
Generating Diagnostic Information for Behavioral Preorders*

Ufuk Celikkan, Rance Cleaveland

Department of Computer Science
N.C. State University

Raleigh, NC 27695-8206
{celikkan,rance}@science.csc.ncsu.edu

Abstract. This paper describes a method for generating diagnostic in-
formation for the prebisimulation preorder. This information takes the
form of a logical formula explaining why a particular process is not larger
than the other in the preorder. Our method relies on modifying an algo-
rithm for computing the prebisimulation preorder to save the information
needed for generating these distinguishing formulas. As a number of other
behavioral preorders may be characterized in terms of prebisimulatlon
preorder, our technique may be used as a basis for computing diagnostic
information for these preordcrs as well.

1 Introduction

Research in the area of process algebras has sparked interest in behavioral re-
lationa as tools for verifying processes [15, 18, 20]. In one approach, one uses a
preorder to relate specifications (formulated as "underspecified" processes) and
implementations (given as "fully defined" processes); a system is deemed correct
if it is larger than its specification in the preorder, in which case it intuitively
provides "at least" the behavior dictated by the specification. These relations
have not received as much attention in the literature as behavioral equivalences
([18, 2, 4, 16, 12, 15]) but they are very useful in that the partiality that is al-
lowed in specifications gives system implementors greater flexibility in developing
correct implementations. This partiality can also be exploited when developing
specifications for components that are to be used in particular network contexts
[10, 17, 20], since the constraints that the rest of the network places on the
component typically permit many different (and inequivalent) implementations
to render the desired behavior of the over-all system. At least two automated
tools [8, 13] include algorithms for computing certain preorders over finite-state
processes.

Our goal in this paper is to develop an algorithm for generating diagnostic
information for a particular preorder, the prebisimulation preorder [1, 20]; the
algorithm is to be used in conjunction with a method for computing the preorder
to generate information explaining why a particular process is not larger than
another. This information may then be used by system designers to analyze why
systems fail to meet their (partial) specifications. The prebisimulation preorder

* Research supported by NSF/DARPA research grant CCR-9014775.

371

is of interest in its own right; moreover, it may be used as a basis for calculating
other behavioral preorders such as trace containment (also known as the may
preorder [12, 15]), the simulation preorder and the testing/failures preorder [7,
15]. It also has a logical characterization: there is a simple modal logic having
the property that one process is less than another in the preorder exactly when
each formula satisfied by the first process is also satisfied by the second. Thus,
when a process is not less than another, there exists a formula satisfied by the
first and not the second. Our algorithm builds such a formula, and it does so
without affecting the complexity of the preorder algorithm.

The remainder of the paper is structured as follows. The next section develops
our process model and reviews the definition of the prebisimulation preorder
and its logical characterization. Section 3 presents a particular algorithm for
computing the preorder, and then Section 4 presents our method for generating
diagnostic information. Section 5 gives an example illustrating our technique.
Section 6 shows how the method may be used to generate diagnostic information
for preorders other than the prebisimulation preorder, while the last section
contains our conclusions and directions for future research.

2 Processes , Preorders , and Intuit ionist ic H e n n e s s y -
Milner Logic

2.1 T r a n s i t i o n S y s t e m s

We use eztended labeled transition systems to model process behavior. These
bear a certain resemblance to nondeterministic finite state automata; to define
them, we first introduce the more familiar notion of labeled transition system.

D e f i n i t i o n 1. A Labeled Transition System (Its) is a triple (P, Act, --,) where

1. P is a set of states;
2. Act is set of actions containing a distinguished silent action r; and
3. --*C_ P x Act x P is the transition relation.

The intuitive meaning of these components is as follows. P represents the set
of possible computation states, Act contains the actions that computations may
consist of, and --, describes the state transitions that may result from the ex-
ecution of an action in a state. For convenience we use the notation p a p~ in
place of (p, a, iv') E--* and read it as p performs a and becomes f . When p _,a f
holds, we often refer t o / r as an a-derivative of p. We also write p -~ if there is
a pl such that p -~ p'. The action 7" represents an internal computation step.

