
Tableau Recycling

Angelika Mader *
Technische Universits Miinchen

A r c i s s t r . 21

W - 8000 M f i n c h e n 2

G e r m a n y

e - m a i l : m a d e r @ i n f o r m a t i k . t u - m u e n c h e n . d e

Abst rac t

In this paper we improve a model checking algorithm based on the tableau
method of Stifling and Walker. The algorithm proves whether a property ex-
pressed in the modal mu-calculus holds for a state in a finite transition system.
It makes subsequent use of subtableaux which were calculated earlier in the
proof run. These aubtab|eaux are reduced to expressions. Examples show that
both size of tableaux and execution time of the algorithm are reduced.

1 I n t r o d u c t i o n

The modal mu-calculus is an active area of research. It stands in the tradition of
Hoare logic, Dynamic logic, Process logic, and linear and branching time logics IS].
Model checking in the modal mu-calculus plays a part in verification of parallel pro-
cesses with both finite [CS1] and infinite state spaces [BS], and finds application in
preorder models [CS2] and in Petri nets [B}.
The main approaches are symbolic model checking [BC] [EFT], model checkers based
on the fixpolnt induction principle [EL], and tableau based model checkers as in [SW]
[C]. An advantage ~of the latter is its ability to deal also with infinite state spaces.
In comparison to the approximation techniques they work locally, i.e. they do not
determine the set of all states satisfying a property, but prove a modal formula only
for one state. Unfortunately the attractiveness of tableau methods suffers by their
complexity. A main reason for this is that these model checkers do not make subse-
quent use of subresults.
This paper presents a method whereby a tableau based model checker for the full
modal mu-calculus can recycle subtableaux, which have been calculated earlier in the
model checking algorithm. An implementation of these ideas has confirmed an im-
pressive improvement in execution speed in a variety of examples.
The following section introduces briefly the modal mu-calculus and its semantics. In
section 3 the underlying standard tablean model checker is described. The motivating

*supported by Siemens AG, Corporate Research and Development

331

ideas of tableau recycling and the necessary notions are contained in section 4. Sec-
tions 5 and 6 present the algorithm and the proofs of its correctness and completeness.
Some surprising examples can be found in section 7. Section 8 concludes this paper.

2 T h e M o d a l M u - C a l c u l u s

This section gives a brief introduction to the modal mu-calculus. For more details see
Is].

The syntax of the modal mu-calculus is defined with respect to a set Q of atomic
propositions including true and false, a finite set/~ of action labels and a denumerable
set Z of propositional variables. A formula of the modal mu-calculus is an expression
of the form:

A ::= Z I Q I -~A IAA A I [a]A I uZ.A

where Z E Z, Q E Q and a E/ : , and where in uZ.A every free occurence of Z in A
falls under an even number of negations. The standard conventions for the derived
operators are:

A1 V A2 := -~(-~Ax A -'A2)
(a)A := -,[a]-,A
#Z.A := ",,Z.-,A[-~Z/Z].

Formulae of the modal mu-calculus with the set /: of action labels are interpreted
relative to a labelled transition system 7" = (S, {'~l" a E/~}) , where S is a finite set
of states and ~ C S • • S for every a E / : a binary relation on states. A valuation
function ~) assigns to every atomic proposition Q in Q (and propositional variable Z
in Z) a set of states I,'(Q) c S (P(Z) c S) meaning that the proposition Q (variable
Z) holds for every state in P(Q) (1)(Z)). The pair T and P is called a model of the
mu-calculus. The semantics of each mu-calculus formula A is the set of states IIAIIv z
defined inductively as follows:

IlZllv ~ = V (z)
IIQII~ = v (Q)
II-~Allv ~ = S- I IAIIv ~
IIAx A A~II~ = Ilmdl~ n IIA=U~
II[a]AIIv r = {s E S I Vs'. i f s ~ s' then s' e IIAIIv ~)
IluZ-AIIv ~ = U{s' _ s i s ' c Ilall~vts,/zl}

