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A b s t r a c t .  Analysis of concurrent systems is plagued by the state explosion 
problem. The constrained expression analysis technique uses necessary condi- 
tions, in the form of linear inequalities, to verify certain properties of concurrent 
systems, thus avoiding the enumeration of the potentially explosive number of 
reachable states of the system. This technique has been shown to be capable 
of verifying simple safety properties, like freedom from deadlock, that can be 
expressed in terms of the number of certain events occurring in a finite execu- 
tion, and has been successfully used to analyze a variety of concurrent software 
systems. We extend this technique to the verification of more complex safety 
properties that involve the order of events and to the verification of liveness 
properties, which involve infinite executions. 

1 Introduction 

Many concurrent systems can be modeled as a set of communicating finite state 
machines. Analysis of such systems is generally difficult, however, since the num- 
ber of system states grows exponentially with the number of state machines. 
Many techniques have been proposed to cope with this state explosion prob- 
lem, including symbolic model checking [3], partial order techniques [6, 10], and 
compositional techniques [4]. Last year at the Third Workshop on Computer 
Aided Verification, another technique was presented [1] that involves the use of 
necessary conditions to answer certain types of questions about a system with- 
out enumerating the system's states. The technique has been automated as part 
of the constrained expression toolset and has been applied to some concurrent 
systems having as many as 1047 reachable states [2]. Unfortunately, the types of 
questions that can be answered by this technique are somewhat limited. For ex- 
ample, it can determine if a system could deadlock, but it cannot address liveness 
questions, which involve infinite traces, nor can it directly address questions like 
mutual exclusion, which involve the relative order of events. This paper extends 
the technique to handle both infinite traces and questions about the relative 
order of events. A further extension of these ideas in [5] enables the technique 
to verify properties expressible in linear time temporal logic, thus allowing a 
very general class of questions about a system to be answered while avoiding the 
construction of an exponentially-sized state graph. 

* The research described here was partially supported by National Science Foundation 
grant CCR-9106645 and Office of Naval Research grant N00014-89-J-1064. 
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2 M o d e l  a n d  B a s i c  T e c h n i q u e  

As in [1], we model a concurrent system as a collection of coupled finite state 
au tomata  (FSAs) with additional restrictions expressed as a set of recursive 
languages on the alphabets of the FSAs. The acceptance of a symbol by an 
automaton represents the occurrence of an event in the concurrent system. An 
event may represent a normal action of a component,  such as initiating a com- 
munication with another component, or an error, such as waiting forever for a 
communication that  never takes place. An execution of the concurrent program 
is thus modeled by a string of event symbols. 

Formally, a concurrent system is a triple ( M , R , T )  where M is a set of 
FSAs M1,. �9 M,  with alphabets 271,. . . ,  Sn, 27 = Ui 27i, R is a set of recursive 
restriction languages R 1 , . . . ,  Rm with alphabets A I , . . . ,  Am, where Ai C_ S for 
all i, and T C 27 is a terminal alphabet. Let pA(s) denote the projection of 
string s onto alphabet A (i.e., symbols of s not in A are removed). Then a string 
t E T* represents a legal behavior or trace of the concurrent system if there exists 
a string s E E* with pT(s) = t where ps E L(Mi) for all i and pAj(S) E Rj 
for all j .  

This model is general enough to represent many common communication 
mechanisms, including asynchronous message passing [1], but in this paper we 
will focus on the case where pairs of processes communicate synchronously over 
named channels that  connect them. We model such a communication using the 
channel name as an event symbol that  appears in the alphabets of the FSAs 
of both processes. The possibility that  the task becomes permanently blocked 
waiting for the communication is represented by the choice to accept a hang 
symbol for that  channel rather than engage in the communication. The hang 
symbols for channel a are denoted >a  and <a  (there is one hang symbol for each 
of the two tasks connected by the channel). For each channel a, the restriction 
language {>a, <a, )~} forbids hang symbols from both ends of the channel from 
occurring. A small example is shown in Fig. 1. In all our examples, we shall 
take the set of event symbols appearing in an FSA or restriction language as its 
alphabet. 