Extended labeled transition systems are then labeled transition systems in
which states may be designated as underdefined.

D e f i n i t i o n 2 . An Eztended Labeled Transition System (elts) is a quadruple
(P, Act,--, , T) where the triple (P, Act~ -4) is a lts and T C P • Act is the un-
definedness relation.

372

The relation T represents a notion of underdefinedness or incomplete descrip-
tion. If (p, a) ET then the behavior o f p in response to action a may not be fully
given yet; other a-transitions might be added in later. We shall use p T a in
place of (p, a) ET and write p ~ a in lieu of--(p T a). For historical reasons, when
P T a holds we sometimes say that p is a-divergent, and when p ~ a holds we
say p is a-convergent. In the sequel we only consider finite-state elts. An elts is
finite-state if IPI < oo and IAc~ < oo. Note that these imply the finiteness of
I--'1 and IT I.

Given an extended labded transition system, processes may be defined by
identifying a distinguished state as the start state. Formally a process is a pair
((P, Act,---,, T), Po) where (P, Act,--*, T) is an extended labeled transition system
and p0 E P is the start state. Figure 1 shows such a process.

,)
t l

r ,)Ta
Fig. 1. An extended labeled transition system.

Let (P, Act, --~) be a Its. There is a well-known method for generating an elts
from such a l t s . The construction is designed to abstract away from the internal
computation such a system engages in by introducing a new transition relation
=r and a divergence relation 1~ to support this abstraction. Formally we may
define the following:

- - Z ~ " "1" llt ifpl(---~) P2, for some n > 0. (so Pl may do r~ r-steps and evolve to P2.)

- Pl :~ P~ if there are p~, p~ such that Pl :~ P~ --~ P~ :~ P2.
- Pl ~ iff there is an infinite sequence (Pi [i _> 1) with p~ Z_, pi+l for all i _> 1.

- Pl l~a itf either p~ or for some f , p :~ f and/r

Intuitively, p =~ p~ holds if from p some internal computation may lead to a state
in which an a is performed with additional internal computation then leading
to pS. If p ~ a holds, then p may be triggered by means of an a action into an
infinite internal computation. (P, (Act-{r})U {e}, =r is the extended labeled
transition system considered, for example, by [20].

373

Labeled transition systems provide a flexible basis for reasoning in a number
of different specification formalisms like CSP [16], CCS [18]and LOTOS [3].
Finite-state concurrent systems specified in those formalisms can be analyzed
automatically once they are converted into labeled transition systems as there
exists well-known techniques to study them.

2.2 P r e b i s i m u l a t i o n P r e o r d e r

The prebisimulation preorder, ~, is a behavioral preorder defined in terms of pre-
bisimulations [20]; it is a reflexive and transitive relation that relates processes
using transitions and divergence information. Under this relation divergent pro-
grams approximate similar convergent ones. Intuitively, a prebisimulation is a
"matching ~ between states of processes 7) and • that satisfies a couple of con-
ditions. The first stipulates that if state p is matched to state q, then each
a-transition of p must be matched by some a-transition of q. The second condi-
tion requires that each a-transition of q be matched by some a-transition of p,
provided that the behavior of p is completely defined with respect to a. In other
words, if the behavior of p with respect to a is only partially specified, then p is
not required to match the a-transitions of q. Intuitively this is because as a result
of "completing" p with respect to a, additional a transitions may be added that
could match q's a-transitions. The formal definition may be given as follows.

De f in i t i on 3. Let 7) : ((P, Act~ --*, T),p0) and Q = ((Q, Act~ --,, T/, q0) be pro-
cesses. A relation R C_ P • Q is a prebisimulation between 7) and Q if pRq
implies the following.