3 A S t a n d a r d T a b l e a u M o d e l C h e c k e r

This section sketches a standard tableau method based on the model checker of Stifling
& Walker [SW I. The notation used here is a mixture of the notations of Cleaveland
[C] and Stirling • Walker [SW]. Some additional notions are necessary.
The modal mu-calculus is extended by a set of propositional constant symbols. Let

332

U, Ul... range over these symbols. A definition is a declaration U = A, where U
is a constant symbol and A a formula of the modal mu-calculus which may contain
constant symbols. A definition list A consists of a sequence of definitions (UI =
A~). . . (U,, = Am). I t fulfills the requirement that every Uj appearing in Ai is defined
before Ui, i.e. j < i, and that Ui # U i for i # j . For A being such a definition list the
function A(UI) = Ai is declared. A hypothesis is an expression of the form s E U,
where s is a state of a transition system and U a constant symbol. Hypotheses are
collected in a hypothesis set H. A sequent H ha s E A expresses that the formula A
is valid at the state s with respect to the hypotheses of H. We drop empty As and
Hs.

The model checker here is tableau based. This corresponds to a top-down proof
method, starting with the intended conclusion and reducing it stepwise to (atomic)
premisses. The rules for a tableau method are inverse to the usual rules of natural
deduction. Here we take the conclusions and premisses to be sequents. The root
sequent h s E A contains the state s and the modal property A, which we want to
prove for this state. The root sequent has an empty hypothesis set and an empty
definition list. The rules of the tableau system are:

l~H~-as E -~-~A
"

3) H ~'a s ~ -,(A ^ B)
H hA s E "~A

H ha s E [a]A
5)i~-~, s, e A . . .H~-a s~ e A

HI-z~ s E A A B
2) H h a s E A H) - a s E B

ha s E ",(A h B)

{ ~ , , . . . , s , } = { s ' l s - ~ ~'}

6~ H I-zx s E -~[a]A
" -HF2~; f f4 -] s e , s'

. H h a s E u Z . A A ' = A . (U = t , Z . A)
) - f f ~ [, - ; e u

8] H I-a s E "~vZ.A A'
" h-~:-~ ~ - 5 = a . (U = ",~Z.A)

H I-a s E U (s E U) r H, A(U) = uZ.A, H' = H O {s E U}
9) H ' ha s E A[Z := U]

F,, s e v (s e u) r H, ~(t]) = -~.Z.A, H' = Xr U {s e ~}
lO) H' I-a s E "-,A[Z := -~U]

A proof tree is constructed by applying the rules to the root sequent, and then to its
successors etc. The proof tree is maximal if no rule is applicable to a leaf sequent.
Such a maximal proof tree is called a tableau. A tableau is successful, if all its leaves
are successful. A leaf sequent H ~-a s E B is successful, if it satisfies one of the
properties (i)-(iv):

333

(i) B = Q and s �9);(Q)

(ii) B = -~Q and s t/~])(Q)

(iii) B = [a]C

(iv) B = U and A(U) = vZ.U
and (s �9 U) �9 H

(i') B = Q a n d , r V(Q)

(ii') B = -,Q and s �9 V(Q)

