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A b s t r a c t .  This paper presents a method for verifying safety property 
of a communication protocol modeled as two extended communicating 
finite-state machines with two unbounded FIFO channels connecting 
them. In this method, four types of atomic formulae Specifying a condi- 
tion on a machine and a condition on a sequence of messages in a channel 
are introduced. A human verifier describes a logical formula which ex- 
presses conditions expected to be satisfied by all reachable global states, 
and a verification system proves that the formula is indeed satisfied by 
such states (i.e. the formula is an invariant) by induction. If the invariant 
is never satisfied in any unsafe state, it can be concluded that the proto- 
col is safe. To show the effectiveness of this method, a sample protocol 
extracted from the data transfer phase of the OSI session protocol was 
verified by using the verification system. 

1 Introduct ion 

For implementing reliable communication software, it is important to verify the 
communication protocol formally. Communicating finite-state machines (CF- 
SMs) are used as a model for verifying communication protocols. If  the bound- 
edness of the communication channels is guaranteed, many important  proper- 
ties for CFSMs are decidable[l] in principle, and some decision procedures have 
been proposed[2][3]. However, even though channel boundedness is guaranteed, 
the decision procedures based on channel boundedness are not feasible for most 
practical protocols because of state space explosion. 

Furthermore, for practical protocols, protocol machines are usually defined 
as extended communicating finite-state machine(ECFSM)s whose state is rep- 
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resented by a state of finite control and values of context variables. In fact, two 
formal description techniques Estelle[4] and SDL[5] for communication protocols 
are based on extended finite-state machine model. In this paper, a verification 
method for a class of ECFSMs in which the channel boundedness is not guaran- 
teed is proposed. 

For such a class of protocols, the set of global states reachable from the initial 
global state is potentially infinite and therefore traditional state exploration 
techniques which enumerate reachable global states cannot be used. Instead, we 
propose a method based on a verification via invariant using similar techniques 
to those adopted by such systems as theorem provers[6]. 

The proposed method is summarized as the following (1) and (2): 

(1) Find a logical formula on global states, say F,  which is expected to satisfy 
(a) RS C_ GS(F) and (b) GS(F) C_ SAFE, where RS is the set of reachable 
global states, GS(F)  is the set of those global states which satisfy F and 
SAFE is the set of safe global states. Although only safety property is 
considered in this paper, the proposed method can be extended to verify 
liveness property. F is written as a propositional formula which consists of 
the following atomic formulae, 

(i) conditions on states of finite controls of ECFSM, 
(ii) regular expressions which specify message type sequences in the channels, 

(iii) conditions on sequences of integers (parameters of messages in the chan- 
nel) such as 'monotonically increasing', and 

(iv) linear inequalities on integers which specify the relations to hold for the 
values of context variables of ECFSMs and parameters of messages in 
the channels. 

(2) Verify that  the above (a) and (b) hold. Verification of (b) is easy. The above 
(a) is verified by structural induction on event sequences. Verification in 
the inductive step is reduced to the inclusion problem for given two regular 
expressions (for (ii) above), the problem to find the normal form of a given 
term in the term rewriting system which represents the definition of protocol 
machines, inductive hypothesis and properties of sequences of integers (for 
(iii)), and the problem to decide whether a given ordered pair of expressions 
belongs to the transitive closure of given inequalities (for (iv)). 

A verification system which implements the proposed procedure and a veri- 
fication example of OSI session protocol are also described in this paper. 

As related works, a verification method is proposed for ECFSMs with queues 
of length one[7]. For a protocol for which channel boundedness is not guaranteed, 
Finkel[8] studies a class of protocols in which the set of message sequences in the 
channels is exactly expressed by regular expressions, and gives decidable results 
on some verification problems. However, protocol machines considered in [8] are 
assumed to be finite. The protocol model discussed in this paper assumes neither 
finiteness of protocol machines nor channel boundedness. Systematic verification 
methods for such a class of protocols have been scarcely reported. 
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2 B a s i c  D e f i n i t i o n s  

2.1 P r o t o c o l  M o d e l  

Two-extended communicating finite-state maehines(2-ECFSMs) are a protocol 
model which consists of two protocol machines modeled as extended commu- 
nicating finite-state machines and two unbounded FIFO channels connecting 
them. Formally, it is defined as below. 

