used to supply the
real-time information to the retransmission timer TI of the protocol. Its
set condition is the same as the set condition of TI, and its expire condi-
tion is the expiration of TI, i.e. (T I . # = to). Its interval specification is
[TIME, TIME], which implies that the expiration event will occur exactly
TIME t ime units after the set event. Finally, if the correct acknowledge-
ment is received before TI expired (and hence before TICLK expired), then
TICLK is canceled.

2. The logical timer CHO_TIMER. This logical timer models the transmission
delay of the outgoing channel where messages are sent. CHO_TIMER is set
whenever the outgoing channel is handed a message and expires when the
outgoing channel delivers or looses the message.

3. The logical timer CHI_TIMER. This logical timer models the transmission
delay of the incoming channel where acknowledgements are sent. It is set
when the incoming channel is handed an acknowledgement and expires when
this acknowledgement is delivered or lost.

These three timers suffice to proof correctness of the protocol, e.g. in-order
message delivery. The task complement used in this case is TC as in [ACW90].
However to prove that a message is delivered within specific t ime bounds, we have
to use another logical timer DELIV_TIME, and a new task complement monitor
DELIVERY_TIME. This timer is set when the sender decides to send a tagged
message, and expires when the message reaches the receiver. Another property
to check is whether duplicate copies of a message are ever sent through the
outgoing channel under the assumption that the incoming channel does not loose
acknowledgements. We have showed that presence of duplicate messages depends
on the relation of the t imeout value TIME to the sum of the communication
channels delays. To prove this we added a new logical timer ZERORECDELAY
which ensures that the receiving protocol processes messages in zero time, and
we used the monitor DUPLICATES for the task complement. This monitor goes
to an error state when a duplicate of a message arrives at the receiving end.

Next we used an extension of the ABP to include the upper protocol layers,
in order to study buffer occupancy at the interface above ABP. We added an
external message producer PROD, an external message buffer BUF, and we have
changed sender S to send messages that PROD generates (this version of the
sender process is in the appendix). In this model a message coming from PROD
is either temporari ly held in BUF in case communication channels are busy, or
is directly handed to the transmission protocol using a cut-through mechanism.
An logical timer PROD_TIMER controls the rate at which PROD generates
messages and a new task complement BUFTHRESHOLD checks whether the
buffer occupancy ever exceeds a certain threshold under the assumption that
no messages or acknowledgements are lost (this version of the communication

286

channels are in the appendix). Clearly, this depends on the rate at which the
producer process generates messages and on the delay characteristics of the
channels. We have checked the buffer occupancy for a large range of system
parameters .

References

[ABM86]

[AC85]

[ACD90]

[ACD91a]

[ACD91b]

[ACW90]

[AD90]

[AH90]

[AK83]

[AKS83]

[Alu91]

[BM83]

[Bur89]

S. Aggarwal, D. Barbara, and K. Z. Meth. Spanner - a tool for the spec-
ification, analysis, and evaluation of protocols. IEEE Trans. on Software
Engineering, 1986.
S. Aggarwal and C. Courcoubetis. Distributed implementation of a model
of communication and computation. In Proceedings of the 18th Hawaii Intl.
Conference on System Sciences, pages 206-218, January 1985.
R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proceedings of the 5th Symposium on Logic in Computer Science,
pages 414-425, Philadelphia, June 1990.
R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-
time systems. In Proceedings of the 18th ICALP, pages 115-126, Madrid,
July 1991.
R. Alur, C. Courcoubetis, and D. Dill. Verifying automata specifications
of probabllistic real-time systems. In Proceedings of the REX Workshop,
Plasmolen, June 1991.
S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties
to coupled finite-state machines. A CM Transactions on Programming Lan-
guages and Systems, 12(2):303-339, 1990.
Rajeev Alur and David Dill. Automata for Modeling Real-Time Systems. In
Automata, Languages and Programming : 17th Annual Colloquium, volume
443 of Lecture Notes in Computer Science, pages 322-335, 1990. Warwick
University, July 16-20.
R. Alur and T. Henzinger. Real-time logics: complexity and expressive-
ness. In Proceedings of the 5th Symposium on Logic in Computer Science,
Philadelphia, June 1990.
S. Aggarwal and R.P. Kurshan. Modelling elapsed time in protocol specifi-
cation. In H. Rudin and C.H. West, editors, Protocol Specification, Testing
and Verification, III, pages 51-62. Elsevier Science Publisers B.V., 1983.
S. Aggarwal, R. P. Kurshan, and K. K. Sabnani. A calculus for protocol
specification and validation. In Protocol Specification, Testing and Verifica-
tion, III. North-Holland, 1983.
Rajeev Alur. Techniques for automatic verification of real-time systems.
Technical Report STAN-CS-91-1378, Department of Computer Science,
Stanford University, August 1991. Ph.D. Thesis.
B. Berthomieu and M. Menasche. An enumerative approach for analyzing
time petri nets. In Information Processing, pages 41-46. Elsevier Scinece
Publishers B.V. (N0rth-Holland), 1983.
J. R. Burch. Combining CTL, Trace Theory, and Timing Models. In
J. Sifakis, editor, Automatic Verification Methods for Finite State Systems,
volume 407 of Lecture Notes in Computer Science, pages 334-348. Springer-
Verlag, 1989.

287

[CDT]

[Di189]

[GK80]

[HK89]

[ttPOG89]

[JM86]

[KK86]

[Kur90]

[Lew89]

[Ost90]

[ZH90]

Costas Courcoubetis, David L. Dill, and Panagiotis Tzounakis. Adding
Dense Time Properties to Finite-State Machines: the Tool Cospan. Sub-
mitted to a journal.
D. Dill. Timing. assumptions and verification of finite-state concurrent sys-
tems. In Proc. Workshop on Computer Aided Verification, Grenoble, June
1989. Lecture Notes in Computer Science, Springer-Verlag.
B. Gopinath and B. Kurshan. The selection/resolution model for coordi-
nating concurrent processes. In A T ~ T Bell Laboratories Technical Report,
1980.
Z. Har'E1 and R. Kurshan. Automatic verification of coordinating systems.
In Proceedings of Workshop on Automatic Verification Methods for Finite-
State Systems, Grenoble, June 1989. Springer Verlag.
N. Halbwachs, D. Pilaud, F. Ouabodessalam, and A-C. Glory. Specifying,

programming and verifying real-time systems using a synchronous declar-
ative language. In J. Sifakis, editor, Automatic Verification Methods for
Finite State Systems, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.
F. Jahanian and A. K-L. Mok. Safety analysis of timing properties in real-
time systems. 1EEE Transactions on Software Engineering, 12(9), Septem-
ber 1986.
J. Katzenelson and B. Kurshan. S/R: A language for specifying protocols
and other coordinating processes. In Proc. 5th Ann. Int'l Phoenix Conf.
Comput. Commun., IEEE, 1986.
R. Kurshan. Analysis of discrete event coordination. Lecture Notes in
Computer Science, 480, 1990.
H. R. Lewis. Finite-state analysis of asynchronous circuits with bounded
temporal uncertainty. Technical Report TR-15-89, Aiken Computation Lab-
oratory, Harvard University, July 1989.
J. Ostroff. Temporal Logiq of Real-Time Systems. Research Studies Press,
1990.
R. P Kurshan Z. Har'E1. Software for analytical development of communi-
cation protocols. A T ~ T Technical Journal, 1990.