1. p -~ pl ::~ 3ql. q _~ ql ^ pi Rql"
2. p ~ a ~ [q I a ^ (q -~ q' ~ 3p'. p -~ p' ^ p'Rq')].

We say that 7)~Q if there is a prebisimulation R with poRqo.

There is a close connection between ~ and the relation ~ w studied by
Walker [20]. Suppose 7),Q are of the form (M, po) and (N, qo), where M,N
are labeled transition systems. Let 7 ~, Q~ be computed from 7), Q respectively
by replacing ~ for ---, and generating ~r from f., using the construction specified
in Section 1. Then ' 7) ~ Q i f fT)~wQ.

The prebisimulation preorder may also be used as a basis for computing
preorders other than ~w" To do so, we slightly refine the usual notion of pre-
bisimulation by introducing a "compatibility relation", H, between states of 7)
and Q. Sometimes, states contain information in addition to their outgoing tran-
sitions that is of interest, and H determines when this extra information in two
states is compatible. Then a relation R is a H-prebisimulation if R C H and R
is a prebisimulation. So if pRq, then p and q must be related by H in addition
to having their transitions matched appropriately by R.

2.3 Intuitlonlstlc Hennessy-Milner Logic

The prebisimulation preorder also has a logical characterization in terms of Intu-
itionistic Hennessy-Milner Logic (IHML) [19]. The syntax of formulae in IHML

374

is defined as follows, where a ~ Act:

c~ : :=st ir f I r 1 6 2 I ~ v r I (a)~ I [a]t~

The formal semantics of I I tML is given in terms of a satisfaction relation, h ,
relating states in a process = ((P, T),p0) to formula. Formaay h is
defined to be the smallest relation satisfying the following, where p ~ P:

p ~ t t
P ~ @ i A ~ i f p ~ t a n d p ~

p ~ (a) ~ if3q. p & q a n d q ~ *
p ~ [a]~ ifp~a and Vq i fp ~ q, then q ~

We say that ~v ~ $ if P0 ~ ~.
IHML incorporates divergence sensitivity into classical Hennessy-Milner

Logic (HML) [14]. The chief difference between IHML and HML is that modal
operators (a/ and [all are not duals of each other; for p to satisfy [a]~ it must
be completely defined with respect to action a. This requirement reflects the
intuition that if p T a , then more a-transitions may be added to p later. Thus
we can only make statements about all of p's a-transitions if we know they have
all been given.

The logical characterization of ~ states that if P ~ Q then the set of formulas
satisfied by ~' is a subset of Q's, although Q may satisfy extra formulas [10].
Formally let B(7)) be the set of IHML formulas that a process P satisfies:

H(~') = { r I~' ~ r

The next theorem is due to Stifling [19].

T h e o r e m 4 . H(7 ~) C_ H(t2) iff T~Q.

This theorem suggests that when P gQ, then there is a formula �9 with P ~ @
and Q ~ @. Thus one way of explaining why P ~Q is to exhibit such a formula.

Def in i t lon5 . Let 7 ~ : ((P, Act~--.,T),po) and Q = ((Q, Ac~--',T),qo) be two
processes. IHML formula �9 distinguishes ~ from Q if 7 ~ ~ �9 and Q ~= ~.

As an example, consider the two processes 7 ~ and Q given in Figure 2. The
formula �9 = (a)((b)tt A (c)1t) distinguishes ~v from Q; 7 ~ ~ @ but ~ ~ ~. Process
Q after performing action a can only do b or c but not both. On the other hand
7 ~ can do both b and c after a. Note that the existence of this �9 implies that

3 Computing the Preorder

The prebisimulation preorder has an iterative characterization that makes it
suitable for algorithmic computation. The algorithm we are about to present is
based on this characterization, which is as follows:

375

Po q0

a a

a

b c

Fig. ~.. Example Processes (with T = 0)

D e f i n i t l o n 6 . Let 7 > : ((P, Act,--% T),po) and Q = ((Q, Act,--,, T),qo) be pro-
eesses. Then a family of relations ~k C_ P x Q can be defined as follows:

1. E 0 = P x Q .
2. • ,+, = Y:(Ek) where 5r(R) = {(p, q) l

(p -~ p' ~ 3q'. q ~, q' ^ p'Rq') ^

(P I a :~ [q I a A (q -~ qt ~ 3p'. p -~ p' A p'Rq')])}.

