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Abstract .  Currently, many are investigating promising verification meth- 
ods based on Boolean decision diagrams (BDDs). Using BDDs, however, 
requires modeling the system under verification in terms of Boolean for- 
mulas. This modeling can be difficult and error-prone, especially when 
dealing with constructs llke arithmetic, sequential control flow, and com- 
plex data structures. We present new techniques for automatically trans- 
lating these constructs into BDDs. Furthermore, these techniques gen- 
erate Boolean next-state relations in a form that allows efficient image 
computation without building the full BDD for the next-state relation, 
thereby side-stepping the commonly-encountered BDD-size blowup of 
next-state relations. 

1 Introduction 

With the high complexity of hardware designs and protocols, improved debug- 
ging tools and methodologies are critical to avoiding the expenses and delays re- 
suiting from discovering bugs late in the design phase [9, 4]. Simulation catches 
some problems, but bugs frequently slip through. The increasing concurrency 
and complexity of hardware designs exacerbates this problem: detecting by sim- 
ulation every bug resulting from the complex interaction of concurrent events 
becomes highly improbable (or prohibitively time-consuming). This situation 
has prompted interest in verification techniques. 

Verification by state enumeration is particularly attractive because it is highly 
automatic: Given a specification, the verification system performs the verification 
with no further user intervention [4]. The main disadvantage of this technique is 
the potentially huge number of possible states. To address this state-explosion 
problem, many recent results have used symbolic expressions to specify sets of 
states (e.g. [2, 5, 4, 9]). In fact, an of the above cited works use a particularly 
promising data structure for the symbolic expressions: Boolean decision diagrams 
(BDDs) [7]. 

One drawback of BDDs is the requirement to describe the system being 
verified using Boolean formulas. This modeling is difficult, time-consuming, and 
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error-prone [17]. Worse, revising the description to, for example, scale the number 
processes, enlarge buffers, or increase word sizes, entails a laborious rewriting of 
the entire description. Working with common programming language constructs 
like scalar-valued variables [18], arrays, records, and sequential assignment would 
be much more natural. 

Another problem confronting verification with BDDs is that the next-state 
relation of the system being verified frequently results in a BDD that is too large 
to build [10, 19, 3]. For verifying deterministic finite-state machines (e.g. a digi- 
tal synchronous circuit), Boolean Functional Vectors [10] have proven quite suc- 
cessful. Unfortunately, higher-level specifications tend to be non-deterministic, 
necessitating other approaches to avoiding this problem. 

We are working on two languages to address these problems. One, called 
Mur~o, is a high-level language much like common structured programming lan- 
guages. We can compile Mur~o both into C++  (for simulation and non-symbohc 
verification) and also into our second language. We discuss Mur~o in another pa- 
per [11]. The second language, called Ever, is a BDD-based verifier. In addition 
to the usual Boolean and verification operators common to other BDD-based 
verifiers, however, Ever provides direct support for many higher-level features, 
including scalars, arrays, records, and sequentiality. These higher-level features, 
besides providing expressive power, allow us to avoid building the full BDD for 
the next-state relation. Supporting these features involves some novel techniques 
that we discuss here. 

2 Design Objectives 

We started with some abstract design objectives. As Ever is intended to be an 
intermediate language, it must be easily machine-generated. Furthermore, the 
language must allow compact expression of the semantics of the higher-level lan- 
guage. On the other hand, the language should be human-readable and human- 
writable to allow writing Ever code directly, facilitate modifying automatically- 
generated code, and ease debugging the automatic generators. 

Like other BDD-based verifiers, Ever must support the usual Boolean and 
temporal logic operators, as well as standard verification operations like reach- 
ability and trace generation. Our experience also indicated that parameterized 
predicates would be convenient. 