(iii') B = (a)C

(iv') B = V and A(U) = -,vZ.C
and (s �9 U) �9 H

If one of the dual forms (i ')-(iv') of these requirements holds for a leaf sequent,
then it is not successful. In an unsuccessful tableau there is at least one leaf, which is
not successful.
For later considerations the definition of a computation tree is also neccessary. A model
checker algorithm based on the tableau rules builds a tree starting with I- s �9 A
as root sequent and applying nondeterministically the rules. When a leaf fails the
algorithm has to use backtracking techniques to try other paths. It will build up this
tree until it is sure that a sequent has a successful subtablean or not. In the first
case the tree includes a successful tableau, in the second case it is not necessary that
the tree contains any maximal proof tree. We call a tree created by such a model
checker algorithm a computation tree, if it sufficient to decide, whether there exists a
successful tableau or not.
Note that such a computation tree determines an "and-or-tree", if the successful
leaves are identified with true, the unsuccessful ones with false, the nondeterministic
branching as disjunction and the deterministic branching as conjunction. It can be
evaluated to true, iff the computation tree contains a successful tableau.
For simplicity of notation in this paper the definition lists A, A' are considered to be
global for all different subtrees of one computation tree, i.e. there are no two different
definition lists (in two different subtrees) At, Az and for any U, At(U) # A2(U).

4 T a b l e a u R e c y c l i n g

This section starts by describing a basic source of inel~cieney in the standard model
checker. Then it considers how the efficiency might be improved, and finally means
for an algorithm are presented that gives a significant gain in efficiency.

The basic problem with the standard model checker is that it does not store any
intermediate results (subresults). It is possible that it proves the same formula for
the same state arbitrarily often, as the following example will show:

Fa, 6 ~
= .x.[.l@X

informal meaning: "every a - s u c c e s s o r
h a s a b-succe-.aor for which

this property holdsjecur~vely."

Fig. 1.

�9 b �9 b a ~

.@5.- "%/"

model with tableau of exponentional size

334

Here the formula ~ is proved n times for the state 82, n 2 times for the state s3, . . . , n k - I

times f6r the state sk. The number of nodes in the computation tree is exponential
with respect to the length k of this transition system.
Moreover, a look at computation trees shows that in many cases, different subtahleaux
of a state and a formula are very similar.

The most obvious way to improve efficiency would be just to store the information
"the sequent H F s E ~ has a successful (or no successful) subtableau" , and use it
whenever the same state and formula appear again in the computation tree.
Unfortunately this idea is too simple:

The first obstacle is that the constants used in different subtableaus have differ-
ent names. It therefore does not happen that exactly the same sequent appears
twice. A notion of equivalence will help to solve this problem.

Secondly the hypothesis sets can differ, even when formulae and states are identi-
cal. It is obvious that the shapes of the computation subtrees differ accordingly,
since they depend on the hypothesis sets. Therefore in order to recycle a compu-
tation subtree of a similar sequent with even a slightly different hypothesis set,
one has to store also the shape of the computation subtree. It turns out that
the shape of such a subtree can be reduced to an expression which is sufficient
for the derivation of all useful information.

A cornerstone of the tableau recycling algorithm is a notion of equivalence, which
allows different sequents in a computation tree to be compared. The basis for this is
the definition of equivalent constants, which have different names but identify syntac-
tically the same formula. In the following let for Z1, . . . , Z , being the free variables
in r denote r Uj.) = r Uj./Z,] , meaning that every occurence of
Zi in ~ is substituted by Uj~.

D E F I N I T I O N 1 (E q u i v a l e n c e)

(1) A formula r Uj.) is equivalent to the formula O(Uk,,. . . Uk,,),
denoted r Uj.) ~ r U~.), iff
for 1 < i < n all constants Uj~ ~ Uk~.

(~) A constant Ua is equivalent to the constant Us, denoted Ux ~ Us, iff Uz = Us
o r A (u ,) ... a (u ,) .

Note that this equivalence is essentially Mpha-conversion with respect to constants.
The main insight now is that equivalent sequents can have identical computation sub-
t rees .
We will now show how the shape of a computation tree can be reduced to an expres-
sion.

335

D E F I N I T I O N 2 (Hypo thes i s Tree)
A hypothesis tree is an expression of the form:

HT ::= true I false I unknown I Y I Y; H T I Vle, HTi I Aiet HTi

where I is a finite index set and Y is a hypothesis, e.g. s E U.

