
Verifying General Safety and Liveness
Properties With Integer Programming*

James C. Corbett

Information and Computer Science Department
University of Hawaii at Manoa

A b s t r a c t . Analysis of concurrent systems is plagued by the state explosion
problem. The constrained expression analysis technique uses necessary condi-
tions, in the form of linear inequalities, to verify certain properties of concurrent
systems, thus avoiding the enumeration of the potentially explosive number of
reachable states of the system. This technique has been shown to be capable
of verifying simple safety properties, like freedom from deadlock, that can be
expressed in terms of the number of certain events occurring in a finite execu-
tion, and has been successfully used to analyze a variety of concurrent software
systems. We extend this technique to the verification of more complex safety
properties that involve the order of events and to the verification of liveness
properties, which involve infinite executions.

1 Introduction

Many concurrent systems can be modeled as a set of communicating finite state
machines. Analysis of such systems is generally difficult, however, since the num-
ber of system states grows exponentially with the number of state machines.
Many techniques have been proposed to cope with this state explosion prob-
lem, including symbolic model checking [3], partial order techniques [6, 10], and
compositional techniques [4]. Last year at the Third Workshop on Computer
Aided Verification, another technique was presented [1] that involves the use of
necessary conditions to answer certain types of questions about a system with-
out enumerating the system's states. The technique has been automated as part
of the constrained expression toolset and has been applied to some concurrent
systems having as many as 1047 reachable states [2]. Unfortunately, the types of
questions that can be answered by this technique are somewhat limited. For ex-
ample, it can determine if a system could deadlock, but it cannot address liveness
questions, which involve infinite traces, nor can it directly address questions like
mutual exclusion, which involve the relative order of events. This paper extends
the technique to handle both infinite traces and questions about the relative
order of events. A further extension of these ideas in [5] enables the technique
to verify properties expressible in linear time temporal logic, thus allowing a
very general class of questions about a system to be answered while avoiding the
construction of an exponentially-sized state graph.

* The research described here was partially supported by National Science Foundation
grant CCR-9106645 and Office of Naval Research grant N00014-89-J-1064.

358

2 M o d e l a n d B a s i c T e c h n i q u e

As in [1], we model a concurrent system as a collection of coupled finite state
au tomata (FSAs) with additional restrictions expressed as a set of recursive
languages on the alphabets of the FSAs. The acceptance of a symbol by an
automaton represents the occurrence of an event in the concurrent system. An
event may represent a normal action of a component, such as initiating a com-
munication with another component, or an error, such as waiting forever for a
communication that never takes place. An execution of the concurrent program
is thus modeled by a string of event symbols.

Formally, a concurrent system is a triple (M , R , T) where M is a set of
FSAs M1,. �9 M, with alphabets 271,. . . , Sn, 27 = Ui 27i, R is a set of recursive
restriction languages R 1 , . . . , Rm with alphabets A I , . . . , Am, where Ai C_ S for
all i, and T C 27 is a terminal alphabet. Let pA(s) denote the projection of
string s onto alphabet A (i.e., symbols of s not in A are removed). Then a string
t E T* represents a legal behavior or trace of the concurrent system if there exists
a string s E E* with pT(s) = t where ps E L(Mi) for all i and pAj(S) E Rj
for all j .

This model is general enough to represent many common communication
mechanisms, including asynchronous message passing [1], but in this paper we
will focus on the case where pairs of processes communicate synchronously over
named channels that connect them. We model such a communication using the
channel name as an event symbol that appears in the alphabets of the FSAs
of both processes. The possibility that the task becomes permanently blocked
waiting for the communication is represented by the choice to accept a hang
symbol for that channel rather than engage in the communication. The hang
symbols for channel a are denoted >a and <a (there is one hang symbol for each
of the two tasks connected by the channel). For each channel a, the restriction
language {>a, <a,)~} forbids hang symbols from both ends of the channel from
occurring. A small example is shown in Fig. 1. In all our examples, we shall
take the set of event symbols appearing in an FSA or restriction language as its
alphabet.