A p r o t o c o l  m a c h i n e  P M  is a 4-tuple (S, ~,  6, si), where 

( M 1 )  S = (SF, r) defines a set of s t a t e s ,  where SF is the state set of finite 
control part  of the machine and r is the number of registers(context vari- 
ables) which store nonnegative integers. Let Af denote the set of nonnegative 
integers. The state space of the protocol machine is SF • hf  ~. 

( M 2 )  Z = S _ U S +  : a finite set of m e s s a g e  t y p e s .  ~ _  is a set of message types 
which P M  can send and Z+ is a set of message types which P M  can receive. 
Z_  and ~ +  are supposed to be disjoint. For d E Z and n E A/', (d, n) is called 
a m e s s a g e  and n is called the parameter  of the message. The number  of 
parameters  of a message is assumed to be exactly one only for simplicity. In 
the following, for a message sequence u, type(u) and parameter(u) denote 
the message type sequence of u and the parameter  sequence of u respectively. 
The set of events E V  of the protocol machine is defined in connection with 
the set of messages sent or received by the machine, i.e. E V  = {-(d,n)ld e 
~ _ , n  e A/} U {+(d,n)ld C Z + , n  e iV'}. The former subset is the set of 
s e n d i n g  e v e n t s  and the lat ter  one is the set of r e c e i v i n g  even t s .  

( M 3 )  6 : a partial  s t a t e  t r a n s i t i o n  f u n c t i o n  from SF • ~ • E V  to SF xJY". 
For s E SF • ]q'~ and e E EV, if 6(s, e) is defined, then an event e is said to 
be e x e c u t a b l e  in the state s. 

( M 4 )  si 6 SF • A :r  : an in i t i a l  s t a t e .  

For PMA = ((SFA, rA), ZA, 6A, SiA) and P M s  = ( (SFs ,  r s ) ,  Z s ,  6s,  sis), if 
27B- = ~A+ (denoted Z:SA) and S A -  = ZS+  (denoted ~AS),  then / /  = 
(PMA, P M s )  is called a p r o t o c o l .  A 4-tuple (SA,Ss,chsA,ChAs) e (SFA x 
Af "A, SFB • A f 'B,  (ZSA,Af)*, (5:AS,Af)*) is called a g l o b a l  s t a t e  of protocol 
II. SA and s s  denote states of PMA and P M s  respectively. ChBA and chAs 
denote message sequences in the channel from P M s  to PMA and tha t  from 
PMA to P M s  respectively, gsi = (siA, sis,  s, r (e is the empty  sequence) is 
called the in i t i a l  g l o b a l  s t a t e  of 17. 

A global s tate gs '= (s~4 , s~,  Ch'BA , Ch~AB)is said to be t r a n s i t a b l e  from 
gs = (SA, sn, chsA, chAs)(denoted by gs --* gs') iff one of the following condi- 
tions is satisfied for some d E ~BA U ~AB and n EAf: 

(TA1)  JA = 5A(SA,- (d ,n)) ,  s~ = sB, eh~A = chBA, eh'As = ChAB " (d,n); 
(TA2) s~4 = ~A(SA,+(d,n)),  8'S = SB, (d ,n) -chbA = chBA, chUB = chAB; 
(TA3)  s[4 ---- SA, s'B = 6B(SB,- (d ,n) ) ,  ch'BA = ChBA" (d,n), Ch'AB = ChAB; 
(TA4)  s~ = sA, sb = ~ s ( s s ,  +(d ,n)) ,  chbA = chs~ ,  (a ,n ) .  ch~s  = chgs .  
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If (TA1) holds, the relation is also denoted g s - ( - ( d ,  n}, A) ~ gs'. This extended 
notation is also used for (TA2), (TA3) and (TA4). The transitive reflexive closure 

* ! 

of the relation " ~ "  is denoted by "-~". If g s ~ g s ,  then the global state gJ is 
said to be r e a c h a b l e  from gs. 