Complex data structures are imperative. For example, while verifying a real, 
industrial link-level protocol, we needed to specify queues that were arrays of 
packets. Each packet, in turn, was a record including fields for packet type, 
sequence number, and other data. The fields were integers, enumerated types, 
or records. Clearly, then, we must provide scalar values and variables, with the 
concomitant arithmetic and relational operators, as well as array and record 
constructors, to allow arbitrarily complex data structures. Beyond expressive 
convenience, these higher-level data structures provide an additional pay-off: 
scalability. By simply changing a few constants and array bounds, we can easily 
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take a large and detailed description of a system and scale it to a smalier version 
that  can be fully verified. 

One particularly dii~cult aspect of modeling with Boolean formulas is an 
instance of the famous Frame Problem in artificial intelligence [16]. We refer to 
our instance as the problem of stability: for a given operation, how does one 
determine which variables retain their current values, which variables change, 
and which variables axe non-deterministic. In a normal programming language, 
a variable that  is not explicitly modified keeps its current value. In the Boolean 
context, however, any variable that  is not constrained can take on any value. 
This semantic difference gives Boolean formulas much of their expressive power, 
but is also the source of many subtle specification bugs. For example, it is easy 
to see that  an imperative statement like: 

x := 1 7 ;  

corresponds to the Boolean next-state relation: 

( n o x t ( x ) = 1 7 )  IHD ( e v e r y t h i n g  e x c e p t  x d o e s n ' t  c h L n g o ) .  

It is not obvious how to correctly translate a code fragment (taken from an 
industrial directory-based cache-coherence protocol modeled in our imperative 
specification language Murks) like: 

I : f  ( i  < H o m e s [ h ] . D i r [ ~ . S h a r o d _ C o u - ~ t )  k ( H o m e s [ h ] . D i r [ a ] . E n t r i s s r i ]  ffi n )  

T h e n  
- -  o v s r e r i t e  t h i s  e n t r y  s i t h  ] . a s t  e n t r y .  

Homes [ h ]  . D i r  [ a ]  . E n t  t i e s  [ i ]  :=  
Homes [ h ] .  D i r  [ a ] .  Hnt  r s  [Homes [ h ] .  D i r  [ a ]  . S h L r e d _ C o u n t  - 1 ]  ; 

- -  c l e a t  ] . a s t  e n t r y  
Homes [ h i .  D i r  [ a ] .  E n t  r i o  s [Homes [ h ] .  D i r  [ a ] .  S h a r e d _ C o u n t -  l ]  : = 0 ;  
Homes [ h ]  . D i r  [ a ]  . S h a r e d _ C o u n t  : ffi Homes [ h ]  . D i r  [ a ]  . S h L r e d _ C o u n t -  1 ; 

E n d i ~ ;  

To handle such expressions, then, we felt it necessary to support deterministic 
assignment, which handles stability exactly as the user would expect, directly 
in Ever, aiong with facilities to build correct next-state formulas for complex 
statements from the formulas for simpler ones. 

3 A Simple Example 

An example is perhaps the easiest way to acquaint oneself with the Ever lan- 
guage. We will look at a simple link-level protocol. (See Figure I.) There are 
four processes: a source, a transmitter,  a receiver, and a destination. These four 
operate asynchronously, handshaking via ports. 2 The source has a string of data,  
which it sends a character at a time to the transmitter.  The transmitter  packs 
the characters into packets, appends a checksum, and sends the packet to the 
receiver. The receiver unpacks the characters, and sends them one at a time to 
the destination. The destination receives characters and stores them in a buffer. 

2 The computational model underlying Ever is a non-determinlstic finite-state ma- 
chine. We can easily model the asynchronous, interleaved concurrency in this exam- 
ple using non-determinlstic choice. Synchronous paraHel;sm currently requires some 
contortions. 
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Source 

messaaes.sent 
I I 

src_ptr 

Destination 

messaaes, received 
I I 

~ dest_pt r 

Transmitter 

~ tx_ptr 

ix_checksum 

Receiver 

~ rxptr 

[] 
rx_checksum 

Fig. 1. In this simple example, a message travels from source to destination. The 
transmitter and receiver handle packets and checksums. 