The basic technique, detailed in [1], uses necessary conditions, in the form
of linear inequalities, to either help find a trace with certain properties or prove
that no such trace could exist. A trace can be viewed as a path in each FSA from
the starting state to an accepting state such that the interactions between the
FSAs represented by the paths are consistent. Our technique finds a flow in each
FSA from the starting state to an accepting state such that the flows satisfy a
weaker consistency criterion. Specifically, we require that for each communication
channel, the FSAs connected by that channel agree on the number of times that
they communicated over that channel.

To produce the inequalities, we assign a variable~ xi, called a transition vari-
able, to each transition i in the FSAs that represents the number of times tran-
sition i is taken. We also assign an accept variable, fi, to each accepting state i
that will be one if the FSA containing state i is in that state at the end of the
trace, otherwise it will be zero. We then produce a flow equation for each state,

359

2 > a

a

4 >b

M 1 M 2

R 1 = {>a ,<a ,X}

R 2 = { > b , < b , k }

Fig. 1. Small example

equating the flow into the state with the flow out of the state (i.e., the number
of times the state is entered equals the number of times it is exited). There is
an implicit flow in of one at the start state and accept variables are counted as
flow out. We also produce a communication equation for each channel, equating
the number of times the processes connected by the channel communicated over
that channel. Finally, we produce restriction inequalities to enforce the restric-
tion languages which, in this case, simply forbid more than one hang symbol
for each channel from occurring. The inequalities produced for the example of
Fig. 1 are shown in Fig. 2.

These inequalities represent necessary conditions for an assignment of values
to the transition variables to correspond to a trace. Clearly every set of paths
corresponding to a trace will yield flows through the FSAs satisfying the com-
munication and restriction inequalities, however, not every set of flows satisfying
the communication and restriction inequalities will correspond to a trace. There
are two reasons for this. First, the communication equations do not guarantee
that there is a consistent ordering of the communication events (e.g., one FSA
could synchronously communicate with another over channel A and then channel
B, while the other communicated over channel B and then channel A). Secondly,
the presence of cycles in the FSAs can allow cyclic flows that are not connected
to the path found within the FSA. For example, there can be a cyclic flow on arc
7 in Ma of Fig. 1 even if the flow from the start state passes through arcs 9 and
10; the flow equation for state 6 does not constrain the transition variable for arc
7. For these reasons, a solution to the inequality system may not correspond to
a trace of the concurrent system. If such a solution arises, the analysis is incon-
clusive since the presence of that solution implies nothing about the existence of

360

Flow: (state)
l + x l = x l W x 2 (1)

�9 ~ = f~ (2)
1 + z3 = x3 + x4 (3)

�9 , = A (4)
1 + .~ = z5 + * 8 + x9 (5)

.6 + z7 = *r + *s (6)
�9 9 = .1o (7)

�9 s + .10 = f~ (8)

Communlca t lon : (channel)
�9 , = x~ (.)

x~ = *6 + *~ (b)

Restr ic t ion: (number)
�9 2 + z9 _< 1 (1)

�9 4 + x8 + *1o _< 1 (2)

Fig. 2. Inequality System for Finite Trace

another solution that does correspond to a trace. In our experience [2], however,
such spurious solutions are uncommon. Also, we can sometimes add additional
inequalities to remove such solutions.

Similar techniques have been used to prove structural properties of Petri nets
(e.g., boundedness, repetitiveness) using transition matrices. Space limitations
preclude a detailed comparison with this work, which is reviewed in [8].

3 E x t e n d e d T e c h n i q u e s

In this paper, we extend the basic technique presented in the last section to the
verification of properties specified by an w-regular expression [9] of the form:

ITi

U o * e o * e Q* e . q'* Oi,O i,lOi,1 i,2 " ' ' ~ ' i , n i -1 I,rli~'i,niati
i=1

where Si,j C S, eig E S, Ti C_ S. We call such an expression an w-star-less
expression 2. Specifically, given an w-star-less expression, the extended technique
produces necessary conditions for the existence of a trace lying in the language
of infinite strings generated by the expression. This extended technique relies
on two key ideas. The first idea allows the technique to test for properties in
which events occur in a specific order and is described in Sect. 4. The second
idea allows the technique to deal with infinite traces and is described in Sect. 5.

