
M o d e l - c h e c k i n g for rea l - t ime s y s t e m s specif ied
in Lotos *

N. Rico t , G.v. Bochmann t and O. Cherkaoui

�9 t D@partement d'informatique et de recherche op@rationnelle
Universit@ de Montr6al

D6partement d'informatique et de math6matiques
Universit6 du Qu6bec ~ Montr6al

Abs t rac t . This paper aims at describing and analyzing concurrent sys-
tems whose behavior is dependent on explicit time delays. The formal
description technique Lotos [Loto 89] is extended with time intervals
in the following way: actions in Lotos must occur at a time t within
a given interval [train, tmax] relative to the previous action executed by
the process. The syntax and semantics of Time Interval Lotos is given.
The model is defined as a labelled transition systems with clocks associ-
ated with states and timing conditions associated with transitions. The
labelled transition system derived corresponds to a timed graph model
[Alur 90]. The logic TCTL (Computation Tree Logic with time) which
allows quantitative operators in the formulas can be used to specify asser-
tions. Model-checking is used to determine the truth of a TCTL-formula
with respect to a labelled transition system derived from the Time Inter-
val Lotos specification. We illustrate the approach by a simple example.
We also present an alternative approach for verifying timing properties.
A labelled transition system with time intervals is derived. This graph
does not represent the precise evolution of the system in time. Each tran-
sition is labelled with an action and a time interval showing the range of
possible time occurrences for the action.

1 Introduct ion

With the proliferation of computer-communication networks and the increas-
ing importance of distributed processing, researchers have worked intensively
on the modelling of distributed systems. Formal description techniques such as
Lotos [Loto 89, nolo 87], Estelle [nudk 87] and SDL [SDL 87] have been devel-
oped to describe OSI (Open Systems Interconnection) communication protocols
and services as well as other kind of distributed systems. Those specification
formalisms and the verification methods, however, make abstraction from the
quantitative aspect. But for certain type of systems such as real-time systems,
the specification methods and verification techniques should incorporate time

* Work supported by Bell Northern Research, the Ministry of Education of Quebec
and the IDACOM-NSERC-CWARC Industrial Research Chair on Communication
Protocols at the University of Montreal

289

values since the correctness of the system depends not only on the logical result
of the computation but also on the time at which the results are produced.

This paper addresses the issue of correctness of a system which is specified
with a formal descriptiorl technique and where actual time values are included
in the specification. The idea is to check whether the specified system satisfies a
number of desirable properties that include time. Properties can be formulated
in a temporal logic formalism augmented with quantitative time. If the system
has a finite number of states, then we can use a model-checking approach which
is an algorithmic method for verifying automatically those properties. It consists
of checking that a given state graph derived from the formal description of the
system satisfies a given temporal formula.

The formal description technique we consider in this paper is a variant of
Lotos defined in Section 2, called Time Interval Lotos, which adds time intervals
of the form [train, t,~a,] to Lotos actions. An action a, once enabled, cannot occur
before time tmi, and must occur before tma= time has elapsed since its enabling,
unless it is disabled by the occurrence of another action. The semantics is de-
fined in terms of a labelled transition system which includes clocks associated to
states and timing enabling conditions associated to transitions. Temporal formu-
las are expressed in the logic TCTL [Alur 90], which is an extension of CTL with
continuous time. The time assertions written in TCTL are checked against the
labelled transition system with clocks and timing conditions generated from the
Timed Interval Lotos specification. We also present in Section 5 an alternative
approach for verifying timing properties. A labelled transition system with time
intervals is derived. This graph shows all the possible paths of timed actions but
does not represent the precise evolution of the system in time. Each transition
is labelled with an action and a time interval showing the range of possible time
occurrences for the action. The contribution of the paper is hence, on the first
hand, the definition of an extension of Lotos with Time Intervals and the deriva-
tion of a labelled transition system on which model-checking can be performed,
and, on the second hand, the presentation of an alternative approach to verify
timing properties.