The basic technique, detailed in [1], uses necessary conditions, in the form 
of linear inequalities, to either help find a trace with certain properties or prove 
that  no such trace could exist. A trace can be viewed as a path in each FSA from 
the starting state to an accepting state such that  the interactions between the 
FSAs represented by the paths are consistent. Our technique finds a flow in each 
FSA from the starting state to an accepting state such that  the flows satisfy a 
weaker consistency criterion. Specifically, we require that for each communication 
channel, the FSAs connected by that  channel agree on the number of times that  
they communicated over that  channel. 

To produce the inequalities, we assign a variable~ xi, called a transition vari- 
able, to each transition i in the FSAs that  represents the number of times tran- 
sition i is taken. We also assign an accept variable, fi, to each accepting state i 
that  will be one if the FSA containing state i is in that state at the end of the 
trace, otherwise it will be zero. We then produce a flow equation for each state, 
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2 > a  

a 

4 >b 

M 1 M 2 

R 1 = {>a ,<a ,X}  

R 2 = { > b , < b , k }  

Fig. 1. Small example 

equating the flow into the state with the flow out of the state (i.e., the number 
of times the state is entered equals the number of times it is exited). There is 
an implicit flow in of one at the start  state and accept variables are counted as 
flow out. We also produce a communication equation for each channel, equating 
the number of times the processes connected by the channel communicated over 
that  channel. Finally, we produce restriction inequalities to enforce the restric- 
tion languages which, in this case, simply forbid more than one hang symbol 
for each channel from occurring. The inequalities produced for the example of 
Fig. 1 are shown in Fig. 2. 

These inequalities represent necessary conditions for an assignment of values 
to the transition variables to correspond to a trace. Clearly every set of paths 
corresponding to a trace will yield flows through the FSAs satisfying the com- 
munication and restriction inequalities, however, not every set of flows satisfying 
the communication and restriction inequalities will correspond to a trace. There 
are two reasons for this. First, the communication equations do not guarantee 
that  there is a consistent ordering of the communication events (e.g., one FSA 
could synchronously communicate with another over channel A and then channel 
B, while the other communicated over channel B and then channel A). Secondly, 
the presence of cycles in the FSAs can allow cyclic flows that  are not connected 
to the path found within the FSA. For example, there can be a cyclic flow on arc 
7 in Ma of Fig. 1 even if the flow from the start state passes through arcs 9 and 
10; the flow equation for state 6 does not constrain the transition variable for arc 
7. For these reasons, a solution to the inequality system may not correspond to 
a trace of the concurrent system. If such a solution arises, the analysis is incon- 
clusive since the presence of that  solution implies nothing about the existence of 
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Flow: (state) 
l + x l  = x l W x 2  (1) 

�9 ~ = f~ (2) 
1 + z3 = x3 + x4 (3) 

�9 , = A (4) 
1 + .~ = z5 + * 8  + x9 (5) 

.6 + z7 = *r + *s (6) 
�9 9 = .1o (7) 

�9 s + .10 = f~ (8) 

Communlca t lon :  (channel)  
�9 , = x~ ( . )  

x~ = *6 + *~ (b) 

Restr ic t ion:  (number )  
�9 2 + z9 _< 1 (1) 

�9 4 + x8 + *1o _< 1 (2) 

Fig. 2. Inequality System for Finite Trace 

another solution that  does correspond to a trace. In our experience [2], however, 
such spurious solutions are uncommon. Also, we can sometimes add additional 
inequalities to remove such solutions. 

Similar techniques have been used to prove structural properties of Petri nets 
(e.g., boundedness, repetitiveness) using transition matrices. Space limitations 
preclude a detailed comparison with this work, which is reviewed in [8]. 