2.2 Safety Property 

For a protocol H = (PMA, PMB), the set of reachable global states from the 
initial global state is called the r e a c h a b i l i t y  set  o f /7 .  If the reachability set of 
H does not contain following unsafe states, H is said to be safe. 
D e a d l o c k  s ta te :  A global state gs = (SA, 8B, ChBA , ChAB ) is said to be a dead- 
lock state if ChBA = ChAB = r and any sending event is not executable in SA 
and SB respectively. 
U n s p e c i f i e d  reception state: A global state gs = (SA, sB, ChBA, ChAB) is said 
to be an unspecified reception state if either chBA # r and ~A(SA, +head(chBA)) 
is not defined or chAB # e and ~B(sB,+head(ChAB))is not defined, where 
head(a) denotes the first element of a nonempty sequence a. 

3 V e r i f i c a t i o n  M e t h o d  

If a logical formula F on global state o n / / i s  satisfied by all global states in the 
teachability set of a p r o t o c o l / / ,  F is called an i n v a r i a n t  in H.  If an invariant 
F in H is not satisfied by any deadlock state or unspecified reception state, then 
H is safe. We present a method for verifying a given formula in a disjunctive 
normal form F = P1 V P2 V . . .  V Pn to be an invariant i n / / .  In the following, 
for a formula F, GS(F) denotes the set of global states which satisfy F.  

3.1 D e s c r i p t i o n  o f  a Logical Formula 

Every disjunct Pi of formula F is a conjunction of a t o m i c  f o r m u l a e  (or simply 
a t o m s )  of the following four types. Figure 1-A (a) shows an example of Pi. 

( A F 1 )  A formula <SSFA, SSFB), where SSFA C SFA and SSFB C_ SFB, is an 
atom which holds for a global stat e (SA, SB, ChBA, ChAB) iff the finite control 
part of SA and SB belong to SSFA and SSFB respectively. 

( A F 2 )  A class of regular expression to express an infinite set of message type 
sequences in a communication channel is introduced as below. The regular 
expression is restricted to be c (the empty sequence) or a concatenation of 
subexpressions of the following types: 
R I "  A choice o f~BA (or GAB), i.e. m 1 +m~ + . . .  + m ~  for ,~k(1 < k < n) 

in 2BA (or GAB); 
R2:  Positive closure t + of a choice t of ~BA o r  LAB. 

For two restricted regular expressions rBA and tAB , a formula @BA, tAB) is 
an atom which holds for a global state (SA, SB, ChBA, ChAB) iff type(ChBA) E 
L(rBA) and type(chAB) e L(rAB), where L ( r ) i s  the set of sequences denoted 
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by the regular expression r. We assume that  exactly one AF2 type atom 
appears in every Pi. In the following, if a global state (SA, SB,ChBA, ChAB) 

�9 v \" BA[k](1 < k <n)  satisfies an AF2 type atom "(ul.u2"....un, Vl.V2.... ,~1 , 
denotes a message sequence such that BAI l ] .  B A [ 2 ] . . . . .  BA[n] = e h B A  

and type(Bg[j]) e L(uj)(1 _< j <_ n) and, AB[k](1 <_ k < m) denotes 
the message sequence such that  AB[1].  AB[2] . . . . .  AS[m] = ChAB and 
type(AB[j]) e L(vj)(1 < j < m). 