The syntax is simple in order to simplify automatically generating Ever code. 
A program consists of a sequential list of declarations and commands. Within a 
declaration or command, expressions are in LISP-like prefix notation. Array and 
record accesses are denoted by square brackets and periods, as in Pascal or C. 

The first few lines: 

de f type  s i g n a l  ( b i t s  I "low" " h i g h " ) ;  
de f type  char  ( b i t s  I "a"  " b " ) ;  
do f type  i n t e g e r  ( b i t e  4) ;  
dof type  packe t  ( r e co r d  d a t a  ( a r r a y  0 3 char )  chock c h a r ) ;  

declare some types. In Ever, we declare scalar types by the number of bits needed. 
(The strings following the bit width are used for output .)  Thus, types s i g n a l  
and cha r  are both 1 bit, type i n t e g e r  is 4 bits, and type p a c k e t  is a record 
with two fields: da ta ,  a four-element array, and check,  of type char .  The next 
few lines declare variables for the source and destination: 

dofva r  e re_ready  s i g n a l ;  
d s f v a r  e r c _ p t r  i n t e g e r ;  
d e f v a r  a r c _ d a t a  cha r ;  

- -  Va r i ab l e  ezc_zeady i s  of  type  s i g n a l ,  
- -  and so f o r t h .  

d e f v a r  doer_par  i n t e g e r ;  

de fvaz  messages ( i n t e r l e a v e d  r e c o r d  
sent (array 0 7 char) 
received (array 0 T char) 

); 
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The source sends the contents of messages ,  s e n t  to the destination, which writes 
the data into m e s s a g e s . r e c e i v e d .  We will discuss the i n t e r l e a v e d  keyword 
later. We then declare variables for the t ransmit ter  and receiver. 

defvar packets ( in ter leaved record 
tx packet 
sent packet 
rx packet 

); 

defvar tx_ptr integer; 
defvar tx_checksumchar; 
defvar tx_ready s ignal ;  

defvar rx_ptr in teger ;  
defvar rx_data char; 
defvar rx_checksumchar; 
defvar rx_ready signal  ; 

The next lines define the set of possible start  states: 

defprop Star tS ta te  (and 

); 

(eq s rc_p t r ' c  0) - -  src_ptr  must be 0 
(eq src_ready'c 0) - -  ere_ready must be 0 
(eq tx_p t r ' c  0) - -  e tc .  
(eq tx_ready'c 0) 
(eq rx_p t r ' c  4) 
(eq rx_ready'c 0) 
(sq des t_p t r ' c  0) 

The suffix "c specifies the current value of the variable, whereas the suffix "n 
specifies the next value. The formula initializes the control variables, but leaves 
the data unspecified, allowing them to assume any value. 

Next, we define the next-state relation. The definition is in parts. First, we 
define the source: 

defprop Source ( i f  (and ( le  s rc_p t r ' c  7) 
(sq src_ready'c 0)) - -  I f  es can send another char 

(compose - - then send i t  to Tx 
(becomes src_data 'n  messages, sent  [SrCmptr*c] *C) 
(becomes s rc_p t r 'n  (add s r c_p t r ' c  1)) 
(becomes src_ready'n 1) 

) 
FILSE - - e l s e  block 

); 

which s imply writes the next  character  to a por t  if  the por t  is ready. Note  t h a t  
scalar a r i thmet ic  makes  it easy to ma in ta in  counters.  The  becomes  operator 
provides  de te rminis t ic  ass ignment :  it generates  the B D D  nex t - s t a t e  re la t ion tha t  
assigns an expression to a variable,  while keeping all o ther  variables  constant .  
Combining the  becomes  operator with  the compose operator, which provides 
nex t - s t a t e  re la t ion composi t ion ,  produces  code resembling sequent ia l  execut ion,  
bu t  which ac tua l ly  defines a nex t - s t a t e  relat ion for all legal executions.  Next ,  we 
define the  t r ansmi t t e r :  