3 E x t e n d e d  T e c h n i q u e s  

In this paper, we extend the basic technique presented in the last section to the 
verification of properties specified by an w-regular expression [9] of the form: 

ITi 

U o *  e o *  e Q* e .  q'* Oi,O i,lOi,1 i,2 " ' ' ~ ' i , n i -1  I,rli~'i,niati 
i=1  

where Si,j C S,  eig E S,  Ti C_ S. We call such an expression an w-star-less 
expression 2. Specifically, given an w-star-less expression, the extended technique 
produces necessary conditions for the existence of a trace lying in the language 
of infinite strings generated by the expression. This extended technique relies 
on two key ideas. The first idea allows the technique to test for properties in 
which events occur in a specific order and is described in Sect. 4. The second 
idea allows the technique to deal with infinite traces and is described in Sect. 5. 

2 Not to be confused with star-free expressions. We call these expressions star-less 
since they specify patterns of the ei,j events using only concatenation and union 
(allowing the intervening symbols specified by the Si,j). Star-free expressions allow 
concatenation, union, and negation, but not Kleene star. 
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In [5], these ideas are carried further to allow the verification of properties 
specified by a Biichi automaton. It is well known that  Biichi automata  are more 
expressive than first order logic [9]. This implies that  this further extension 
suffices to handle any property expressible in linear temporal logic. We do not 
present this further extension here for two reasons. First, although it relies on the 
same two ideas, it is significantly more complicated to describe. Second, unlike 
the first extension, it has not been implemented and tried on sample systems; 
hence the quality of the necessary conditions it produces, and thus its practical 
significance, is not known. 

Using the extended technique presented here, we can verify that  a system 
has any property whose negation is expressible as an w-star-less expression. To 
accomplish this, we use the extended technique to produce necessary conditions, 
in the form of linear inequalities, for the existence of a trace of the system gen- 
erated by the w-star-less expression. If these conditions are unsatisfiable (i.e., 
the inequality system has no integral solution), then there are no traces of the 
system violating the property, so the property must hold. If the conditions are 
satisfiable (i.e., the inequality system does have an integral solution), then the 
property may or may not hold. If the necessary conditions are strong, however, 
the property will usually not hold when the conditions are satisfiable (i.e., a 
solution to the inequality system usually corresponds to a trace violating the 
property). Our experience is that  our necessary conditions are strong. Further- 
more, if the property does not hold, a solution satisfying our necessary conditions 
can often be used to find a trace violating the property. 

4 Q u e r i e s  I n v o l v i n g  O r d e r  

The technique presented in Sect. 2 can easily find traces in which certain event 
symbols occur a specified number of times, but it cannot find traces in which 
these symbols occur in a specific order. For example, to find a trace with one a 
event and one b event in the system of Fig. 1, we would add xl = I and x3 -- 1 to 
the inequality system in Fig. 2. There does not appear to be any way, however, 
to add equations that  require the events to occur in a specific order. This is a 
serious limitation since many safety properties (e.g., mutual exclusion) constrain 
only the order of events and not their number. To produce necessary conditions 
for a trace containing a specific sequence of events, we conceptually divide the 
trace into intervals using those events, produce a different inequality system for 
each interval, and connect these inequality systems together. 