Note that if R is a prebisimulation then R C_ Y:(R). We now have the following.

T h e o r e m 7. Let 7 ~, Q. be processes with start states Po and qo respectively. Then
~ Z Q iff V k PoEhqo.

Thus on the basis of this characterization ~ can be computed by repeatedly
applying yr to ~0 until ~h+l = ~k" This suggests the algorithm P R E O R D E R
(Figure 3) for computing ~.

4 G e n e r a t i n g D i a g n o s t i c I n f o r m a t i o n

From the definition Y: it follows that i f p ~k q then either p ~k_l q is also true,
or one of the three conditions below must hold.

1. p -~ p' and Vq'(q -~ ql implies p' ~k_lq ~)
2. p l a but qTa
3. p l a, q ~ a, q -~ q~ and Vp~ (p --~ f implies f ~h_lq ~)

This observation leads to a two-step procedure for the computation of diagnostic
information. In the first step, when two states are found not to be related by Zk
the information as to which condition is violated and why is collected, encoded
as tuples and then pushed onto a stack. These tuples have the following format.

376

k : = l ;
E : = P x Q ;
~ 0

= : = "~ ' (~o) ;
while ~ ~ "~h-lr- do

c : = "~'(~:h);
'~/~+1
k : = k + l ;

end
ifp0~kq0 then return true
else return falae;

Fig. $. Algorithm PREORDER for computing preorder.

1) [1, <p, q), a,p']
2) [2, (p, q), a]
3) [3, <p, q), a, q']

The tag in the tuple corresponds to the condition that is violated. For example,
if p ~ a but q T a then [2, (p, q), a] will be pushed into stack, and if p ~, p~
but q 7?* then [1,/P, q), a, f] will be pushed into the stack. Figure 4 contains a
version of P R E O R D E R in which these tuples are generated and stacked during
the computation of the Zh"

In the second step, using the information pushed onto the stack in the first
step, a distinguishing formula is generated which is satisfied by 7 ~ but not by Q.

We now remark on some properties that hold of tuples that the modified
P R E O R D E R pushes into its stack.

T h e o r e m 8.
]. When [1, (p, q), a, f] is pushed onto the stack then it follows that for all q'

such that q -~ q', a tuple containing (t/, q~) is already in the stack.
~. When [3, (p, q), a, q~] is pushed onto the stack then it follows that for all f

such that p -~ p', a tuple containing (f , q') is already in the stack.

Proof. ~h- t is always computed before ~=h" So all the pairs which are ~h - t are
pushed onto the stack before those of ~h"

It also follows that if p ~q then the tuple containing (p, q) is also in the stack
when P R E O R D E R terminates.

We now remark on the time and space complexity of P R E O R D E R .

T h e o r e m 9.
1. The time complezity of the algorithm P R E O R D E R is O([PI 2 x [QI 3 x

~. The space complezity of the algorithm P R E O R D E R is O([PI x [QI + [-~p

I+ J- ql)

377

PREORDER('P : ((P, Ac~,--,),po); Q: ((Q, Act, - ') , qo));--' stack;
k := 1;
r- : = P x Q;
~"0
r : = ~ - (~);
"~1 0
while ~ ~ "~-tr- do

foreach (p, q) such that p~k_lq but p ~k q do
ease condition of

1. p -~ p' and Vq' (q -~ q' implies p' ~ _ l q ') :
, t a c k := PUSH([~, (p, q), a , p ' i , , t a c k)

2. p~a but qTa :
,tack := PUSH([2, (p, q), a], ,tack)

3. p~a, q~a, q -~ q' and Vp' (p -~ p' implie~ p' ~ _ t q ') :
, t a c k := PVS~([S, @, q), a, q'],,tack)

end
end
~- : = ~ ' (~ ,) ;
" ~ k + l

k : = k + l ;
end
|fp0~kq0 then re turn true
else re turn (/alse,,tack);

end PREORDER;

Fig. 4. Modified PREORDER.