defprop Tx ( i f  (and ( ls  t x_p t r ' c  3) 
(eq src_roady'c 1)) - -  I f  incoming char 
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(compose - - t h e n  add i t  to  packet  and update checksum 
(becomes p a c k e t s . t x . c h e c k ' n  (add p a c k e t s . t x . c h e c k ' c  

s r c _ d a t a ' c ) )  
(becomes p a c k e t s . t x . d a t a [ t x _ p t r ' c ] ' n  a r c _ d a t a ' c )  
(becomes t x _ p t r ' n  (add t x _ p t r ' c  1)) 
(becomes s r c _ r e a d y ' n  O) 

) 
( i f  (and ( i t  t x _ p t r ' c  3) 

(eq t x _ r e a d y ' c  0)) - - e l s e  i f  ready to  send packet  
(compose - - t h e n  send i t  to  Rx 

(becomes p a c k e t s . s e n t ' n  p a c k e t s . t x ' c )  
(becomes p a c k e t s . t x ' n  O) 
(becomes tx_pt r~n  O) 
(becomes tx_ ready 'n  1) 

) 
FALSE - - e l s e  block 

) 
); 

The t ransmit ter  reads characters from the source, appends them to a packet, 
and computes a checksum. Whenever it has a complete packet and the channel 
to the receiver is clear, it sends the packet. The receiver unpacks characters from 
the packets: 

defprop gx ( i f  (and ( i t  r x _ p t r ' c  3) (eq t x _ r e a d y ' c  1)) - - I f  we can r e c e i v e  packet  
(compose - - t h e n  get the  packet  

(becomes p a c k e t a . r x ' n  p a c k e t s . s e n t ' c )  
(becomes p a c k e t s . s e n ~ ' n  O) 
- -  Error  d e t e c t i o n  and recovery  code would go he re .  
(becomes r x _ p t r ' n  O) 
(becomes t x _ r e a d y ' n  O) 

) 
( i f  (and ( l e  r x _ p t r ' c  3) 

(eq rx_ ready ' c  0)) - - e l s e  i f  we have da ta  f o r  Dest 
(compose - - t h e n  send i t  

(becomes r x _ d a t a ' n  p a c k e t s . r x . d a t a [ r x _ p t r ' c ] ' c )  
(becomes r x _ p t r ' n  (add r x _ p t r ' c  1)) 
(becomes rx_ready 'n  1) 

) 
FALSE - - e l s e  block 

) 
); 

In a real ~nk-level protocol, we would insert code to check the checksum and 
handle errors at the indicated point. The destination is easy: 

defprop D e s t i n a t i o n  ( i f  (eq rx_ ready ' c  1) - - I f  Rx has data  f o r  us 
(compose - - t h e n  get  i t  

(becomes m e s s a g e s . r e c e i v e d [ d o s t _ p t r ' c ] ' n  r x _ d a t a ' c )  
(becomes d e s t _ p t r ' n  (add d e s t _ p t r ' c  1)) 
(becomes rx_ ready 'n  O) 

) 
FALSE --else block 

); 

W e  def ine  t h e  n e x t - s t a t e  r e l a t i o n  for  t h e  en t i r e  s y s t e m  

defprop l e x t S t a t e  (or (Source) (Tx) ( lx)  ( D e s t i n a t i o n ) ) ;  
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as the non-deterministic choice of the preceding next-state relations. 
The remaining lines of the program: 

defprop Ok ( i f  (gt desr162 7) (eq messages.sen~'c messages . rece ived 'c) ) ;  

printCrace (StartS~aCe) (lexCState) (not (Ok)); 

define a simple verification condition and invoke the ~eachability verifier. We use 
verification conditions to check safety properties. The state-teachability compu- 
tation starts from all states that satisfy the start-state formula and, using the 
specified next-state relation, outputs a trace that reaches the end condition (or 
is as long as possible). 