We will explain the technique using the example of Fig. 1. Suppose we want to 
verify that  there are no a events after any b event. The negation of this property 
can be expressed by the w-star-less expression ~'* b ( ~ - { a ,  b})* aL  -~ . We produce 
necessary conditions for the existence of a prefix of a trace containing a b followed 
by an a, as generated by the finite part of the expression (since the above is a 
safety property, the infinite suffix after the violation, generated by L -~, can be 
ignored). We divide the prefix into two intervals. The first interval is from the 
initial state of the system to the state of the system after the b event (generated 
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by ~* b). The second interval is from the state of the system after the b event to 
the state of the system after the a event(generated by ( , U -  {a, b})*a). For each 
interval, we produce an inequality system similar to the one in Fig. 2, but  with 
the following differences. We want the inequality system for the first interval 
to find flows ending after a b event rather than at accepting states. To achieve 
this, we assign to each state i having an incoming b transition a connection 
variable c],i that  will be one if the FSA containing state i is in state i at the 
end of the first interval, and will be zero otherwise. In FSAs not containing 
b events, we assign connection variables to all states. Note that  requiring the 
interval to end in an FSA at a state with an incoming b transition does not 
guarantee that  a b event occurred in that  FSA during the interval. Therefore, 
we add a requirement equation stating that  at least one b event occurs. Since 
we are seeking only a prefix of a trace, we do not assign accept variables. If the 
connection variables are counted as flow out in the flow equations, rather than 
having accept variables, then the resulting inequality system will find a flow in 
each FSA from a starting state to a state in which the FSA could be immediately 
after a b event. Furthermore, in FSAs with b events, the flow must pass through 
at least one such event. 

The inequality system for the second interval must find a flow in each FSA 
from the state the FSA was in at the end of the first interval to a state the FSA 
could be in after an a event. We assign connection variables c2,i, representing 
the number of times the second interval ends at state i, to states that  the FSAs 
could be in following an a event. In this interval, there can be no b events and 
only one a event (at the end), so we produce requirement equations setting 
the number of occurrences of a to one and the number of occurrences of b to 
zero. We then count the connection variables from the first interval as flow in, 
rather than having an implicit flow in of one at the start  states, and count the 
connection variables from the second interval as flow out, rather than having 
accept variables. Finally, the restriction inequalities are produced as before and 
involve the number of hang symbols from both intervals. 

The inequality system produced for this example is shown in Fig. 3. The 
transition variable for transition j of interval i is denoted x i j .  The whole system 
finds a flow in each FSA starting at the start  state, proceeding through the first 
interval to a state with a connection variable for b, and then continuing through 
the second interval to a state with a connection variable for a. 

Note t ha t  this inequality system, which represents necessary conditions for a 
prefix of a trace containing a b and then an a to exist, has no integral solution. 
This proves that  no trace generated by the expression 2~*b(57- {a, b})*aS ~ 
exists. For this trivial example, an appropriate kind of intersection between Ms 
and the automaton for ba could have shown this; however, the above technique 
will work even if the events a and b are in different FSAs, as shown by an example 

in Sect. 6. 
We have shown how to produce necessary conditions for the existence of a 

trace containing a specific sequence of events. We can produce necessary condi- 
tions for a trace generated by the union of such sequences as follows. We assign a 
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Flow ( in t e rva l  1): ( s t a t e )  
1 + x1,1 = z1,1 + zl,2 + c1,1 (1) 

zl,~ = Cl,2 (2) 
1 + zl,3 = zl,3 + xi,4 + cl,3 (3) 

Xl,4 = 0 (4) 
1 + z l ,5  = z l ,5  + z l ,6  + z l ,9  (5)  

z l ,6  + z l , r  = zl ,~  + z l , s  + cl ,s (6)  
�9 ~,9 = xl ,~o (7 )  

z l , s  + z1,1o = 0 (8)  

C o m m u n i c a t i o n  ( i n t e rva l  1): ( c h a n n e l )  

�9 l,a = Xl,~ + z~,7 (b) 

R e q u i r e m e n t  ( i n t e rva l  1): ( s y m b o l )  
xl,3 > 1 (b) 

F l o w  ( in te rva l  2): ( s t a te )  
cl,a + z2,, = z2,a + z2,2 + c2,a (1) 
cl,2 + z2,2 = 0 (2) 
c1,3 + z2,3 = x2,3 "4" x2,4 + c~,3 (3) 

z2,~ = c~,4 (4)  
z2,5 = x2,~ + z2,6 + z2,9 + c2,5 (5) 

c~,6 + x2,6 + x2,r = x2,7 + x2,s (6) 
z2,9 = x~,16 (7)  

z2,s + z2,10 = 0 (S) 
C o m m u n i e a t l o n  ( in te rva l  2): ( channe l )  

x2,3 ---- x2,6 + x2,r (b) 
R e q u i r e m e n t  ( in te rva l  2): ( s y m b o l )  

x2,1 = 1 (a) 
x2,3 = 0 (b) 