It should be noted that these bounds can be significantly improved; for exam-
ple, an O(17~1 x IQI) algorithm to compute the preorder is given in [11]. Our
procedure for generating diagnostic formulas can also be applied to this more
efficient algorithm. In this paper, however, we have elected to consider the less
efficient but simpler algorithm in order to highlight the principles underlying the
generation of diagnostic information.

T h e P o s t p r o c e s s i n g S tep

After the P R E O R D E R terminates the second step computes distinguishing
formulas using the tuples contained in the stack. The procedure relies on the
fact that if p ~ q then the tuple containing (p, q) is in the stack with some
additional information which explains why this is so. So a postprocessing step
can process these tuples to compute formulas. The pseudocode for this step is
contained in Figure 5. The intuition is as follows.

1: If the tuple is of type [1, (p, q)a, f] then either q does not have an a-derivative
and p has one, or a-derivative f of p is not related by ~ to any of the a-
derivatives of q. In the former case the formula (a)tt is satisfied by p but is
not satisfied by q. In the latter case one has to recursively build formulas

378

D F a (~,, q), stack) --, r
tuple := TOP(stack);
stack := POP(stack);
i f (p, q) not in tuple t hen DFG(~, q), stack);
else

F := 0;
c a s e tuple o f

[] , <p, q), a, p']

endcase
endelse

end DFG

[2, (p, q), a]
[3, (p, q), a, q']

: R = { s' I q - ~ * ' } ;
foreach s' 6 R do

@' = DFG((p ' , s'), stack);
r = r u {~'};

end d o
i f F = 0 t hen r e t u r n (a)tt;
else return (a)(^r);

: r e t u r n [a]~tt;

: R = { s' I p - ~ , ' } ;
foreach s' G R do

@' = DFG((s ' , q'), stack);
r = r u { ~ ' } ;

end d o
i f F = r then r e tu rn [a]~ff
else r e t u rn [a]t(VF);

Fig. 5. Code for computing distinguishing formulas.

that distinguish p' from each a-derivative of q and take the conjunction of
them (call it @). Then p satisfies the formula (a)q~ but q can not.

2: If the tuple is of type [2, (p, q), a] then p is a-convergent and q is a-divergent.
The formula generated then is [ahtt. q can not satisfy this because it diverges
on action a.

3: If the tuple is of type [3, (P, q), a, q'] then the situation is the dual of the one
shown in 1. Either p does not have an a-derivative, or one a-derivative q'
of q is not related by ~ to any of the a-derivatives of p . Note that both p
and q are a-convergent. In the former case this implies that p satisfies the
formula [ahf f , since it does not have any a.derivative, and q can not satisfy
it because it does have an a-derivative q' which can not satisfy f f . In the
latter case, for each Pi such that p -~ Pl, we may recursively build formulas
@i such that p~ ~ @i but q']/: ~ . This implies that p ~ [ah(V@~) but

q ~ [ah(vr

T h e o r e m l O . Let 7 ~ and Q be two processes. I f7 ~ ~Q. then DFG will return a
formula �9 such that 7 ~ ~ @ but Q ~ ~.

379

The formulas generated by DFG may be represented (as sets of propositional
equations so that common subformulas may be shared) in space proportional to
IPI • IQI • Iql). This is due to the fact that the number of total recursive
cans made by the algorithm is bounded by IPI x IQI and each distinguishing
formula is of the form (a)~ or [a] : where ~ contains at most '~z(IPI, Iql)
conjuncts or disjuncts. If the procedure is modified such a way that we save
and use this information appropriately then we have the following bound on the
amount of computation needed to compute these equations.