Re l a t ed work: Process algebras such as CCS [Miln 80], CSP [Hoar 85]
and ACP [Berg 84] have been extended with timing characteristics. Nicollin and
Sifakis [Nico 91] presented an overview of existing results about timed process
algebras. Quemada et al. [Quem .89] proposed a time extension of Lotos where an
occurrence time is associated with each action: this time indicates the global time
when the action must occur. Bolognesi et al. [Bolo 90b] define a time extension
of Lotos which offers operators for specifying the urgency of a specified action.
Their model is similar to the Time Petri Net of Merlin and Farber [Merl 76]. In
[Rico 91], the model considered is an extension of Lotos with actions that have
an associated specific time of occurrence and weights associated in the case of
a probabilistic choice. The goal was to predict the performance of distributed
systems. The model proposed in this paper considers an extension of Lotos with
time intervals associated with actions: time intervals are better suited for the
verification of timing assertions. Emerson. et al. [Emer 89] defined an extension of

290

CTL (RTCTL) with discrete time which can be used to specify and verify hard
deadlines. Hanssou [Hans 91] also extended CTL with time and probability. His
temporal logic formulas are interpreted over a labelled transition system derived
from a modification of CCS which includes discrete time and probabilities. Alur,
Courcoubetis, and Dill [Alur 90] also proposed an extension to CTL, but in
their logic (TCTL) formulas are interpreted over models with continuous time.
They introduce the concept of a timed graph to model a finite-state real-time
system: the system is equipped with a finite set of clocks which record the time
elapsed since they were reset. They developed a model checking algorithm for
determining the truth of a TCTL formula with respect to a timed graph. Lewis
[Lewi 90] presented a variation of CTL with continuous time that is interpreted
over a finite-state model in which the time delays between events are constrainted
to fall between upper and lower integer time bounds.

The paper is organized as follows. In the next section, we describe a semantics
for Time Interval Lotos. In Section 3, the branching time logic with time TCTL
is presented as well as the model-checking method for checking TCTL-formulas
in respect to a given Time Interval Lotos specification. In Section 4, a small
example is given. In Section 5, a method for enumerating all possible timed
paths is described. Finally, we discuss the modelling approach in the conclusion.

2 L o t o s w i t h T i m e I n t e r v a l s

Time Interval Lotos is a variant of Lotos (Language Of Temporal Ordering
Specification) [Loto 89, Bolo 87], which adds time intervals to Lotos actions.
In this section, we will present Lotos and define our timing interval extension.

2.1 Lotos

Lotos [Loto 89, Bolo 87] is an algebraic specification language based on CCS
[Miln 80]. Lotos is defined in terms of processes and uses rendez-vous inter-
actions. The rendez-vous may involve two or more processes and occurs at an
interaction point called a gate: it happens when all Lotos processes coupled to
the gate are ready for that interaction.Interaction and process parameters are de-
scribed by ACT ONE [Ehri 85] abstract datatype definitions. We are interested
in the basic Lotos language which does not include the interaction and process
parameters. The operations of basic Lotos are the following, where B, B1, B~ are
behavior expressions, a is an action and g l , . . . , g~ are gate identifiers:

Inaction stop Process instantiation pig1,. �9 g,~]
Action prefix a; B Parallel composition B11[gl , . . . , g,~]IB2
Choice B1 ~ B2 Pure Interleaving B~IIIB2
Termination exit Relabeling p[gl/g'~ gn/g']
Enabling B1 >> B2 Hiding hide g l , - . . , g,~ in B
Disabling B1 [> B~

291

2.2 T ime Interval Lotos: P r e s e n t a t i o n o f th e M o d e l

This section describes LOTOS which has been enhanced with t ime intervals of
the form [t,~i~, trnax] where t,~i~ and tma~ are natural numbers. Those intervals
are associated with each action a and are relative to the momen t at which the
previous action within the same process was executed. When the previous action
is executed, we say tha t action a is "locally" enabled or that action a is enabled
due to the execution of a previous "local" action of the process. An implicit
global clock exists in the transition sys tem. Assuming tha t the previous local
action has been executed at a global t ime gt, action a cannot fire before t ime
gt + trnin and must fire before or at t ime gt + trnax unless it is disabled by the
occurrence of another action. The t ime domain is represented as real numbers.

T ime Interval Lotos assumes that the t ime intervals associated with the ac-
tions have a local meaning. This is the same in Quemada ' s model [Quem 89]:
every action is assigned a single t ime s tamp which indicates the exact t ime at
which the action shall happen relative to the previous local actionl A t ime choice
construct also exists for representing the occurrence of an event at an unspecified
instant of t ime out of a given set. The difference between Time Interval Lotos
and Quemada ' s mSdel resides in the definition of the labelled transition system
(LTS): the LTS derived in Quemada ' s model contains transitions with their t ime
of occurrence whereas the LTS derived for Time Interval Lotos has clocks and
t iming conditions and can therefore deal with t ime intervals. The other main
difference between the two models is that in Quemada ' s model, some transitions
may not be derived due to the t iming relation between the different components
whereas the LST derived for our model is the same LTS derived by the usual
Lotos inference rules with additional t iming constraints.