( A F 3 )  A predicate on a message sequence on a communication channel is also 
an atom. For instance, "stepl(AB[1])" (in Figure 1-A (a)) states that  the pa- 
rameter sequence parameter(AB[1]) satisfies the predicate "stepl". "stepl" 
means that  the parameter sequence is an increasing sequence such that  the 
difference of every adjacent elements is one. Predicates which appear in an 
AF3 type atom are defined in terms of rewrite rules and inequalities. For ex- 
ample, a conditional rewrite rule in Figure 1-A (b) "lseql > 1, stepl(seq), t = 
last( seq ) + l : step l ( seq. (type, t ) ) ~ true" asserts that  if a message sequence 
sea of length 1 or more satisfies the predicate stepl and t is equal to the 
parameter of the last message of sea plus 1, then the parameter sequence 
parameter(sea), t of the message sequence sea. (type,t) also satisfies the 
predicate stepl. The conditions of conditional rewrite rules and inequalities 
are also assumed to be written in the form of an AF3 or AF4 type atom. 

( A F 4 )  A linear inequality which represents the relation on the values of registers 
of protocol machines and the parameter values of messages in a channel. The 
expressions appearing on the both sides of inequalities are restricted to the 
form of "v § C" where v is a term which denotes either the value of a register 
of a protocol machine or a parameter  value of a message in a channel and 
C is a constant value of integer. For instance, "Vm(A) = last(AB[1]) q- 1" 
in Figure 1-A (a) is an AF4 type atom which states that  the value of the 
register Vm of PMA is equal to the parameter of the last message in the 
channel from PMA to PM~ plus 1 at the global state under consideration. 

3.2 Verification Procedure  

A given logical formula F = P1 V P2 V . . .  V Pn is shown to be an invariant in H 
by structural induction on event sequences of H as follows. 
Inductive basis: Prove that  the initial global state o f / / s a t i s f i e s  F. 
Inductive s tep:  Prove that  

VgseGS(F)Vgs-~gs,{gs' e GS(F)}. (* 1) 

Observe that  GS(F) = GS(P1) U GS(P2) U .. .  U GS(P,~). Therefore, (* 1) is 
equivalent to 

Vi(l~i~n)VgsEGS(p,)Vgs_~gs,3j(l~j~_n){gs' e GS(Pi) }. (* 2) 

Thus (* 1) is proved by executing the following IS1 and IS2 for each Pi(1 < i < 
n). 
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IS1 Identify all events(pairs of a local event (:i:(d, n)) and a machine) executable 
in global states in GS(Pi). 

IS2 For every executable event (:]:(d, n), X) obtained by IS1, show 

e cs(Pj)}. (* 3) 

The inductive basis and IS1 are easily examined from the form of each Pi. 
To explain the procedure for examining IS2, we consider the following example 
EX1. 

E X I : .  Let Pi in (*3) be shown in Figure 1-A (a). 
* Let (+(d, n), X ) i n  (*3) be ( - (MIP ,  Vm(A)), A). [] 

The definition of state transition on the event is shown in Figure 1-A (b). In 
the following and in Figures 1-A and l-B, all terms with primes denote the values 
of the corresponding terms without primes after the transition. The definition 
of the state transition tells the followings: 

(1) If the state of finite control of the machine is STA713, the machine can send 
MIP with parameter value equal to the value of register Vm; 

(2) The finite control still stays at STA713 after sending (MIP, Vm(A)); 
(3) The value of register V m  is incremented by one; 
(4) The value of register Va is not changed. 

Let Pj = PFj A PIj(1 <_ j <_ n), where PFj is the conjunction of AF1 and 
AF2 type atoms and PIj is the conjunction of AF3 and AF4 type atoms. Since 
GS(Pj) = GS(PF~) n GS(P / j ) ,  IS2 is refined as the following (I) and (II) for 
each i. 

(I) Identify all PFj such that  

k/gseGS(PF,),gs--(:l:(d,n),X)---.gs,{gs' E GS( PFj) }. (* 4) 

In general, it can be checked for gs' to satisfy an AF1 type atom from the 
definition of 6 directly, and to satisfy an AF2 type atom by reducing the satis- 
faction problem to the inclusion problem for two regular sets. The restrictions 
R1 and R2 simplify the decision procedure for this inclusion problem. Con- 
sider the case Pj -- P~ in EX1.  As the message type sequence in the channel 
from PMB to PMA and that  from PMA to PMB at gs ~ are required to be 
in L(e) and L(MIP + �9 MIP) respectively, the problem to decide whether every 
gs' satisfies (GMIP +) is reduced to the inclusion problems L(r C_ L(e) and 
L(MIP + .  MIP)C_ L(MIP+). 