2 Not to be confused with star-free expressions. We call these expressions star-less
since they specify patterns of the ei,j events using only concatenation and union
(allowing the intervening symbols specified by the Si,j). Star-free expressions allow
concatenation, union, and negation, but not Kleene star.

361

In [5], these ideas are carried further to allow the verification of properties
specified by a Biichi automaton. It is well known that Biichi automata are more
expressive than first order logic [9]. This implies that this further extension
suffices to handle any property expressible in linear temporal logic. We do not
present this further extension here for two reasons. First, although it relies on the
same two ideas, it is significantly more complicated to describe. Second, unlike
the first extension, it has not been implemented and tried on sample systems;
hence the quality of the necessary conditions it produces, and thus its practical
significance, is not known.

Using the extended technique presented here, we can verify that a system
has any property whose negation is expressible as an w-star-less expression. To
accomplish this, we use the extended technique to produce necessary conditions,
in the form of linear inequalities, for the existence of a trace of the system gen-
erated by the w-star-less expression. If these conditions are unsatisfiable (i.e.,
the inequality system has no integral solution), then there are no traces of the
system violating the property, so the property must hold. If the conditions are
satisfiable (i.e., the inequality system does have an integral solution), then the
property may or may not hold. If the necessary conditions are strong, however,
the property will usually not hold when the conditions are satisfiable (i.e., a
solution to the inequality system usually corresponds to a trace violating the
property). Our experience is that our necessary conditions are strong. Further-
more, if the property does not hold, a solution satisfying our necessary conditions
can often be used to find a trace violating the property.

4 Q u e r i e s I n v o l v i n g O r d e r

The technique presented in Sect. 2 can easily find traces in which certain event
symbols occur a specified number of times, but it cannot find traces in which
these symbols occur in a specific order. For example, to find a trace with one a
event and one b event in the system of Fig. 1, we would add xl = I and x3 -- 1 to
the inequality system in Fig. 2. There does not appear to be any way, however,
to add equations that require the events to occur in a specific order. This is a
serious limitation since many safety properties (e.g., mutual exclusion) constrain
only the order of events and not their number. To produce necessary conditions
for a trace containing a specific sequence of events, we conceptually divide the
trace into intervals using those events, produce a different inequality system for
each interval, and connect these inequality systems together.

We will explain the technique using the example of Fig. 1. Suppose we want to
verify that there are no a events after any b event. The negation of this property
can be expressed by the w-star-less expression ~'* b (~ - { a , b})* aL -~ . We produce
necessary conditions for the existence of a prefix of a trace containing a b followed
by an a, as generated by the finite part of the expression (since the above is a
safety property, the infinite suffix after the violation, generated by L -~, can be
ignored). We divide the prefix into two intervals. The first interval is from the
initial state of the system to the state of the system after the b event (generated

362

by ~* b). The second interval is from the state of the system after the b event to
the state of the system after the a event(generated by (, U - {a, b})*a). For each
interval, we produce an inequality system similar to the one in Fig. 2, but with
the following differences. We want the inequality system for the first interval
to find flows ending after a b event rather than at accepting states. To achieve
this, we assign to each state i having an incoming b transition a connection
variable c],i that will be one if the FSA containing state i is in state i at the
end of the first interval, and will be zero otherwise. In FSAs not containing
b events, we assign connection variables to all states. Note that requiring the
interval to end in an FSA at a state with an incoming b transition does not
guarantee that a b event occurred in that FSA during the interval. Therefore,
we add a requirement equation stating that at least one b event occurs. Since
we are seeking only a prefix of a trace, we do not assign accept variables. If the
connection variables are counted as flow out in the flow equations, rather than
having accept variables, then the resulting inequality system will find a flow in
each FSA from a starting state to a state in which the FSA could be immediately
after a b event. Furthermore, in FSAs with b events, the flow must pass through
at least one such event.