In the model of Bolognesi et al. [Bolo 90b], the t ime intervals associated
with actions have a global meaning, which makes the model semantically very
different from ours. An action is enabled when all the processes part icipat ing in
the action are ready to interact. The model of Bolognesi expresses the urgency
of actions, i.e. the fact that something happens as soon as all the processes are
ready for it. Bolognesi's model has more expressive power since it can simulate
a Turing machine [Bolo 90b]. It can easily model the si tuation where two pro-
cesses must synchronize after each one independently executes an action with
unbounded delay (i.e. with interval [0, c~]). This si tuation is not modeled ade-
quately by models in which actions have a local meaning. However, in the case
where two processes must synchronize after only one of them executes an ac-
tion with unbounded delay, then the two types of models are as expressive. This
second case occurs more frequently in real examples hence the l imitat ion men-
tionned in the case of symmetr ic unbounded delay is not often encountered. One
disavantage of the approach of Bolognesi is that there are more properties which
are undecidable whereas our model can be more easily analyzed.

2.3 T ime Interval Lotos Semant ics

The syntax of T ime Interval Lotos is the same as s tandard Lotos except for the
action prefix: instead of writing a; B for an action followed by behavior B, we

292

write a[tmi,~,tma~]; B which means that action a must occur at a t ime t in the
interval [tmi,, tmaz].

The model of T ime Interval Lotos is a labelled transition system as defined by
the Lotos operat ional semantics. Each system has a finite set of clocks Cks. We
associate with every behavior expression a subset C of Cks. C is a set of clock
identifiers corresponding to the clocks which are reset to 0. We associate with
each interaction offer a clock which is a fictitious component that keeps track of
the possible t ime at which the event can occur. For example, in the expression
a; b; stoPl[b]lb; c; stop, we associate a clock with a, with c, with offer b in the left
side of the parallel expression and with offer b in the right side of the parallel
expression. There are as many clock identifiers as there are interaction offers in
the system. We use the following notation for the clock identifier: Cai is the clock
identifier of offer a where i is a natural number. In the case of an action that is
not involved in a rendez-vous, the clock identifier is simply noted Ca. Transitions
are labelled with actions and with an enabling condition which is built using the
boolean connectives over the formulas of the form X[tmin, trna~:], where x E Cks,
and train, tma~: E N. An action a with enabling condition r (a) = z[tmin, tmax] is
possible if the value of clock identifier x is in the interval [t,nin, tma~].

D e f i n i t i o n (M o d e l o f T i m e I n t e r v a l L o t o s b e h a v i o r : T i m e d g r a p h)
For a given behavior B0, the model of Time Interval Lotos behavior is a labelled
transition system < Cks, S, A, TR , so >, where :

- Cks is a finite set of clocks.
- S = { B e } is the set of all possible states, represented by behaviors, to which

we associate a set of clocks that are reset to 0 when the state is entered.
- A = {a r(a)la E L(B) U {i}} is the set of all possible actions. L(B) is the

alphabet of actions and i is the internal action, r (a) is a function that associates
with each edge an enabling condition built using the boolean connectives over
the formulas of the form z[tmi,,t,~a,], where x E Cks, and t,~i~,t,~ao: E N.

- T R C S x S is a set of relations - a t (a) ---+ defining the pairs of states associated
with action a. We write B1 - a 7"(a) ~ B2 iff < B1, B2 >E TR.

- so = B0 Co is the initial s tate where Co is the set of clocks corresponding to
actions initially enabled.

The t imed graph obtained resembles the t imed graph of Alur et al. [Alur 90]
except tha t it does not include the proposition t ruth value assignments to states.
The semantic rules of Lotos operators [Loto 89] have to be redefined in order
to associate t iming conditions with transitions and a set of clocks with behavior
expressions. The rules for some of the operators are the following:

A c t i o n w i t h T i m e I n t e r v a l : The t iming condition associated with interaction
offer ai for gate a states tha t the value of clock cai must be in [tm~n, t,~a~].