Then the next step is as follows: 

(II) Show that  gs' e GS(PIj)  for some j which satisfies (*4). 

To show (II),at first, the rewrite rules to express the message sequences in gs ~ 
in terms of the message sequences in gs and the message sent by executing the 
event axe generated. 
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For example, suppose that  the event is -((d,p},A).  The rewrite rules are 
generated as follows. Let {rBAj, rAB#) and (rBA,j, tAB,j} be AF2 type atoms in 
Pi and Pj respectively. Let tAB# = Ul �9 u2 �9 ." Un and rAB,j = u~ �9 u~ �9 . . .  �9 Urn, 
where uk and u I are choices of GAB or positive closures of choices of GAS, for 
1 < k < n and 1 < l < m. Since the a tom (rBA,j,rAB,j) holds for every gs' 
by (I), i.e. n(rAB,i" d) C_ n(rnB, j ) ,  it follows from the restrictions R1  and R2  
that  there exists a mapping 9 such that  L ( u l . . . . .  u~(o) C_ L ( u ~ . . . . .  u~) and 
~ ( l -  1) < ~(l) for every 1 < l < m - 1, and ~(0) = 0. Then the rewrite rule 
"AB[I]' ::~ AB[~(I - 1) + 1] . . . . .  AB[T(1)]" is generated for 1 < l < m - 1 and 
the rewrite rule "AB[m]' :~ AB[~(m - 1) + 1 ] . . . . .  AB[n]. (d,p)" is generated. 
In our example, "AB[1]' ~ AB[1]. (MIP, Ym(A))"  is generated. If the mapping 

is not uniquely determined, then for every possible ~, the rewrite rules for 
are generated and the procedure to check (II) is executed. If (II) holds for some 
~, it can be concluded that  IS2 for given ( - (d ,  n), A) holds. 

To check (II), the condition parts of all conditional rewrite rules and con- 
ditional inequalities are evaluated with assigning the values in gs to the free 
variables in the condition. If the condition of a conditional rewrite rule (or 
inequality) is shown to be true for the assignment, then the rewrite rule (or 
inequality) instantiated by the assignment is added to the assumption. In our 
example, lAB[lit > 1, stepl(AB[1]), and Vm(A) = last(AB[t]) + 1 are shown 
to be true, and the rewrite rule 
"stepl(AB[1]. (MIP, Vm(A)))  ~ true" are added as (5'). The procedures for 
evaluating AF3 and AF4 type atoms (and the conditions of conditional rewrite 
rules and conditional inequalities) are described below. 

- (AF3) Show that  the atom can be rewritten as constant term "true" under 
the term rewriting system[9] consisting of assumed relations. Figure 1-A (b) 
shows the example. Figure 1-B (d) shows a process in which "stepl(AB[1]')" 
is rewritten to "true". 

- (AF4) For an atom "a tel b" (tel E {=,_>}), find the normal forms of a 
and b under the rewriting system described above, i.e. rewrite a and b to 
norm(a) and norm(b) respectively until norm(a) and norm(b) can not be 
rewritten to any terms. In Figure 1-B (e), "Vm'(A) >_ Va'(A)" is rewritten to 
"Vm(A)+ I > Va(A)". And decide whether norm(a) rel norm(b) belongs to 
the transitive closure (over the set of expressions of the form "v + C") of the 
assumed inequalities (Figure 1-B (c)). In our example, let GE = {(a, b) I a > 
b is an assumed inequality}, then (Vm(A)§  Vm(A)) and (Vm(A), Va(A)) 
belong to GE. The transitive closure of GE contains (Ym(A) + 1, Va(A)). 
We can conclude that  "Vm(A) + 1 > Va(A)"(Figure 1-B (f)). 