The inequality system for the second interval must find a flow in each FSA
from the state the FSA was in at the end of the first interval to a state the FSA
could be in after an a event. We assign connection variables c2,i, representing
the number of times the second interval ends at state i, to states that the FSAs
could be in following an a event. In this interval, there can be no b events and
only one a event (at the end), so we produce requirement equations setting
the number of occurrences of a to one and the number of occurrences of b to
zero. We then count the connection variables from the first interval as flow in,
rather than having an implicit flow in of one at the start states, and count the
connection variables from the second interval as flow out, rather than having
accept variables. Finally, the restriction inequalities are produced as before and
involve the number of hang symbols from both intervals.

The inequality system produced for this example is shown in Fig. 3. The
transition variable for transition j of interval i is denoted x i j . The whole system
finds a flow in each FSA starting at the start state, proceeding through the first
interval to a state with a connection variable for b, and then continuing through
the second interval to a state with a connection variable for a.

Note t ha t this inequality system, which represents necessary conditions for a
prefix of a trace containing a b and then an a to exist, has no integral solution.
This proves that no trace generated by the expression 2~*b(57- {a, b})*aS ~
exists. For this trivial example, an appropriate kind of intersection between Ms
and the automaton for ba could have shown this; however, the above technique
will work even if the events a and b are in different FSAs, as shown by an example

in Sect. 6.
We have shown how to produce necessary conditions for the existence of a

trace containing a specific sequence of events. We can produce necessary condi-
tions for a trace generated by the union of such sequences as follows. We assign a

363

Flow (in t e rva l 1): (s t a t e)
1 + x1,1 = z1,1 + zl,2 + c1,1 (1)

zl,~ = Cl,2 (2)
1 + zl,3 = zl,3 + xi,4 + cl,3 (3)

Xl,4 = 0 (4)
1 + z l ,5 = z l ,5 + z l ,6 + z l ,9 (5)

z l ,6 + z l , r = zl ,~ + z l , s + cl ,s (6)
�9 ~,9 = xl ,~o (7)

z l , s + z1,1o = 0 (8)

C o m m u n i c a t i o n (i n t e rva l 1): (c h a n n e l)

�9 l,a = Xl,~ + z~,7 (b)

R e q u i r e m e n t (i n t e rva l 1): (s y m b o l)
xl,3 > 1 (b)

F l o w (in te rva l 2): (s t a te)
cl,a + z2,, = z2,a + z2,2 + c2,a (1)
cl,2 + z2,2 = 0 (2)
c1,3 + z2,3 = x2,3 "4" x2,4 + c~,3 (3)

z2,~ = c~,4 (4)
z2,5 = x2,~ + z2,6 + z2,9 + c2,5 (5)

c~,6 + x2,6 + x2,r = x2,7 + x2,s (6)
z2,9 = x~,16 (7)

z2,s + z2,10 = 0 (S)
C o m m u n i e a t l o n (in te rva l 2): (channe l)

x2,3 ---- x2,6 + x2,r (b)
R e q u i r e m e n t (in te rva l 2): (s y m b o l)

x2,1 = 1 (a)
x2,3 = 0 (b)

R e s t r i c t i o n : (n u m b e r)
Zl,2 + Xl,9 "3 I- X2,2 JI- Z2,9 <~ 1 (1)

z1,4 + xl,s + z1,1o + z2,4 + z2,s + z24o < 1 (2)

Fig . 3. Inequality System for Prefix of Trace Generated by •*b(2Y - {a, b})*a

sequence variable si to each sequence t ha t will be one if t h a t sequence is the one
found and zero otherwise. We produce an equat ion s u m m i n g the sequence vari-
ables to one, forcing one sequence to be sought . We produce inequal i ty sys t ems
for each sequence as described above and connect t h e m as follows. T h e impl ic i t
flow into the s t a r t s ta tes of each FSA in the first interval of sequence i is set to si
r a ther t han to one, thus flows will only be found in the inequal i ty sys t em for one
sequence. Also, the requi rement equat ions are changed to require t h a t the events
ending the intervals of t ha t sequence occur sl t imes (we cannot force an event in

364

a sequence to occur unless the sequence occurs). The resulting inequality system
represents necessary conditions for the existence of a trace generated by one of
the sequences.