T h e o r e m II. An equational representation 4 D F a((p, q) , stack) may be cal-
culated in o(IPI x Iql • mam(IPh IQI)) time, based on the information in the
stack.

5 A n E x a m p l e

Figure 6 gives two labeled transition systems :P and Q for which ~ ~ w Q' where
c is discussed in Section 2.2. In order to show that 7 ~ ~ w Q and generate the
corresponding diagnostic formula we apply the method outlined in Section 2.1.
First elts (P, Ac t - {r} U {e}, :=~,1~) and (Q, Ac t - {r} U {e}, =:~,~) are constructed
for ~ and Q and the prebisimulation algorithm is then applied to these. As
a result, in the diagnostic information to be generated, g will be used in the
formulas involving []1. Note that for all p in :P, pgi and p~o, while in Q, qo~i,
qo~o and ql ~o, but ql~ i , q27~i and q2~o. The stack is initially empty. After
the first iteration the following pairs will be pushed into the stack since they are
found to be ~x:

[I, (p~, a~), o, p~]
[2, <p~, q~), i]
[1, (P2, qo), o, Pl]
[1, (p~, q.~), i, p2J.
[2, (p~, q~), i]
'[1, (Ph qo), o, PO]
[1, (P0, q~->, i, pt]
[3, (Po, qz), o, q0]

After the second iteration [1, (po, qo),i, pt] is pushed into stack because
i i

Po ::> P,, q0 ::> ql and Pl ~tqx. Since (po, qo) is in the stack process :P is
not smaller than process Q. In order to build the formula DFG((po , qo), stack),
the algorithm first locates the tuple which has the pair (po, qo). In this case the
tuple [1, (Po, qo),i, px] is in the stack and the action causing this element to be
pushed into the stack is i. The formula that will be returned, then, will be

(i) (D F G((px , ql) , stack))

The algorithm then locates the tuple containing (pl, ql); it is [2, (p~, ql), i]. The
tag 2 indicates the reason why this tuple is in the stack, ql is divergent on action

380

\
>

i

i

\

~
9"

Fig. 6. Processes 7 ~ and Q such that 7 ~]~rv Q"

i whereas Px is convergent. So the formula returned for DFG((px, ql), stack) is

[i]#tt

This means the formula distinguishing P0 from q0 is

(i)[i]r

Process P may engage in an/- t ransi t ion from its start state Po and after th• it
may evolve to a convergent state on all/-transitions. (Note that there is only one
such transition in this example.) However process Q may evolve to an/-divergent
state on action i from its start state q0.

6 Appl icat ions of Prebis imulat ion Preorder

Various other preorders in the literature can be seen to be instances of the
prebisimulation preorder applied to special kinds of elts. In this section we in-
vestigate the form that diagnostic information takes when our methodology is
applied to the computation of the preorders. Let 7 o = ((P, Act, 4 , T),P0) and

= ((Q, Act, -% T), q0) be two processes.

B i s i m u l a t i o n E q u i v a l e n c e

Bisimulation equivalence is defined in terms of bisimulations [181.

D e f i n i t i o n 12 (B i s i m u l a t i o n E q u i v a l e n c e) . A relation R C_ P x Q is a bisim-
ulation between P and Q if pRq implies the following.

1. p ~ p~ =:~ 3q ~. q a_, q~ A p~ Rq ~.
2. q -~ q' =C, 3p'. p-P-~ p' A p'Rq '.

381

7) --, Q is defined to hold if there is a bisimulation R with poRqo.