(a[tmi,,tmax]; B)C -- a Cai[tmin,tmax] --+ Be '

where C' = {cbj I 3B' such that Bc, - b r(b) ~ Bb,, }

293

Choice BIOB~_=

S,c , -~ , ~(o,)-s ' , r
C1. (S,OS~)c-,~t ~(~,)--B,c ~}

0 2 . s y m m e t r i c o f rule C1

P a r a l l e l i s m B11[G] IS2:

P1. (Stl[GllS2)c-a (n(a) ~,a r~(a))--(S~l[G]IB~)c,~c, 2
T I B,cl-a (a)--Blc,

P2. (S,l[GllS2)c-a r(a)--(B~ I{G]IB2)c~ a ~ G

P3. s y m m e t r i c o f rule P 2

a E G

Proces s i n s t a n t i a t i o n B = P[gl, g~., . . . , g,] :

B p [g l / h l , g , , / h .] c - a r (a) - - B~,
BC - aT(a) --* B~,

where Bp represents the body of the definition of process p, (g l , . . . , g ,) is a
list of formal gates, (h l , . . . , h ,) is a list of actual gates, [g l / h l , . . . , g n / h ,] is
the relabeling postfix operator, (gate gi becomes gate hi f o r i = 1, . . . , n). The
semantic rules of the other operators are defined in [Rico 9'2.].

2.4 E x a m p l e

The following example illustrates a timeout situation. This example is semanti-
cally the same as the one described in [Bolo 90a].
P[a, b, c] = Q[a, b]l[b]lR[b, c]
Q[a, b] = a[0, ~] ; hi0, 0]; Q[~, b]
R[b, c] = b[O, oo]; Rib, c]Oc[lO, I0]; stop

Let the clock identifier for actions a, c, b (in process Q) and b (in process
R) be respectively ca, cr cbl, c~2. C is the subset of the clocks reset to 0. The
labelled transition system for this example is the following:

~ c={%, %2 ' % }

~/_~a % [o,~]

c={%1} q - (~=7% [o,~]
C C [I 0 , i 0 %

Figure 1. Labelled transition system of P[a.b,c]

294

3 M o d e l C h e c k i n g u s i n g T i m e C o m p u t a t i o n T r e e L o g i c

In this section, we will describe the temporal logic TCTL [Alur 90] and explain
how to perform model checking for Time Interval Lotos specifications.

311 T ime C o m p u t a t i o n Tree Logic (TCTL)

Computation Tree Logic (CTL) is a branching time logic that was introduced
by Emerson and Clarke [Clar 83] as a specification language for finite-state
systems. Alur, Courcoubetis and Dill [Alur 90] proposed an extension of CTL
with continuous time.The resulting logic is called TCTL and is interpreted over
continuous computation trees, i.e. trees in which paths are maps from the set of
nonnegative reals to system states. The syntax of TCTL is the following:
Def ini t ion [TCTL Syntax]
Let P be the set of atomic propositions. The TCTL formulas are inductively
defined as follows: r := p [false] r --* r [3 r162 r [V ~)lU~c r
where p C P, c E N, r r and r are TCTL-formulas, and ,-~ stands for one of
the binary relation <, _<, =, _> or >.
Intuitively 3r U<cr (Vr162162 means that for some (all) path(s), there exists
an initial prefix of time length less than c such that r holds at the last state of
the prefix and r holds at all the intermediate states.

The semantics is defined with respect to a structure M = (S, #, f), where S
is a set of states, # : S ~ 2 p gives an assignment of truth values to propositions
in each state, and f is a map giving for each s E S a set of dense paths starting
at that state, f satisfies: Vs E S, Vp E f (s) , Vt E R, ptf[p(t)] C_ f (s) where Pt is the
prefix of path p upto time t and p(t) is a state corresponding to time t.
Def in i t ion [TCTL Semantics].
Let p E P, c E N and ,~ stands for one of the binary relation <, <, =, > or >.
For a structure M = (S, #, f), a state s E S and a formula r the satisfaction
relation (M, s) ~ r is defined inductively as follows:

(M, s) ~ false
(M, s) ~ p iff p E/~(s)
(M , s) ~ (r 1 6 2 1 6 2 1 6 2
(M, s) ~ 3r162 iff for some p E f(s) , for some t .~ c, p(t) ~ r and for all
O<t' < t , p (t ') ~ r
(M, s) for all p C for some t ~ c, ; (t) and for all