5 I n f i n i t e T r a c e s

Another limitation of the technique presented in Sect. 2 is that it does not admit
infinite traces, i.e., traces in which one or more FSAs continue engaging in actions
forever. Note that the inequality system in Fig. 2 has no integral solution since
all of the traces of the concurrent system are infinite (there is no way for all of
the FSAs to reach accepting states without violating the restrictions). To test for
liveness properties, we must be able to represent infinite traces since the negation
of a liveness property will be an expression forbidding some good event(s) from
occurring in a potentially infinite execution.

Consider the simplest case where we are seeking any infinite trace of a con-
current system (as opposed to a trace with a specific property). We can always
divide such a trace into a finite interval, containing all events occurring only
finitely many times in the trace, and a perpelual interval, containing only events
occurring infinitely often in the trace. We use the term interval in the same tech-
nical sense as in the last section: each interval has its own transition variables
and inequalities. The perpetual interval, however, represents an infinite suffix of
a trace using a finite string of the events that are repeated forever in the suffix
(this representation loses information about the order in which these events are
repeated). The occurrence of an event in this interval represents the event being
repeated infinitely often in the trace.

We produce inequalities for the two intervals as we did in the last section,
but with the following differences. In each FSA, the set of transitions taken
in the perpetual interval must form a strongly connected component (SCC) of
the FSA when viewed as a graph 3. Therefore, when generating inequalities for
the perpetual interval, we include only transitions that are part of SCCs (in
the example of Fig. 1, this consists of transitions 1, 3, 5, and 7). We assign
connection variables to all states that are part of SCCs, allowing the finite part
of the FSA's behavior to end at any point at which it could start repeating
events. We then add additional perpetual inequalities to force a cyclic flow (a
flow with no beginning or end) to occur in an SCC of the perpetual interval if
that interval is "entered" via a connection variable. Unlike the case described
in Sect. 4, the flow through the FSA does not pass from one interval to another
through the connection variable; the flow through the finite interval simply ends
at some state in the FSA that is part of an SCC and we then force a cyclic flow
to occur in the SCC as part of the perpetual interval. The flow equations for
the perpetual interval do not contain connection or accept variables; the only
possible flows are cyclic. For each state j , let Pj be the set of transit ions'out of

a Strictly speaking, SCCs are composed of nodes, not arcs. We say that an arc is part
of an SCC if there exists some SCC containing both of the nodes connected by the
a r c .

365

j that are part of an SCC. For each state j where P1 # $, we add a perpetual
inequality Siepjz2,i > cl,j. This inequality requires that if the FSA containing
state j enters the perpetual interval at state j , then there must be a cyclic flow
through state j in the perpetual interval. Of course, a particular FSA may not
run forever, even in an infinite trace. Accept variables allow the flow through an
FSA in the finite interval to stop without forcing the occurrence of events in the
perpetual interval.