If T = 0 (i.e. all states ate completely defined on all actions.) then prebisim-
ulation preordet becomes bisimulation equivalence [18]. The reason is that , in

Definition 3, Condition 2 becomes q -~ q~ =r 31/. p -~ 1/A 1/Rcl ~ when T is r
Since all states are defined on all actions the convergence requirement in

satisfying ~ is fulfilled trivially. Thus the modal operators ~ and () become
duals of each other. The other consequence of T = r is that the formulas do not
contain the subformula [a]ltt. This is due to the fact that the tuple [2, (p, q), a]
which causes this subformula to be generated can never occur in the stack.

S i m u l a t i o n P r e o r d e r

The simulation preorder, <, is defined in terms of simulations.

D e f i n i t i o n 13 (S i m u l a t i o n P r e o r d e r) . Let 7) and Q be processes. A relation
R C C_ P • Q is a simulation between P and Q if pRq implies the following.

1. p -~ 1/=r 3q'. q -~ q' A 1/ Rq'.

~P<Q holds if there is a simulation R with poRqo.

If T = P • Act (so every state is considered to be underdeJined or incomplete on
every action) then Z coincides with the simulation preorder. The reason for this
is that when T = P • Act, Condition 2 in Definition 3 of prebisimulation preorder
is always true, since it is never the case that p~ a holds.

As an immediate result of the elimination of checking Condition 2 in Def-
inition 3, the diagnostic formulas we generate in this setting do not contain
disjunctions or the modal operator ~ , since DFG generates a formula contain-
ing ~ or V's only when the second condition in the definition of ~ is violated.
Then the syntax of the generated formulas turns out to be �9 ::= tt I ~ A ~ I (a)~.

T r a c e C o n t a i n m e n t

The trace containment preorder is defined in terms of the sequences of actions
a process may perform.

D e f i n i t i o n 14.

- Let s : a l . . . a n be in Act*. Then p ._5, holds if there exists p l , . . . , p n such
that p -~ Px . . . ~-~ p,~.

- 7~r if for any 8 E Act* such that p --L, q 2.,.

If7) and Q are deterministic and T = P x Act then the relation computed by
the preorder checking algorithm turns out to be trace or language containment.
7)~ t , a~Q in this sense exactly when Q is capable of engaging any sequence of
actions that 7) is capable of. In this setting when 7) ~ t , a ~ Q then 3s E Act* such

that P0 -L but qo 7 L.

382

The formulas generated by DFG have a very simple form when the processes
are deterministic and T: P x Act, and it is straightforward to exhibit a sequence
s that 7 ~ is capable of but • is not when 7 ~ J~t,~e~ Q based on this formula. In
particular the formulas do not contain

- disjunctions,
- conjunctions,
- ~ ,
- / / .

The reason why the formulas have this special form is as follows. Since the
processes are deterministic, every state in 7 ~ and Q has at most one a-derivative
for any a, and at each stage in DFG we therefore need to distinguish an a-
derivative of p E P from at most one a-derivative of q E Q. This removes the
necessity to use conjunction or disjunction. The formulas do not contain ~
because Condition 2 of Definition 3 can not be violated.

More precisely the syntax of the formulas is ~ ::= tt I (a)~. Since the formulas
have the following simple form

they can easily be transformed into distinguishing sequences of the form

a I . . . a n .

T e s t i n g P r e o r d e r s a n d E q u i v a l e n c e s

If the compatibility relation / / m e n t i o n e d in Section 2.2 is initialized correctly
and the processes are transformed appropriately then testing preorders and
equivalences can also be computed by the preorder checking algorithm. How-
ever, this procedure is beyond the scope of this paper, and interested reader
should refer [6, 7] for a detailed account.

7 Concluding Remarks

One approach to verifying processes involves the use of behavioral preorder; an
implementation may be deemed to satisfy a specification if it is greater than the
specification. In this paper we have presented a method for computing diagnostic
information for a particular preorder, the prebisimulation preorder. This preorder
has a logical characterization in terms of a variant of Hennessy-Milner logic that
enables us to generate formulas explaining why one process is not greater than
the other. The generation of the formulas relies on a postprocessing step that
is invoked on a stack-based representation of the information computed by the
preorder information. As future work we plan to incorporate this distinguishing
formula capability into the Concurrency Workbench [8], a tool for the analysis
of finite-state systems. We would also like to investigate applying our techniques
to Binary Decision Diagram-based algorithms [5] for computing preorders.