This program takes thirteen and a half minutes on a SUN 4/75, using less 
than 6.4MB of memory, to compute all reachable states and to find and print a 
longest acyclic trace (37 states long). Interestingly, even this short example has 
84 billion reachable states (out of a state space of 1.8 x 1016 states) putting it 
well-beyond the reach of non-symbolic state-enumeration verifiers. 

4 Translation into Logic 

Much of the Ever l~nguage is similar to other BDD-based verifiers. We will only 
briefly mention these aspects here. Logical operations are directly supported 
by BDDs [7]. Our implementation uses Brace et al.'s BDD implementation [6]. 
Symbolic verification algorithms (teachability, trace generation, etc.) are stan- 
dard and can be found in several sources [9, 2, 4, 5]. Very recently, Clarke et 
al. [8], as part of a larger work on building approximate abstract models of pro- 
grams, have proposed a solution to the problems of stability and sequentiality 
that is essentially a special case (no complex data structures) of the determin- 
istic assignment rules in Section 4.3 combined with the sequentiality rule in 
Section 4.4. 

4.1 Scalars 

We represent a scalar variable as a vector of Boolean functions. We map scalars to 
Booleans using the binary representation of the ordinal value of the scalar. A vari- 
able a would be represented by (s3, a2, al, u0), where the ai are the Boolean vari- 
ables corresponding to a. The scalar quantity a + 4 would be (aa ~ a2, ~, al, ao). 
This mapping permits, for instance, using a simple ripple-carry adder to compute 
the sum z = z + y of two scalar variables: 

Zi = Zi {~ Yi ~ Ci-1 

ci = ziyi + ci-x(zi + l/i). 

Similar expressions correspond to other operators. We have implemented a larger 
set of arithmetic and relational operators than Srinivasan et al. [18], including 
comparison, addition, and subtraction between arbitrary scalar-valued expres- 
sions. Note that these expressions are computed logically on the Boolean char- 
acteristic functions, so that, for example, if P(z)  and O(y) specify the subsets 
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of possible values for z and y, we can express that  z can be all possible values 
of the sum by writing 3z, y [P(z )  A Q(y) A (z = z + y)]. 

4.2  D a t a  S t r u c t u r e s  

As illustrated in the example in Section 3, Ever permits Pascal-like records 
and arrays. Implementing the variable declarations is much like compiling the 
variable declarations of a structured Programming language, except tha t  instead 
of allocating bits of memory for storage, we allocate entries in an array of BDD 
variables. Let us call this array V. We can easily compute the size of V using a 
s tandard recursive computation:  the size of a scalar is the number  of bits used 
to represent it, the size of a record is the sum of the sizes of its fields, and the 
size of an array is the product of the number of elements in the array and the 
size of an array element. 

A more interesting problem is to generate the correct vector of Boolean for- 
mulas to correspond to a variable reference. For a simple variable reference, we 
look up the offset to the correct BDD variables much as a compiler would gen- 
erate the offset to the s tar t  of the correct block of memory.  The BI)D variables 
starting at that  offset form the correct vector of Boolean formulas. For a record 
access, we start  with the base variable as before, add the field offset, and pro- 
ceed as in the case of the simple variable reference. Array indexing is the most  
complex. If  the index were a constant, we could proceed as for records. The in- 
dex, however, can be an arbi trary scalar-valued expression, which is a vector of 
Boolean functions denoting a set of possible values. For example, an expression 
like z [a+4]  denotes a vector of Boolean formulas that ,  when restricted to having 
a : 0, are equivalent to the Boolean formulas for z[4]; when restricted to having 
a : 1, are equivalent to z[5]; and so forth. If  f ( a )  is the proposition 1 < a < 5, 
then the proposition (z : z[a + 4]) A f ( a )  says that  z can be equal to any of 
z[5] through z[9]. Therefore, the formulas we generate for an array access must  
perform a case analysis for each possible value of the array index. 