O~_t' < t , p (t ') ~ r

A TCTL-formula f is called satisfiable iff there is a structure M and a state s
such that (M, s) ~ r

3 . 2 Model -Check ing

Model-checking is a method for verifying concurrent systems in which a given
state graph of the system behavior is compared with a given temporal logic

295

formula. It is one of the most successful techniques for automatically checking
that a given temporal formula, written in propositional temporal logic, is satisfied
by a state-transition graph that represents the actual behavior of the system.
One of the advantages of the method is its efficiency. Model-checking is linear
in the product of the size of the structure and the size of the formula when the
logic is the branching-time temporal logic CTL. With time values, the complexity
of the model checking algorithm using TCTL is exponential in the number of
clocks and the length of the timing constraints, but linear in the size of the
state-transition graph and the length of the formula [Alur 90].

In the model-checking approach for Time Interval Lotos, the idea is to con-
struct the timed graph from the Lotos specification and to add the proposition
truth value assignments to the states of this timed graph. The generation of this
timed graph is explained in Section 2. We add to this timed graph a labeling
function # : S ---* 2 P which assigns to each state the set of atomic propositions
true in that state. The resulting structure is a timed graph in the sense of [Alur
90] and is the structure used for model-checking. Properties to be verified are
written in TCTL. User-defined TCTL-formulas are checked against this struc-
ture using the algorithm of Alur et al. [Alur 90].

4 Example: Stop and Wait Protocol

4.1 Specif ication of the Protoco l

In this section, we demonstrate the modeling approach described above by pre-
senting the stop-and-wait protocol, which is a simplified version of the alternat-
ing bit protocol. This protocol uses two types of messages : information (info)
frames and acknowledgement (ack) frames. The transmitter sends an info frame
and waits for an ack frame from the receiver. The medium is unreliable in both
directions. The specification of the protocol is the following:

specification stop-and-wait [get, give] : noexit
behaviour
hide sendinfo, recinfo, sendack, recack in

((transmitter[get,sendinfo,recack] I~l receiver[give,sendack,recinfo])
I[sendinfo,recinfo,sendack,recack]l
medium[sendinfo,recinfo,sendack recack])

where process transmitter[get,sendinfo recack]: noexit :=
get [0, 1]; sendinfo [0, 1]; sending[get,sendinfo,recack]

where process sending[get,sendinfo,recack] : noexit :=
recack [0, 2];transmitter[get,sendinfo,recack]
~i[10, 10];sendinfo[0, 1];sending[get,sendinfo,recack] (*timeout*)
endproc (*sending*)

endproc (*transmitter*)
process receiver[give,sendack,recinfo]: noexit :=

recinfo[0, oc] ;(give[0, 1];(sendack[0, 1]~i[0, 1]); receiver[give,sendack,recinfo]
~i[0, 1] receiver[give,sendack,recinfo])

296

endproc (*receiver*)
process medium[sendinfo,recinfo,sendack,recack] : noexit :=

sendinfo[0, cc]; (recinfo [0, 2] ;medium[sendinfo,recinfo,sendack,recack])
0(i[0, 2];medium[sendinfo,recinfo,sendack,recack]))

0 sendack[0, oo]; (recack [0, 2];medium[sendinfo,recinfo,sendack,recack])
0(i[0, 2];medium[sendinfo,recinfo,sendack,recack]))

endproc (*medium*)
endspec (*stop-and-wait*)

The global behavior is determined by applying the inference rules described
in Section 2. The following graph shows the labelled transition system with clocks
and timing conditions, where i(s), i(m) and i(r) denote the internal action asso-
ciated with process sending, medium and receiver, respectively. For readability,
we did not indicate the timing condition associated with the internal actions:
they are ci(s)[lO, 10], ei(r)[O, 1], ci(m)[O, 2].