R e s t r i c t i o n :  ( n u m b e r )  
Zl,2 + Xl,9 "3 I- X2,2 JI- Z2,9 <~ 1 (1) 

z1,4 + xl,s + z1,1o + z2,4 + z2,s + z24o < 1 (2) 

Fig .  3. Inequality System for Prefix of Trace Generated by •*b(2Y - {a, b})*a 

sequence variable si to each sequence t ha t  will be one if t h a t  sequence is the one 
found and zero otherwise.  We produce  an equat ion s u m m i n g  the  sequence vari-  
ables to one, forcing one sequence to  be  sought .  We produce  inequal i ty  sys t ems  
for each sequence as described above and connect  t h e m  as follows. T h e  impl ic i t  
flow into  the  s t a r t  s ta tes  of  each FSA in the  first interval  of  sequence i is set to  si 
r a ther  t han  to one, thus flows will only be found in the inequal i ty  sys t em for one 
sequence. Also, the  requi rement  equat ions  are changed to require t h a t  the events  
ending the intervals  of  t ha t  sequence occur  sl t imes  (we cannot  force an event  in 
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a sequence to occur unless the sequence occurs). The resulting inequality system 
represents necessary conditions for the existence of a trace generated by one of 
the sequences. 

5 I n f i n i t e  T r a c e s  

Another limitation of the technique presented in Sect. 2 is that  it does not admit  
infinite traces, i.e., traces in which one or more FSAs continue engaging in actions 
forever. Note that  the inequality system in Fig. 2 has no integral solution since 
all of the traces of the concurrent system are infinite (there is no way for all of 
the FSAs to reach accepting states without violating the restrictions). To test for 
liveness properties, we must be able to represent infinite traces since the negation 
of a liveness property will be an expression forbidding some good event(s) from 
occurring in a potentially infinite execution. 

Consider the simplest case where we are seeking any infinite trace of a con- 
current system (as opposed to a trace with a specific property). We can always 
divide such a trace into a finite interval, containing all events occurring only 
finitely many times in the trace, and a perpelual interval, containing only events 
occurring infinitely often in the trace. We use the term interval in the same tech- 
nical sense as in the last section: each interval has its own transition variables 
and inequalities. The perpetual interval, however, represents an infinite suffix of 
a trace using a finite string of the events that are repeated forever in the suffix 
(this representation loses information about the order in which these events are 
repeated). The occurrence of an event in this interval represents the event being 
repeated infinitely often in the trace. 

We produce inequalities for the two intervals as we did in the last section, 
but with the following differences. In each FSA, the set of transitions taken 
in the perpetual interval must form a strongly connected component (SCC) of 
the FSA when viewed as a graph 3. Therefore, when generating inequalities for 
the perpetual interval, we include only transitions that  are part  of SCCs (in 
the example of Fig. 1, this consists of transitions 1, 3, 5, and 7). We assign 
connection variables to all states that  are part of SCCs, allowing the finite part 
of the FSA's behavior to end at any point at which it could start  repeating 
events. We then add additional perpetual inequalities to force a cyclic flow (a 
flow with no beginning or end) to occur in an SCC of the perpetual interval if 
that  interval is "entered" via a connection variable. Unlike the case described 
in Sect. 4, the flow through the FSA does not pass from one interval to another 
through the connection variable; the flow through the finite interval simply ends 
at some state in the FSA that  is part of an SCC and we then force a cyclic flow 
to occur in the SCC as part of the perpetual interval. The flow equations for 
the perpetual interval do not contain connection or accept variables; the only 
possible flows are cyclic. For each state j ,  let Pj be the set of transit ions'out of 

a Strictly speaking, SCCs are composed of nodes, not arcs. We say that an arc is part 
of an SCC if there exists some SCC containing both of the nodes connected by the 
a r c .  