In more formal terms, define a modifier as either a field name or an array- 
indexing expression. We will consider a variable name to be a field name in a 
global record. In this notation, a variable reference is simply a string of modifiers. 
For any field name or constant array index, define OFFSET(modif ier)  to be the 
offset from the beginning of the record or array to the s tar t  of the referenced field 
or array entry. O F F S E T  is a common computat ion in compilers: the offset for a 
record field is the sum of the sizes of the fields that  precede it~ and the offset for 
the i th array entry is the product of i (minus the array lower bound) and the size 
of an array element. Denote by V(n, s) the s BDD variables in the storage array 
V going from V[n] to V[r~ + s - 1]. Since this quanti ty is a vector of Boolean 
formulas, we can consider it to be an Ever scalar. For notational convenience, a 
Boolean operator applied to a vector of Boolean formulas is assumed to apply 
in parallel to each element. Given an arbi trary variable reference p, define s o to 
be the number of bits that  p describes, or equivalently, the size of the referenced 
variable. The vector of Boolean formulas for the variable reference p is given by 
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BDD(0, p), where the function BDD is defined by: 

BDD(n, e) = V(n ,  sp) 

BDD(n,  field_name c,) = BDD(n + OFFSET(field_name),  or) 

BDD(n, indez_ezpr cr) = f [( indez_ezpr = i) ==~ BDD(n + OFFSET(i) ,  a)] 
4=i 

where cr is a (possibly empty) string of modifiers, e is the empty string, and l 
and u are the lower and upper bounds of the array. Note that these expressions 
generate a vector of complex Boolean formulas, rather than a set of particular 
BDD variables. Intuitively, the generated formulas are multiplexors whose select 
lines are driven by the array-indexing expressions and whose inputs are the BDD 
variables. (The formula for array indexing can be considered a scalar-valued 
generalization of work by Beatty et al. [I].) 

4.3 D e t e r m i n i s t i c  A s s i g n m e n t  

To implement deterministic assignment, we use a computation similar to the 
variable reference computation described above, except that we must specify 
that every BDD variable that isn't referenced must keep its current value. 'Also, 
for variable referencing, we are generating a vector of Boolean formulas; in the 
case of deterministic assignment, we want to generate a single Boolean relation 
between the current state of the system and the next state of the system that is 
true iff the current and next states correspond to the deterministic assignment. 

For records, generating this relation is straightforward. For each field not 
being accessed, we AND into the Boolean relation being generated the further 
requirement that the field not change. For the field that we do access, we equate 
a variable reference expression like that generated in the previous section with 
the right-hand side of the assignment. For arrays, we must again perform a case 

analysis. 
Formally, the next-state relation for deterministic assignment of an expression 

new_va/ue to a variable reference p is given by BECOMES(0, p, new_value), where 
the function BECOMES is defined by: 

BECOMES(n, e,,,) = (V(n, ,p) = ~) 

BECOMES(n, fleld-namea,,,) = A 
! ~ record_fleldJ 

i f  ( f  = 9eld_.a-,,) ] 
then 

BECOMES(n + OFFSET(f ),a, ~) 
else V(n + OFFSET(f), "S) 

remains constant. 

[ i f  (i = ] 
BECOMES(n, indez_ezpr or, v) = A / then BECOMES(n + OFFSET(i), a, v) / 

i=z [ else V(~t + OFFSET(i), 8~) remains constant. J 

where s! is the size of record field f ,  s ,  is the size of an array element, and the 
other variables are defined as before. 



91 

4.4 S t a b i l i t y  

Once we have deterministic assignment, the problem of stability becomes easy. 
Here are the rules we need to build larger next-state relations from smaller ones 
with correct stability. (Correctness follows trivially by a structural induction.) 
If p is some code fragment in a higher-level language, define EVER(p) to be the 
corresponding Ever next-state relation. 