C = { c g e t ~
get cget[O,l]

$endinfo csendiafol[O,1] and csendi_rffo2[O,--]

i ~ i(m) ~ r -1 and crecinfo2[O, 21

3 ~ c i (s),ci(m),crecinf0 2 }

i~{cgive,ci(r)}

'(m~2 ~ ~ (~ ~ C={csendackl,ci(r)}

",L "~'1 i(r)/ ~ ;)~ sendack
~2 B~ y ~ " ~ndackl[0,1] and r 'endack2[0,~]

Figure 2. Timed graph of the stop-and-wait protocol

4.2 Model-Checking

One property that may be of interest is that for each sendinfo action there is
always a subsequent recack. For an open system where we do not make any

297

assumptions about the environment, this property does not hold since there
is a possibility that the environment will never attempt to communicate a get
or a give. On the other hand, in a closed system, we can verify the following
hard deadline that specifies that a recack will appear within 10 time units. The
closed system is obtained by the following specification, where the user is always
prepared to engage in the actions get or give:
hide I[get,give]l in stop-and-wait [get, give] I[get,give]l user[get, give]
where process user[get,give]: noexit :=
get[O, 1]; user[get,give] D give[O, 1]; user[get give]
endproc (*user*)

The property to be verified is the following (the silent action i is parametrized
by the action to which the hide operator was applied):
for all paths, [i(sendinfo) ~ true U<lo i(reeaek)] U<o~ false

The labelling starts from the subformulas i(sendinfo), i(recack),true and
false. It then proceeds to the modal formulas U<lo. The formula r is not verified
for the labelled transition system of the stop and wait protocol since the process
sending may execute the internal action several times and the recack may appear
after 10 time units.

5 P a t h E n u m e r a t i o n f o r T i m e I n t e r v a l L o t o s

We assume that we have a Time Interval Lotos specification where a time interval
is associated with each action. An alternative approach to the verification of
timing properties is to derive a graph that captures all the allowed sequences of
actions as well as certain constraints on the time interval in which the allowed
actions are to take place. This approach enumerates the possible paths composed
of timed actions. Hence we can determine from the path enumeration graph if
the system contains livelocks or deadlocks. This approach is similar to the one
proposed in [Bert 91].

The timed graph described in Section 2 shows paths which are not possible
due to the timing constraints associated with the transitions. For example, in
the timed graph of the stop-and-wait protocol shown in figure 3, the paths where
action i(s) is followed by action i(m) are not valid since the timing conditions
associated with those actions cannot be satisfied. On the opposite, the paths
shown in the path enumeration graph are all possible.

We will present informally how the path enumeration graph can be con-
structed. This graph is composed of nodes and transitions. Each node corre-
sponds to a state augmented with time constraints < B, T > where T is the
system of inequalities showing the time constraints of the offers enabled. The
time constraints T are the following (we will explain below why the constraints
have this specific form):

tminai <_ tai <_ tmaxai for all interaction offer ai enabled
tai - - t b j <<_ da i ,b j for all ai and b j, a # b

298

Each transit ion is labelled with an action and a t ime interval: the t ime interval
indicates the range of possible t ime when the action may occur.

It is assumed tha t the times are relative to the moment at which a previous
local action has been executed. When first enabled, the t imes of the offers must
satisfy the following inequalities: iminai < tai < imazai where iminai and
imax~i correspond to the upper and lower bounds of the interval associated
with offer ai and lai is the t ime of occurrence of a.

Let us consider a transit ion corresponding to the execution of action f . When
f is executed at t ime t l , the inequalities of the remaining interaction offers en-
abled must be updated to eliminate the variable t] from the system of inequal-
ities. The modified system of inequalities is associated to the next state. Those
inequalities become: train" i < tlai < tmax" i for all a ~ f where the new bounds
for the action a are tmin~ai and tmaz'ai and where tai -- t ! + t'~i.

When the variable t l is eliminated from the system T, this may introduce a
relationship between two other variables tai a n d tbj that remain enabled. This
relationship can be expressed by the following constraint: t lai- tlbj <_ dlai,bj where
dial,hi is the maximal difference between the two variables t~ai and t'bj. This ad-
ditionnal constraint may narrow the possible occurrence t imes of future actions,
resulting in a t ime interval for future actions with tigher bounds.

In the initial state or for any new offer a enabled, we can take the following
default values for tmin~i , tmaxai , dai,bj :
tminai = iminai and tmazai = imaz~i for all interaction offer ai
d~i,bj = tmazbj - tmin~i for all pair of offers ai, bj with a # b.