365 

j that  are part of an SCC. For each state j where P1 # $, we add a perpetual 
inequality Siepjz2,i > cl,j. This inequality requires that  if the FSA containing 
state j enters the perpetual interval at state j ,  then there must be a cyclic flow 
through state j in the perpetual interval. Of course, a particular FSA may not 
run forever, even in an infinite trace. Accept variables allow the flow through an 
FSA in the finite interval to stop without forcing the occurrence of events in the 
perpetual interval. 

Flow (finite): (state) 
1 + x1,1 = x,,1 + xl,2 -4- c1,1 (1) 

xl,2 = f2 (2) 
1 + xl ,z  = x,,3 + zl ,4 + cl,3 (3) 

�9 , , ,  = h (4)  
1 Jp Zl,5 = 2:1,5 "Jr" Zl,6 + Zl,9 + C1,5 (5) 

rl ,6 + z l , z  = z l , z  + xl ,s  + cl,8 (6) 
r l ,9  = x1,10 (7 )  

z l , s  + z1,1o = f s  (8 )  

Communica t ion  (finite): (channel) 

z l , 3  = x l , s  + x l , r  (b) 

Flow (perpetual):  (state) 
�9 2,1 = x2,1 (1)  
x2,3 = x~,3 (3)  
�9 2,5 = x~,~ (5)  
�9 2,7 = x2,r (6 )  

Communica t ion  (perpetual) :  (channel) 
�9 ~,1 = ~ , ~  (a )  

x2,z = x2,r (b) 

Restr ict ion:  (number)  
xl,2 + zl ,9 _< 1 (1) 

zl ,4  + z l , s  + z1,1o _< 1 (2) 

Perpetual :  ( s t a t e )  
x2,1 _> c1,1 (1) 
�9 2,3 _> cl,3 (3 )  
�9 ~,~ > c1,~ ( s )  

x2,T > ~I,~ (6) 

Fig. 4. Inequality System for Potentially Infinite Trace 

The inequalities described comprise necessary conditions for the existence of 
a potentially infinite trace. The inequality system for the example of Fig. 1 is 
shown in Fig. 4. We may test for the possible starvation of M2 by adding the 
equation zl,4 = 1. The resulting inequality system has a solution corresponding 
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to an infinite trace in which transition 4 is taken once and transitions 1 and 5 
are taken perpetually (zl,4 = z2,1 = z2,5 = 1). This tells us that,  in the absence 
of any fairness properties for selection of communication partners, it is not the 
case that  a b communication must eventually occur. We can enforce certain 
types of fairness using additional inequalities that  might, for example, forbid the 
starvation of an FSA waiting for a communication (e.g., b) if that  communication 
is enabled infinitely often, which we can tell from the presence of certain events 
in the perpetual interval (e.g., the a on transition 5, which indicates that  M3 is 
infinitely often in state 5 in which a transition on b is enabled). 

This technique to represent infinite traces can be combined with the tech- 
nique of Sect. 4, allowing us to produce necessary conditions for the existence of 
an infinite trace generated by an w-star-less expression. To accomplish this, we 
make the last interval of each sequence a perpetual interval and connect it to 
the preceding interval just as the perpetual interval was connected to the finite 
interval above. The size of the inequality system generated by these techniques 
is linear in the size of the automata  and linear in the size of the w-star-less 
expression. Finally, we note that  the conditions produced are also necessary for 
the existence of a finite trace generated by the finite version of the w-star-less 
expression (obtained by replacing all occurrences of w with Kleene star). 

6 E x a m p l e  

The technique described above has been implemented as an extension of the 
constrained expression toolset [2]. A series of experiments has demonstrated the 
feasibility of the technique for verifying different kinds of properties on several 
examples of concurrent systems. In this section, we describe one of the smallest 
examples and the properties we verified using the technique. 