If the termination behavior of all paths of the computation tree is known, it is deter-
mined whether there is a successful subtableau or not. Some of the paths terminate
with the rules (i)-(iii) and their dual forms. This kind of termination is independent
of the hypothesis sets. The other paths terminate with rule (iv) and its dual form.
In this case the kind of termination depends on the hypothesis set and whether for
the terminal sequent H ~ b a s E U the constant U stands for a maximal or negated
maximal (minimal) fixpoint formula.
The reduction of a computation tree to a hypothesis tree reflects this idea:
transform the computation tree to an "and-or tree", but leave all hypotheses in it.

D E F I N I T I O N 3 (Reduc t ion to a Hypo thes i s Tree)
Reduce a computation tree to a hypothesis tree in the following way:

�9 Replace every leaf terminating with rules (i)-(iii) or their dual forms by true or
false respectively.

�9 Replace every leaf terminating with a hypothesis which is not contained in the
root hypothesis set by true if the leaf is successful or false otherwise.

�9 Replace every nondeterministic branching by a disjunction. I f not all of the
nondeterministic rules were applied, extend this disjunction by a leaf unknown.
The number of all possible nondeterministie rules is called the arity of the dis-
junction.

�9 Replace every deterministic branching by a conjunction. I f not all of the de-
terministic rules were applied, extend this conjunction by a leaf unknown. The
number of all possible deterministic rules is called the arity of the conjunction.

�9 Drop all sequents which are not of the form H t-A s E U, and drop all hypothesis
sets.

D E F I N I T I O N 4 (Eva lua t ion .o f a Hypo thes i s Tree)
The function eval evaluates a hypothesis tree HT together with a hypothesis set H to
eval(HT , H) E {true, false, unknown} in the following way:

�9 substitute every hypothesis s E U in HT which is contained in II by true if
A(U) = vX.A, else by false .

�9 substitute every hypothesis which is not contained in H by unknown.

�9 Evaluate this tree with the following rules which are extended in the obvious way
for indexed conjunction and disjunction:

336

V true false unknown A true false unknown

true

false

unknown

true true true

true false unknown

true unknown unknown

true

false

unknown

true false unknown

false false false

unknown false unknown

The operator ";" is treated as follows:

eval(unknown ; HT , H) = eval(HT , H)
eval(true ; HT , H) -- true
eval(false ; HT , H) = false

The following definition reflects the idea that hypothesis trees with equivalent
roots partlculary have a common structure. Combining two hypothesis trees then
means that the common structure is identified and extended by both non common
structures parts.

D E F I N I T I O N 5 (C o m b i n a t i o n of H y p o t h e s i s Trees)
Consider two sequents t t l ~ s E U1 and H2 ~ s E U2, U1 e~, U2, TI is the hypothesis
tree constructed from a computation tree of the first sequent, r2 from the second one.
Let rz = "ci o r2 be the combination oft1 and ~'2 such that

�9 The root of rz is the root of rl.

�9 I f t E U~ is a successor of s E U1 with the subtree r~ and t E U~ is a successor
ors E U2 with the subtree r~ such that U~ ~ U~,
then r~ o r~ is a direct subtree of the root of r3.

�9 I f t E U~ is a successor of s E U1 with the subtree r~ and there is no successor
t E U~ ors E U2 such that U~ ~ U~,
then r~ is a direct subtree of the root of t3. (symmetrically f o r t E U~)

�9 I f the successors of s E UI and s E U2 are disjunctions (neccessariIy with the
same arity} then the successor of the root of r3 is also a disjunction with the
same arity and those branches are combined pairwise which correspond to the
same rule applied at this place in the computation tree. Branches of one disjunc-
tion which have no correspondin 9 branch of the other disjunction appear directly
in the combined disjunction. I f the arity of the disjunction and the number of
branches are equal all leaves unknown in this disjunction are dropped. (analo-
gously for conjunction)

5 The Tableau Recycling Model Checker

The standard tableau model checker is extended by a set of hypothesis trees 7-17". In
the beginning 7"/7" is initialized with the empty set.