Flow (finite): (state)
1 + x1,1 = x,,1 + xl,2 -4- c1,1 (1)

xl,2 = f2 (2)
1 + xl ,z = x,,3 + zl ,4 + cl,3 (3)

�9 , , , = h (4)
1 Jp Zl,5 = 2:1,5 "Jr" Zl,6 + Zl,9 + C1,5 (5)

rl ,6 + z l , z = z l , z + xl ,s + cl,8 (6)
r l ,9 = x1,10 (7)

z l , s + z1,1o = f s (8)

Communica t ion (finite): (channel)

z l , 3 = x l , s + x l , r (b)

Flow (perpetual): (state)
�9 2,1 = x2,1 (1)
x2,3 = x~,3 (3)
�9 2,5 = x~,~ (5)
�9 2,7 = x2,r (6)

Communica t ion (perpetual) : (channel)
�9 ~,1 = ~ , ~ (a)

x2,z = x2,r (b)

Restr ict ion: (number)
xl,2 + zl ,9 _< 1 (1)

zl ,4 + z l , s + z1,1o _< 1 (2)

Perpetual : (s t a t e)
x2,1 _> c1,1 (1)
�9 2,3 _> cl,3 (3)
�9 ~,~ > c1,~ (s)

x2,T > ~I,~ (6)

Fig. 4. Inequality System for Potentially Infinite Trace

The inequalities described comprise necessary conditions for the existence of
a potentially infinite trace. The inequality system for the example of Fig. 1 is
shown in Fig. 4. We may test for the possible starvation of M2 by adding the
equation zl,4 = 1. The resulting inequality system has a solution corresponding

366

to an infinite trace in which transition 4 is taken once and transitions 1 and 5
are taken perpetually (zl,4 = z2,1 = z2,5 = 1). This tells us that, in the absence
of any fairness properties for selection of communication partners, it is not the
case that a b communication must eventually occur. We can enforce certain
types of fairness using additional inequalities that might, for example, forbid the
starvation of an FSA waiting for a communication (e.g., b) if that communication
is enabled infinitely often, which we can tell from the presence of certain events
in the perpetual interval (e.g., the a on transition 5, which indicates that M3 is
infinitely often in state 5 in which a transition on b is enabled).

This technique to represent infinite traces can be combined with the tech-
nique of Sect. 4, allowing us to produce necessary conditions for the existence of
an infinite trace generated by an w-star-less expression. To accomplish this, we
make the last interval of each sequence a perpetual interval and connect it to
the preceding interval just as the perpetual interval was connected to the finite
interval above. The size of the inequality system generated by these techniques
is linear in the size of the automata and linear in the size of the w-star-less
expression. Finally, we note that the conditions produced are also necessary for
the existence of a finite trace generated by the finite version of the w-star-less
expression (obtained by replacing all occurrences of w with Kleene star).

6 E x a m p l e

The technique described above has been implemented as an extension of the
constrained expression toolset [2]. A series of experiments has demonstrated the
feasibility of the technique for verifying different kinds of properties on several
examples of concurrent systems. In this section, we describe one of the smallest
examples and the properties we verified using the technique.

The concurrent system shown in Fig. 5 contains two customer FSAs (a and
b), one router FSA, and one guard FSA. Customer a (b) repeats the following
forever: communicate with the guard on channel ra (rb) to gain exclusive access
to the router, send the header of a packet to the router on channel ha (hb), send
the packet to the router on channel pa (pb), and free the router by communicating
with the guard on channel fa (fb). The guard guarantees that the router is used
in a mutually exclusive fashion. The router simply accepts any packet or header
at any time. Present but not shown are restriction languages, like those in the
example of Fig. 1, that forbid both hang symbols for a channel from occurring
in the same trace.

First we verified the safety property that the router cannot send a header
for one customer followed immediately by a packet from the other. This can be
expressed in linear temporal logic as [:][(ha --* -~pbUpa) A (hb --* -~paUpb)]. Its
negation can be expressed by the w-star-less expression

•* ha (~, - {pa })*pb ~ U ,U* hb (Z - {pb })* pa

Starting with a specification of the concurrent system in an Ada-like design lan-
guage and the above expression, the toolset produced an inequality system of

367

Cu~omeia Cu~omerb

ha C"x, , / f ') hb ra rb

<ha,<pa~<hb,<pb

Router Guard

Fig. 5. Packet Router Example

107 inequalities in 128 variables. Our integer programming package determined
this inequality system has no integral solution in two seconds on our DECstation
5000. Since the inequality system represents necessary conditions for the exis-
tence of a trace generated by the expression, we may conclude that the safety
property holds.