The pa th enumerat ion graph is derived from a T ime Interval Lotos behav-
ior expression. Given a state < B , T >, we determine all the possible tran-
sitions tha t can be derived. We label the transitions of the graph with one
of the possible offer f enabled. Action f can occur in the following interval:
[m a x i (t m i n A) , m i n ~ j (t m a z ~ j)]. The new state reached is < B ' , T ' > where B '
is a new behavior expression derived and T ' is the new set of constraints having
the same form as T.
The new t ime region T ' is computed from T in the following way:
S t e p 1. El iminate from the system the t ime variables that corresponds to the
offers disabled by the occurrence of action f . Each elimination of a variable t~j
t ransforms the system of inequalities in the following way:
tminlai = m a z (tminai , tmine j - dej,ai)
tmax~ai = m in (tmaxa i , tmaxej + dai,ej)
d I ai,bk min(dai,bk, dai,ej + dej,bk)
S t e p 2. Express all remaining times t~i of all actions a where f # a as the sum
of t ! and a new variable t~i, and eliminate from T all old variables, including t ! .
tmin~ai = maz(O, -dyj,ai, tminai -- t m a z yj)
tmax'~i = min(dai,yj , tmazai - t m i n l j)
dtai,bj = min(dai,bj, tmaxai -- tminbj)
S t e p 3. Add the t ime interval constraints corresponding to the new actions en-
abled. The t ime intervals are the one associated with the interaction offer in the
specification.

299

t rain" i = iminai and t m a z ' i = imaz~i for all new offers ai enabled
dtai,bj = imaxbj - im ina i for all offers bj enabled (b ~: a)

Consider the following example. The corresponding graph is shown in figure 3.
B -- B~ I[~,3, a,,]IB~l[a3, a4]IB3
B, = ,,~[I, 6]; (,,511, 8] III a~[2, 3] III "411,4]); B~
B~_ = a411, 4]; B2
133 = a312, 3];/33

1.6]

a3[0,2~~a4[0,2]

a4[0,2: ~ ~[o,2~
1 C1

[1.3]

a: a2[oa

a4[0,: a3[0,21X J.a2[0,5]

Figure 3. Graph enumarating all possible paths of B

The set of time constraints associated with each state is the following:

State
Ci

T State
1 < t~l < 6 C2

(54 0 <_ t .2 <_ 4
0 < ta4 <_ 2

ta4 - ta~. <_ 3
ta~. - ta4 <_ 5

Cr 0 <_ t~3 <_ 2
Clo 0 < ta3 _< 2

Cs

C8

T
1 _< t~= _< 6
2 < t a 3 < 3
1 < ~:a4 ~ 4

o_<t~_<5
0 < t~3 _< 2

t~2 - t ~ 3 < 4
ta3 --ta2 < 2
0 _< t~4 _< 2
0 _< t~ _< 5

State
C3

C9

T
0 < t~3 < 2
0 _< t~4 < 3

t=4 - t ~ 3 < 2
t=3 - t , 4 _< 2
0 < t~4 < 2

o < to2 <,4

In the graph enumerating all paths, each state has only a finite number of
successor states, at most one for each action enabled. In deriving the states of
this graph, a state < B ' , T ' > is equal to a previously defined state < B , T >,
if the behavior reached is the same (B = B') and if the time constraints are the

300

same (T = T~). At each new state, if the behavior reached equals a behavior
already generated (B = B~), the system of inequalities associated with B ~ is
solved and compared with the solution of a system of inequalities associated
with B. This can be done in polynomial time because the system of inequalities
have only at most two variables per inequality [Aspv 79]. When the two systems
yield the same solution, the new state is the same as the one already derived.
The derivation of the graph stops when processes come into a deadlock state or
if the states have all been generated. Hence the same behavior can be associated
with two different states if the time regions are different for the two states.

6 S u m m a r y a n d C o n c l u s i o n s

Lotos and other formalisms abstract away from time, retaining only the sequenc-
ing of events in a system. But for a large class of systems including real-time
systems, we need to be able to specify time values and to verify that the system
meets certain hard real-time constraints. This paper presents an extension of Lo-
tos with Time Intervals. Its semantics is defined in terms of a labelled transition
system augmented with clocks and timing conditions associated with transi-
tions. In the model of Time Interval Lotos presented, time is continuous and not
discrete and represented in the form of an interval associated with actions.

Model-checking can be applied to the timed graph obtained from the Time
Interval Lotos specification. The formalism we use to express timing assertions
about the system is an extension of the branching time logic CTL called TCTL.
TCTL is a temporal logic formalism defined by Alur et al. [Alur 90] which
handles continuous time. A model-checking approach developed by Alur et al.
[Alur 90] is used for verifying that properties expressed in TCTL are verified by
the model of Time Interval Lotos.