337

Every time, when a computation tree is built up for a sequent H ha s E U, the
hypothesis tree r is derived and inserted in 7-/T. If there already exists a hypothesis
tree rl in 7-/T with a equivalent root s E U t, U ,-, U ~, the combined hypothesis tree
r o rl is added to 7-/T replacing rl.
The tableau rules 9) and 10) are extended by a further requirement:

9')

10')

H ~ s e U (s e U) r H, Z~(U) = ~Z.A, H' = H u {s C U}
H' ha s e AIZ := U]

and there is no r E 7"/T such that the root s E U ' , U N U' and
eval(r, H) e {true, false};

H ~ - a s 6 U (s e U) (_ H , A(U)=-,vZ.A, H ' = H U { s 6 U }
H' bas 6 -,A[Z := ",U]

and there is no r E ~ T such that the root s E U ' , U ,~ U' and
eval(r, H) E {true, false};

in addition to the conditions (i)-(iv) stated in section 3 a leaf sequent H t-,x s E U of
a tableau constructed by by rules 1)-8), 9') and 10') is also successful if it fulfills the
following property:

(v) There exists a r E "/'/T such that the root s E U ' , U ,-~ U' and eval(r, H) = true.

The number of elements in the set 7-/T is bounded: for every state in the transi-
tion system T and every fixpoint operator in the root formula there is at most one
hypothesis tree contained in "HT.

The example on the next page should clarify the algorithm.

6 Correc tnes s and C o m p l e t e n e s s

In this section it will be shown tl~at the recycling model checker produces the same
results as the model checker from Stifling & Walker [SW]. Then correctness and
completeness of the model checker presented here follow from the correctness and
completeness proved in [SW].

The way of argumentation is as follows: the propositions here are valid for both
versions, the standard tableau model checker and the recycling one. First some prop-
erties of tableaux and computation trees with similar root sequents are stated. In
the remainder it is shown that the evaluation of a hypothesis tree corresponds to the
result derived from a computation tree.

As a first step the notion of equivalence given in definition 1 must be extended to
hypothesis sets and sequents.

~
F.

~z
 E

~I
h

~b
.~
z E

Ut

H
,
 F
 ~

E
U~

H
~
s
,
 E

U
,

H
s
~
E
U
,

H
~
o
F
~
e
~
2

Hx
ol
- ~

,
E
e
~

H,
 o
F~

zE
U~

H,

 o
F~

,E
Us

H
t l

- a
2

E
 ~

I'2

H
~

F
 ~

=
E

 U
~

H~
 F
 ~
,
E
U,

H=
 F
 ~
s E

 U
,

H3
~'
a~
EU
s

H
s
F
~
,
E
U
~

H4
~-

aI
~U

 1

H4
~-

as
~U

I
H
s
 F
-s
~
6
UI

H
s
F
~
E
U
,

'

/-/
8 ~

- ~
x e

 [
a]

~2

H
s
F
~
E
~

H~
l-
sz
 e
~

H
~
F
 ~
s E

 U
s

H
~
F
 ~
, E
 U
~

m
~-
 ~
6
[a
]U
, V

 [
a]
Us

Hs
~"
 ~t
 E
 [
a]
U,
 V

 [
a]
Us

H
~
F
~
z
E
U
,

H
~
F
s
~
E
U
,

H
s
}
'
~
E
U
,

H
s
F
a
z
E
U
,

A
/\

 A

/\

a,
 E

 U
,

~=
 E

 U
s

|

A
/
\

~
E
U,

,,
 E
 U
:

A

�9
 ,=
 E

 U
,~

at
EU
,

A
A

/
\

/
\

A
/
\

�9
 ,E
U,

a,
~U

,

(~
p,

,.=
,

a,
 E

 U
.,

A
|

/
\

A
/
\

H
,,

 ~
- s

, ~
 [~

]u
~

v
[=

]u
s,

H

n
~-

 ~=
 E

[a
]U

,
H
n
F
s
.
~
E
U
I

H
n
F
s
~
E
U
~

(~

a=
 E

U
z

A
/

\

a2
 E

 D
's

,sz
 6

 U
4,

A

A
/\

/\

az

E
U

z
aa

E
U

I
a~

 E
 U

z
aa

 (E
 U

t
A

/\

n
E

U
t

a=
,E

U
t

83
 ~
U=

/
^
\

�9
 ,r

a=
EU
I

I
~

3r
 U

I

Ez
am
pl
e
1
:
Tr
an
si
ti
on
sy
st
em
, T

ab
le
au
 a
nd

 H
yp
ot
he
si
s
Tr
ee
s

a

~
~

~
z.

[d
~

x.
iM

z
v

[d
x

�9
 ~

=
/,

x.
id

u
,

v
[d

x
A
:

0"
i
=
r

fo
ri

>

1
:

U
i=

~
2

A
-l

is
t

om
it

te
d

in
 t

he
 t

ab
le

au
;

th
e

hy
po

th
es

is
 s

et
s

H
 a

re

de
ri

va
bl

e
fr

om
 t

he
 r

ul
es

.

|
/
\

83
EU

~
8,
 E
U~

A

/
\

�9
 ,~
U~

a,

r I

(~
 :

 |
ew

lu
at

=
to

 t
~

e

(~
 :

 (
~

ev

al
ua

te
s t

o
un

so
w

n

(~
 :

 ~
)

e~
ua

te
s

to
 t,

'~
e

CO

03

00

339

D E F I N I T I O N 6 (E q u i v a l e n c e)

(3) A hypothesis set HI is smaller than a hypotheses set It2 with respect to the
equivalent constants UI,U2, denoted HI <-v~,v2 1t2, iff

- for every hypothesis (s E [./1) E t1~ the hypothesis (s E U~) is contained in
H2, and

- with A(Ut) = 4 (U j , , . . . UI.) and A(U2) = 4 (U t , , . . . Uk,) for every
1 < i < n holds 1tl <tt~,,vki 112.

(4) Two hypothesis sets 111 and H2 are equivalent with respect to the equivalent
constants Us, U2, denoted H~ "~v~,v2 112,
iff HI <v~,v2 1t2 and H2 <u~,u2 tI1.

(5) Two sequents H, F-a s e 4 (U j , , . . . U j .) and H2 ka s e 4(Uka, . . .Uk.) are
equivalent, iff for 1 < i < n UI~ ".. Uk~ , and 1tl "vj,,v,~ 1t2.

P R O P O S I T I O N 1 (E q u i v a l e n t S e q u e n t s h a v e t h e s a m e S u b t a b l e a u x)
Suppose 7-1 is a computation tree with the root sequent HI I-Lxl s E 41, and
H2 t-zx2 s E 42 is an equivalent sequent. Then there exists a computation tree 7-2 of
H2 ~" s E ~2 with the same branching structure as 7"x such that every node of 7"~ is
labelled by a sequent which is equivalent to the sequent of corresponding node of t1.

P roo f : by induction in the structure of 7"1

Induction hypothesis: seqx = Hi bA~ t E 4i in 7"1 and seq2 =- H i bzx~ t E 4 j in 7"2 are
equivalent sequents.

Base case: the induction hypothesis is true for the root sequents of rl and r2 by
assumption.

Induction step: argumentat ion about the applicable rules

�9 leaf sequents
If seqt is a leaf sequent and fulfills one of the requirements (i) - (iii) or their
dual forms, then 4 / = 4 j and there is no rule applicable to seq2.
The more interesting case is if the leaf sequent seqa fulfills (iv) or its dual form.
Here for 41 = Ui the hypothesis t E Ui is contained in Hi. Since for 4 j = Uj
Ui ..~ Uj and Hi "~v,,v~ Hi the hypothesis t E Uj must he contained in Hi.
Therefore also seq2 is also a leaf sequent.