4 A Verification Sys tem 

We implemented a verification system based on the verification method described 
in Section 3. The verification system provides the procedures for executing a state 
transition, deciding the inclusion problem on given two regular sets, rewriting a 
term under the given term rewriting system, and deciding whether a given pair 
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of expressions belong to the transitive closure of given relations. The system 
executes the inductive step of the proposed verification method by conducting 
the above procedures. 

An input to the verification system consists of the definition of protocol ma- 
chines, properties of predicates on sequences of integers such as stepl explained 
in the example in Section 3, and a logical formula F to be shown an invariant. 
The system constructs a state transition table, unfolds an input formula to ob- 
tain a disjunctive normal form, and executes the verification procedure described 
in Section 3. If there exists a pair of global states gs and g# such that  gs ~ g#, 
gs E GS(F) and gs' ~ GS(F), then the system always detects the fact and re- 
ports relevant information on such global states and a transition. If  there exists 
a deadlock or unspecified reception state which satisfies F,  then the system also 
detects that  and reports it. 

The verification system was implemented by using C, lax, and yacc on the 
UNIX environment. The size of the source code of the system is about  10,000 
lines. 

5 A n  E x p e r i m e n t a l  R e s u l t  

To show the usefulness of the proposed verification method,  we performed an 
experiment on a part  of OSI session protocol[10]. 

5.1 Extracting a Sample Protocol  

We extract  the protocol for data transfer phase of kernel, duplex, minor syn- 
chronize and major synchronize functional units from OSI session protocol. For 
simplification, we omit some PDU(message)s which have no effect on any reg- 
isters and we assume that  the rights to send MIP(MINOR SYNC POINT) 
and MAP(MAJOR SYNC POINT) are transferred simultaneously from a pro- 
tocol machine to the other machine by sending a token named ma-mi token 
instead of using two tokens ma and mi. For the extracted protocol //,~s = 
(PMse~A,PMse~), PMses~ and PMs~ss are the same protocol machines ex- 
cept their initial states, i.e. PMs~ A owns ma-mi token while PMse~s does not 
at the initial states. The size of the states of finite control and the number of 
registers of the protocol machine are 10 and 2 respectively. And the number of 
message types used in the protocol is 10. 

5.2 V e r i f i c a t i o n  R e s u l t  

For the protocol / /~ ,s ,  the set of global states expected to be reachable has been 
divided into 60 subsets by considering the possible combinations of the states 
of finite control parts  of two protocol machines. We have described a logical 
formula based on these subsets of global states. The numbers of AF1 through 
AF4 type atoms in the described formula are 180, 60 46, and 297 respectively. 
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The properties on sequences of integers used for verification were provided in 
terms of 10 conditional rewrite rules and 7 conditional inequalities. 

In the process of describing a formula, a human verifier often misses some 
reachable global state and describes an incorrect formula, i.e. a described formula 
is not an invariant in IIs~s. In such a case, the verification system detects a 
global state which does not satisfy the described formula and reports relevant 
information about  the global state. A human verifier revised the formula using 
the information reported by the verification system. 

The described formula was verified to be an invariant and the protocol was 
verified to be safe by the verification system on a UNIX workstation (Solbourne 
Series 5/600, 2CPU 48MB). The CPU time and memory storage used in the 
execution are 12.0 seconds and 816 KBytes respectively. The input formula was 
expanded to a disjunctive normal form consisting of 170 conjunctive terms. The 
number of considered state transitions was 428, and the number of AF3 and AF4 
type atoms checked to hold in some global states were 222 and 1600 respectively. 