383

References

1. Abramsky, S., "Observa t ion Eqtilvalence as a Test ing Equivalence" , Theo-
retical Computer Science, vol. 53, (1987), 225-241.

2. Bergstra, J.A., and J.W. Klop, "Process Algebra for Synchronous Co m m u -
nicat ion" , Information and Control 60, (1984), 109-137.

3. Bolognesi, T. and E. Brlnksma, " I n t r o d u c t i o n to the ISO Specif icat ion Lan-
guage L O T O S " , Computer Networks and ISDN Systems, vol. 14, (1987), 25-59.

4. Brookes, S.D., C.A.R. Hoare, and A.W. Roscoe, "A T h e o r y of Communica t i ng
Sequent ia l Processes" , Journal of the ACM, vol. 31, no. 3, (1984),560-599.

5. Butch, J.R., E.M. Clarke, K.C McMillan, D.L. Dill, L.J. Hwang. "Symbol ic
Model Checking: 102o States and Beyond , " In Proceeding8 LICS'90, (1990).

6. Cellkkan, U., and R. Cleaveland, " C o m p u t i n g Diagnostic Tests for Incor rec t
Processes" In Proceedings o-f the Protocol Specification Testing and Verification,
1~, 199~.

7. Cleaveland, R., and M. Hennessy, "Test ing Equivalence as a Bis lmulat ion
Equivalence" , In Proceedings of the Workshop on Automatic Verification Meth-
ods]or Finite-State Systems, LNCS 407, (1989),11-23. To appear in Fundamental
Aspects of Computing.

8. Cieaveland, R., J. Parrow, and B. Steffen, " The C o n cu r r en cy W o rk b en ch " , In
Proceedings of the Workshop on Automatic Verification Methods for Finite-State
Systems, LNCS 407, (1989),24-37.

9. Cleaveland, R., "On Automat ica l ly Dist inguishing Inequlvalent Pro-
cesses", In Proceedings of the Workshop on Computer-Aided Verification, 1990.

10. Cleaveiand, R., and B. Steffen, " W h e n is 'Par t i a l ' Adequa te? A Logic Based
P r o o f Technique Using Par t ia l Specifications", In Proceedings LICS'90,
(1990).

11. Cleaveland, R., and B. Steffen, " C o m p u t i n g Behavioral Relations, Logi-
caliy", In Proceedings o-f ICALP'90, (1991).

12. DeNicola, R., and M.C.B. Hennessy, "Test ing Equivalences for Processes" ,
Theoretical Computer Science, vol. 24, (1984), 83-113.

13. Godskeen, J.C., K.G. Larsen, and M. Zeeberg, "TAV - Tools for au tomat i c
verif icat ion", R89-19, Aalborg University, Denmark.

14. Hennessy, M., and R. Milner, "Algebraic Laws for N o n d e t e r m l n i s m and
Concur r ency" , Journal o-f the Association for Computing Machinery, vo]. 32,
no. 1, (January 1985), 147-161.

15. Hennessy, M., Algebraic Theory of Processes, MIT Press, Boston, 1988.
16. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, London, 1985.
17. Larsen, K.G., and B. Thomsen, "Compos i t iona l Proofs by Par t ia l Specifi-

cat ion of Processes" , Report R 87-20, University of Aalborg, July 1987.
18. Milner, R., Communication and Concurrency, Prentice Hall, 1989.
19. Stlrling, C., "Moda l Logics for Communica t ing Sys tems" , Theoretical Com-

puter Science, vol. 49, (1987), 311-347.
20. Walker, D., "Bis lmulat ions and Divergence" , In Proceedings of the Third An-

nual Symposium on Logic in Computer Science, (1988), 186-192.