�9 One of the rules 1) - 4) is applicable to the sequent seqx.
As equivalent formulae have equivalent structure, the same rule can be applied
to seq2. As equivalent formulae have also equivalent subformulae the successor
seq~ of seq2 is equivalent to the successor seq~ of seql.

�9 Rule 5) or 6) is applicable to seqa.
41 = [al4 ~ (or 4i = -~[al4~), hence also 4 j = [a]4~ (or 4 j = -~[a]4~) and
4~ -., 4~. All a-successors of the s tate s depend only on the transition system.
Therefore the same rule can be applied to seq2 and the successor sequents of
seqz contain the same states, equivalent hypothesis sets and equivalent formulae
as the sequent successors of seql.

340

One of the rules 7) or 8) is applicable to seql.
A new constant U[is generated in 7"1. As the same rule must be applicable to
seq~, also a new constant Uj is generated in r2 with A~(U') ,,, A~(Uj). Therefore
the successor sequent Hi I-z~ t E U[is equivalent to H i t-t~ t E Uj.

Rule 9) or 10) is applied to seql.
Here Hi ~'A, t E Ui and (t E Ui) r Hi. For Hj k-t~, t fi U~ holds by induction
hypothesis Ui ~" Uj and Hi ",, Hi. Therefore (t E Uj) ~ He. For the successor
sequent holds

u { t u d = l i l ~ l i j = l i j u { t and =
a X . A (X , U , , , . . . , U,.) = A,(U~) ~ Aj(U~) = ~rX.A(X, U~, , . . . , U~.) the succes-
sor sequents are equal.

13

P R O P O S I T I O N 2 (Size of the C o m p u t a t i o n Trees)
Consider a sequent 1fl ~-~x~ s E ~ (U 1 , . . . U ,) having rl as computation tree , and
a sequent H2 t-A, s E ~(U1,. . . U,) with Hi <u,,u, 112 for all 1 < i < n. Then
H2 I-a 2 s E ~(U1,.- .U,) has a computation tree rz which s contained in rl as subtree,
such that (up to the hypothesis sets).

Proof: by induction in the structure of rl
omitted in this version 13

P R O P O S I T I O N 3 (Combina t ion of Hypo thes i s Trees)
Let rl be the hypothesis tree derived from a computation tree o f Hi ~'t~ s ~ U
and 1"2 be the hypothesis tree derived from a computation tree of H2 t-tL s E U.
Then there ezists a hypothesis set Ha with 1fl f1112 C 1tz C I l l U 1f2, and ~'l o r2 as in
definition 5 is the hypothesis tree derived from a computation tree of Hz t-a s E U.

Proof: by induction in the structure of rl and r2
omitted in this version t3

P R O P O S I T I O N 4 (Cor rec tness I)
Let ~'1 be a computation tree of H ~-~ s E U and H B its hypothesis tree.
The hypothesis tree H B is evaluated with the hypothesis set l i to true, iff t t }-~ s E U
has a successful subtableau.
The hypothesis tree l i b is evaluated with the hypothesis set H to fa l se , i f f H }-4 s E U
has no successful subtableau.

Proof: omitted in this version D

P R O P O S I T I O N 5 (Cor rec tness I I)
Let H B be the hypothesis tree o f a sequent H1 ~-~ s E U, and H2 a hypothesis set.
I f H B together with H2 evaluates to true, then the sequent 1t2 I-4 s E U has a
successful subtableau.
I f f i b together with ft2 evaluates to fa l se , then the sequent 112 ~-A s E U has no
successful subtableau.