Another approach to the verification of timing properties is the derivation of
all the possible sequences of actions and associated time. The graph generated
shows sequences of actions and indicates in what interval the actions can occur. It
does not give the evolution for particuliar time values but shows all the possible
occurrence times for each action in the path. With this graph, one can determine
if the system contains livelock and deadlocks since all the possible execution
times are generated.

7 R e f e r e n c e s

[Alur 90] Alur, R., Courcoubetis, C. and Dill, D., "Model-checking for real-time
systems", Proc. of 5th IEEE Symp. on Logic in Computer Science, June 90.
[Aspv 79] Aspvall, B and Shiloach, "A polynomial time algorithm for solving
systems of inequalities with two variables per inequality", in Proc. 20th Annu.
Symp. Foundations of Computer Sciences, Oct. 1979, pp.205-217.
[Berg 84] Bergstra, J.A. and Klop, J.W., "Process Algebra for Synchronous Com-
munication", Information and Control, 60 (1-3), 1984.

301

[Bert 91] Berthomieu, B. and Diaz, M., "Modeling and Verification of Time
Dependent Systems Using Time Petri Nets", IEEE Trans. on SE,17,3, March
1991, pp.259-273.
[Bolo 87] Bolognesi, T. and Brinskma, E., "Introduction to the ISO specification
language LOTOS", Computer Networks and ISDN Systems,14,1, 1987.
[Bolo 90a] Bolognesi, T., Lucidi, F. and Trigila, S., "From Timed Petri Nets to
Timed LOTOS", Proceedings of 10th IFIP WG6.1 PSTV, June 1990.
[Bolo 90b] Bolognesi, T. and Lucidi F., "LOTOS-like process algebras with ur-
gent or timed interactions", FORTE 90, 1990.
[Budk 87] Budkowski, S. and Dembinski, P., "An introduction to Estelle: a spec-
ification language for distributed systems,, Computer Networks and ISDN Sys-
tems,14,1, 1987, pp.3-23.
[Clar 83] Clarke, E., Emerson, E. and Sistla, A., "Automatic verification of
finite-state concurrent systems using temporal logic specifications: A practical
approach", in Proc.10th ACM Symp. on Principles of Programming Languages,
pp.117-126, 1983.
[Ehri 85] Ehrig, H. and Mahr, B., "Fundamentals of Algebraic Specification 1",
Springer Verlag, 1985.
[Emer89] Emerson, E.A., Mok, A.K., Sistla, A.P. and Srinivasan, J., "Quan-
titative temporal reasoning",in Proceedings of workshop on AUtomatic Verif.
Methods for Finite State Systems, June 1989.
[Hans 91] Hansson, It., "Time and Probability in Formal Design of Distributed
Systems", Ph.D. Thesis, Uppsala University, September 1991.
[Hoar 85] Hoare, C., "Communicating sequential processes", Prentice Hall, 1985.
[Hulz 90] van Itulzen, W., Tilanus, P., Zuidweg, H., "LOTOS extended with
clocks", Proceedings of FORTE'89, Noth-Holland 1990.
[Lewi 90] Lewis, H.R., "A logic of concrete time intervals", 5th IEEE Symnpo-
sium on Logic in Computer Science, June 1990.
[Loto 89] ISO/TC97/SC21, "LOTOS: A Formal Description Technique based on
the temporal ordering of observational behavior", Tech. Report IS8807, 1989.
[Merl 76] Merlin, P. and Farber, D., "Recoverability of communication protocols-
Implication of a theoretical study", IEEE Trans. on Comm.,24,6, Sept.1976.
[Miln 80] Milner, R.,"A Calculus of Communicating Systems", LNCS 92, Springer
Verlag, 1980, 171p.
[Nico 91] Nicollin, X. and Sifakis, J., "An overview and synthesis on timed process
algebras", CAV'91, Aalborg, Denmark, July 1991.
[Quem 89] Quemada, J., Azcorra, A. and Frutos, D., "A Timed Calculus for
LOTOS", Proceedings of FORTE'89, Vancouver, June 1989.
[Rico 91] Rico, N., and Bochmann, G.v., "Performance description and analysis
for distributed systems using a variant of Lotos", Proceedings l lth PSTV,1991.
[Rico 92] Rico, N., and Bochmann, G.v., "Time Interval Lotos", Technical Re-
port, University of Montreal, 1992.
[SDL 87] CCITT SG XI, Recommendation Z.100 (1987).