6 D i s c u s s i o n  

It seems that  in a verification procedure via invariant for extended communi- 
cating finite-state machines, how to cope with integral registers dominates its 
verification power and efficiency. In this paper, by restricting the expressions 
appearing on both sides of inequalities to the form of "v + C", the problem 
whether a given inequality is implied by a given set of inequalities can be de- 
cided by an efficient procedure. In most of practical protocols, the operations 
on integral registers in the definition of a state transition function of a protocol 
machine are limited to simple types, e.g. "store some value", "add a constant 
number to the current value", or "clear to 0", and the restriction on the form 
of inequalities does not affect the verification power on such protocols. If more 
general operations on integral registers e.g. "summation of register values" are 
used in a protocol, then a more general procedure, e.g. the decision procedure for 
Presburger formula which is known to be intractable in general, may be required 
to deal with such a protocol. 

In this paper, we put a restriction on regular expression. This greatly sim- 
plifies the procedure for deciding whether a given regular set includes another 
regular set. We are extending the verification system to allow the following in- 
terleaving operator " [[ " on regular expressions without loss of simplicity. For 
regular expressions r~ and r2, 
L(r l  II = { w x x l ~ . . . w k x ~  I w ~ . . . w k  e L(r l )  and xlx2. . .xk  �9 L(r2)}. 

As a practical protocol such as OSI session protocol provides many kinds of 
services, the definitions of protocols tend to be enormous and any verification 
method suffers from state space explosion. To facilitate the design and analy- 
sis of such a protocol, the authors have proposed a method for composing a 
safe protocol from a safe protocol defining a priority service and that  defining 
an ordinary service[11]. Furthermore, several composition techniques have been 
proposed within the framework of CFSM[12]-[14]. It is desirable to fit these 
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techniques to the protocol model discussed in this paper. Currently, we are con- 
ducting an experiment to show the safety property of OSI session protocol using 
these techniques. 
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(a) a conjunctive formula 

P~ = ( {STAT13}, {STA713} > (AF1) 
A ( ~, MIP + ) (AF2) 
A stepl(AB[1]) (AF3) 
A Y m ( A )  = last(AS[l])  + 1 (AFt,) 
A V m ( B )  = head(AS[l]) 
A Va(A)  -=- V a ( S )  
A Y m ( A )  ~ Ya(A)  
^ ym(s )  >_ V~(B) 

(b) term rewriting system 

definition of 6A: 
event: - (MIP ,  Vm(A) )  

(STA713 ~ STA713 I 
V m ' ( A )  ~ V m ( A )  + 1 (1) 
Va'(A)  ~ Va(A)  . (2) 

properties of defined predicates: 
last(seq . (type, n)) ~ n (3) 

Iseq] >_ 1 : 
head(seq. (type, n)) ::~ head(seq) (4) 

Iseql > 1, stepl(seq), t = last(seq) + 1: 
s tepl(seq.  (type, t) ) ~ true (5) 

added rules by evaluating 
the conditions of conditional rewrite rules: 

s tep l (AB[ l ] .  (type, Vm(A) ) )  ~ true (5') 

inductive hypotheses: 
stepl(AS[1]) ~ true (6) 

relation between message sequences: 
AB[1]' =~ AB[1]- (MIP, Vm(A) I  (7) 

Figure  1 -A.  A f o r m u l a  a nd  a process  o f  ver i f i ca t ion  o f  E X 1  
(All terms with primes denote the values after transition.) 
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(c) assumed inequalities 

inductive hypothesis 
Vm(A) = last(AB[1]) + 1 
Vm(B) = head(nB[1]) 
Va(A) = Va(B) 
Vm(A) > Va(A) 
Vm(B) > Va(B) 

properties of defined functions 

(d) a process of rewriting a predicate 

~tepl(ABN') 
stepl(AS[1]. (MIP, Ym(A))) by (7) 
true by (5') 

(e) a process of rewriting an inequality 

Vm'(A) > Va'(A) 
2* Vm(A) + 1 > Va(A) by (1),(2) 

(f) the transitive closure 

V.~(A)+I > Vm(A) > Va(A) 

Figu re  1-B. A f o r m u l a  and  a p roce s s  of  ve r i f i ca t ion  o f  EX1 
(All terms with primes denote the values after transition.) 