Proof: omitted in this version n

341

7 B e n c h m a r k s

The presented algorithm is implemented in QUINTUS-PROLOG on a SUN/SPARC
system.
In the following examples the standard tableau model checker is compared to the
tableau recycling model checker. As units of measurement we took the number of
nodes in the computation tree and the system time which the model checker took to
solve the task.
Examples ~ to 5 from section 4, Fig.h

n=3, k=3
n=4, k=3
n=3, k=4
n=4, k=4

standard tableau model checker
number of nodes [time
105 < ls
211 Is
321 Is
851 2s

tableau recycling model checker
number of nodes time
25 < ls
31 '< ls
33 < Is
41 < Is

Example 6 : F 1 6 vZ.(a)#X.(a)(a)X A (a)(a)Z �9 �9

I standard tableau model checker tableau recycling model chec
} number of nodes I time number of nodes I time
{ 32766 { 74s 139 { 4s

m |

Example 7 : F i e uZ.(a)t~X.(a)(a)X ^ (a)(a)Z �9 �9

1' Sta, ndard tableau model checker] tableau recycling [ode l ch '
[number of nodes I time number of nodes time
I > 22100000 > 1.5h 218 1326s

8 Conc lus ion

A tableau based model checker for the full modal mu-calculus was presented, which
profits from the idea to recycle subtableaux which have been calculated earlier in the
model checker algorithm. The information contained in a subtablean is reduced to
a much smaller expression. An implementation of this algorithm showed in several
examples an impressive acceleration.

Future work will include the following aspects:
We continue to get more experience with real world transition systems and relevant
modal properties when verified with the tableau recycling model checker and different
model checking approaches.
Secondly in this paper an idea was worked out how the maximal infoffnation can be

342

preserved during a proof run. Heuristic methods could help to do it without mazimal
information in order to reduce memory expense.
Finally we will continue in investigating the complexity of the model checker algo-
rithm.

Acknowledgement I thank Dirk Taubner for many motivating discussions. Florian
Mengedoht implemented the algorithm.

9

[BI

[BC]

[BS]

[C]

[CSt]

its21

[EFT]

[EL]

IS]

[sw]

R e f e r e n c e s

Julian Bradfield, Verifying Temporal Properties of Systems, Birkh~user,1992.

J.R.Burch, E.M.Clarke, K.L.McMilIan, D.L.Dill and L.J.Hwang, Symbolic
model checking: 102~ states and beyond, in: Information and Computation, Vol
98, Num 2, June 1992, (141-t70).

Julian Bradfield and Colin Stirling, Verifying Temporal Properties of Processes,
CONCUR 1990, in: LNCS 458, Springer Verlag, Berlin, 1991, (115-125).

R~nce Cleaveland, Tableau Based Model Checking in the Propositional Mu-
Calculus, in: Acta Informatica,1990,(725-747).

Rance Cleaveland and Bernhard Steffen, A Linear-Time Model-Checking Al-
gorithm for the Alternation-Free Modal Mu-Calculus, in: Proc. of the Third
Workshop on Computer Aided Verification ,LNCS 575, 1992,(48-58).

Rance Cleaveland and Bernhard Steffen, Computing Behavourial Relations,
Logically, in: Proc. ICALP '91, 1991.

Reinhard Enders, Thomas Filkorn, Dirk Taubner, Generating BDDs for Sym-
bolic Model Checking in CCS, in: Proc. of the Third Workshop on Computer
Aided Verification ,LNCS 575, 1992, (203-213).

E.Allen Emerson and Ching-Luang Lei, Efficient model checking in fragments
of the propositional mu-calculus, in: Proc. of Symposium on Logic in Computer
Science,IEEE, 1986, (267-278).

Colin Stirling, Modal and Temporal Logics, in: S.Abramsky, D.Gabbay, and
T.Maibaum, editors, Handbook of Logic in Computer Science, Oxford University
Press.

Colin Stirling and David Walker, Local model checking in the modal ran-calculus,
in: Proc. b~ternational Conference on Theory and Practice of Software Devel-
opment, LNCS 351, Springer Verlag, Berlin,1989,(369-382).