The second property we attempted to verify was the liveness property that
the first customer would transmit a header infinitely often. This property can be
expressed in linear temporal logic as D<>ha and its negation by the w-star-less
expression ,U* (,U - {ha}) ~. The toolset produced an inequality system of 67 in-
equalities in 70 variables and the integer programming package found a solution
to this system in one second. Examination of the solution reveals that it does
correspond to a possible trace of the concurrent system, one in which customer
a becomes permanently blocked waiting to acquire the router while customer b
repeatedly acquires it forever. Thus we have proved that the the liveness prop-
erty does not hold by producing a trace violating the property. The problem is
that no fairness is enforced when selecting a communication partner. When we
instruct the toolset to produce two additional inequalities to enforce fairness in
the guard's selection of a comrtiunication partner, as described in Sect. 5, the
resulting inequality system was determined to have no integral solution in three
seconds. This proves that the liveness property does hold, assuming an FSA
cannot starve waiting for a communication that is infinitely often possible.

In the absence of such fairness, it is possible to verify a weaker liveness
property: once a customer (say a) has acquired access to the router, it must
eventually get to transmit a packet. This can be expressed in linear temporal
logic by the formula rn(ra ~ Oha) and its negation by the w-star-less expression
Z* ra(S- {ha}) w. The toolset produced an inequality system of 59 inequalities
in 56 variables which was found to have no integral solution in one second,
proving this weaker liveness property holds even in the absence of fairness.

368

7 Conclusion

We have presented a technique for verifying many safety and liveness proper-
ties of concurrent systems. The technique involves generating linear inequalities
that represent necessary conditions for a trace violating the property to exist.
The obvious advantage of the approach is that it does not require enumeration
of all possible system states. The disadvantages are that spurious solutions to
the inequality system can make the analysis inconclusive and the tractability of
integer linear programming in practice is not well understood. Nevertheless, our
experience [2] suggests that spurious solutions are relatively rare and that our
inequality systems, being largely network flow systems, have a special structure
that usually makes their solution tractable. Furthermore, a prototype imple-
mentation of the technique has demonstrated its feasibility on a range of sample
systems [5]. Further experiments in which problem sizes are scaled up, such as
those performed in [2] for the original technique, are needed to assess the prac-
ticality of this new technique.

Acknowledgements

This work was done as part of the constrained expression project at the Uni-
versity of Massachusetts directed by George Avrunin and Jack Wileden. Special
thanks are due to George Avrunin for suggesting the idea of queries involving
the order of events and ideas for its solution.

References

1. G. S. Avrunin, U. A. Buy, and J. C. Corbett. Integer programming in the analysis
of concurrent systems. In Larsen and Skou [7], pages 92-102.

2. G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Au-
tomated analysis of concurrent systems with the constrained expression toolset.
IEEE Trans. Softw. Eng., 17(11):1204-1222, Nov. 1991.

3. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model check-
ing: 102~ states and beyond. In Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 428-439, 1990.

4. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Pro-
ceedings of the Fourth Annual IEEE Symposium on Logic in Computer Science,
1989.

5. J. C. Corbett. Automated Formal Analysi~ Methods for Concurrent and Real- Time
Software. PhD thesis, University of Massachusetts at Amherst, 1992.

6. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. In Larsen and Skou [7], pages 332-242.

7. K. G. Larsen and A. Skou, editors. Computer Aided Verification, 3rd International
Workshop Proceedings, volume 575 of Lecture Notes in Computer Science, Aalborg,
Denmark, July 1991. Springer-Verlag.

8. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, Apr. 1989.

369

9. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B. MIT Press/Elsevier, 1990.

10. A. Valmari. A stubborn attack on state explosion. In E. M. Clarke and R. P.
Kurshan, editors, Computer-Aided Verification '90, number 3 in DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 25-41, Providence,
RI, 1991. American Mathematical Society.