The concurrent system shown in Fig. 5 contains two customer FSAs (a and 
b), one router FSA, and one guard FSA. Customer a (b) repeats the following 
forever: communicate with the guard on channel ra (rb) to gain exclusive access 
to the router, send the header of a packet to the router on channel ha (hb), send 
the packet to the router on channel pa (pb), and free the router by communicating 
with the guard on channel fa (fb). The guard guarantees that  the router is used 
in a mutually exclusive fashion. The router simply accepts any packet or header 
at any time. Present but not shown are restriction languages, like those in the 
example of Fig. 1, that  forbid both hang symbols for a channel from occurring 
in the same trace. 

First we verified the safety property that  the router cannot send a header 
for one customer followed immediately by a packet from the other. This can be 
expressed in linear temporal logic as [:][(ha --* -~pbUpa) A (hb --* -~paUpb)]. Its 
negation can be expressed by the w-star-less expression 

•* ha ( ~, - {pa } )*pb ~ U ,U* hb ( Z - {pb } )* pa 

Starting with a specification of the concurrent system in an Ada-like design lan- 
guage and the above expression, the toolset produced an inequality system of 
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Cu~omeia Cu~omerb 

ha C"x, , / f ' )  hb ra rb 

<ha,<pa~<hb,<pb 

Router Guard 

Fig. 5. Packet Router Example 

107 inequalities in 128 variables. Our integer programming package determined 
this inequality system has no integral solution in two seconds on our DECstation 
5000. Since the inequality system represents necessary conditions for the exis- 
tence of a trace generated by the expression, we may conclude that the safety 
property holds. 

The second property we attempted to verify was the liveness property that 
the first customer would transmit a header infinitely often. This property can be 
expressed in linear temporal logic as D<>ha and its negation by the w-star-less 
expression ,U* (,U - {ha}) ~. The toolset produced an inequality system of 67 in- 
equalities in 70 variables and the integer programming package found a solution 
to this system in one second. Examination of the solution reveals that it does 
correspond to a possible trace of the concurrent system, one in which customer 
a becomes permanently blocked waiting to acquire the router while customer b 
repeatedly acquires it forever. Thus we have proved that the the liveness prop- 
erty does not hold by producing a trace violating the property. The problem is 
that no fairness is enforced when selecting a communication partner. When we 
instruct the toolset to produce two additional inequalities to enforce fairness in 
the guard's selection of a comrtiunication partner, as described in Sect. 5, the 
resulting inequality system was determined to have no integral solution in three 
seconds. This proves that the liveness property does hold, assuming an FSA 
cannot starve waiting for a communication that is infinitely often possible. 

In the absence of such fairness, it is possible to verify a weaker liveness 
property: once a customer (say a) has acquired access to the router, it must 
eventually get to transmit a packet. This can be expressed in linear temporal 
logic by the formula rn(ra ~ Oha) and its negation by the w-star-less expression 
Z* ra(S-  {ha}) w. The toolset produced an inequality system of 59 inequalities 
in 56 variables which was found to have no integral solution in one second, 
proving this weaker liveness property holds even in the absence of fairness. 
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7 Conclusion 

We have presented a technique for verifying many safety and liveness proper- 
ties of concurrent systems. The technique involves generating linear inequalities 
that  represent necessary conditions for a trace violating the property to exist. 
The obvious advantage of the approach is that  it does not require enumeration 
of all possible system states. The disadvantages are that  spurious solutions to 
the inequality system can make the analysis inconclusive and the tractability of 
integer linear programming in practice is not well understood. Nevertheless, our 
experience [2] suggests that  spurious solutions are relatively rare and that  our 
inequality systems, being largely network flow systems, have a special structure 
that  usually makes their solution tractable. Furthermore, a prototype imple- 
mentation of the technique has demonstrated its feasibility on a range of sample 
systems [5]. Further experiments in which problem sizes are scaled up, such as 
those performed in [2] for the original technique, are needed to assess the prac- 
ticality of this new technique. 
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