A s s i g n m e n t :  If p is an assignment statement "variable := expression", then 
EVER(p) is "(becomes variable expression)." 

S e q u e n t i a l i t y :  If p is a sequence of statements "sl;  s2; . . .  ; s , " ,  then EVER(p) 
is "(compose EVER(si)  EVER(s2) . . .  EVER(s,)) ."  (The compose operator 
is simply Boolean relation composition. For example, if Ni(z,  9) and N2(z, y) 
are two Boolean relations, we can compute N2 o Ni (z ,y )  = 3z[Ni(z,z)A 

y)].) 
C o n d i t i o n a l :  If p is the conditional statement "if c then si else s2 endif", then 

EVER(p) is " ( i f  c EVER(si)  EVER(s2))." 
N o n - D e t e r m l n l s m :  If p is the non-deterministic choice between si and s2, 

then EVER(p) is simply "(or EVER(ss) EVER(s2))." 

Note that  these rules essentially provide a denotational semantics for a higher- 
level, sequential specification language in terms of Ever. We are currently using 
a structured protocol description language Mur~o that,  by applying these rules, 
compiles efficiently into Ever for symbolic verification. For example, the complex 
statement presented in Section 2 is a Mur~o statement that  compiles by a trivial 
rewriting into the following Ever code: 3 

( i ~  
( and  

( l t  i ' c  Homes [ h ' c ]  .D i r  [ a ' c ] .  S h a r e d _ C o u n t ' c )  
( eq  Homes [h ' c ]  . D i r [ a ' c ]  . E n t r i e s [ i ' c ] ' o  n ' o )  

) 
(compose - -  i f  body 

(becomes 
Homes [h'c] .Dir [a'c]. Entries [i'c] "n 

Homes [h'c] .Dir [a'c]. Entries [(sub Homes [h'c] . Dir [a'c] . Shared_Count'c 1)] "c 
) 

(becomes  

H o m e s [ h ' c ]  . D i r [ a ' c ]  . E n t r i e s  [ ( s u b  H o m e s [ h ' c ]  . D i r [ a ' c ]  . S h a r e d _ C o u n t ' c  1 ) ] ' n  
0 

) 
(becomes  

Homes [h" c] . D i r  [ a" c ] .  Shared_Count  "n 
( sub  Homes [ h ' c ] .  Di r  [ a ' c ] .  S h a r e d _ C o u n t ' c  1 ) 

) 
) 
CurHextEq - -  e l s e  body 

) 

3 The code fragment given in Section 2 is actually from a procedure, which Mur~o 
inllnes. Therefore, in the translation of the real protocol, the parameters i,h,a, and n 
are replaced by the complex expressions in the procedure call. This situation presents 
no problem to Ever, but would needlessly complicate our illustrative example. 
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(CurNextgq is a next-state relation that requires the state not to change.) 
Translation from other protocol description languages into Ever should also be 
straightforward. 

4 . 5  Image  C o m p u t a t l o n  

The preceding techniques are sumcient to convert a high-level specification into 
a Boolean next-state relation expressed as a BDD. Given a next-state relation 
N(z, z'), computing foward and backward images of characteristic functions X(z) 
and X'(z') is easy and efficient: the forward image is simply 3z[x(z) A N(z, z')], 
and the backward image is simply 3z'[X'(z') A N(z, z')]. Efficiently computing 
these operations is important because they are the basis for most verification 
algorithms. For large problems, however, the BDD for N(z, z') is frequently too 
large to compute [10, 19, 3]. Because of this problem, many researchers have 
turned to Boolean Functional Vectors [10, 14, 13] or closely related methods [19] 
to successfully verify large gate-level digital circuits. 

Unfortunately, these methods, in addition to complicating image computa- 
tion, do not support non-deterministic next-state relations. In the domain of 
gate-level digital circuits, this ]imitation does not matter; a gate-level circuit 
is typically considered deterministic. To model and verify higher-level proto- 
cols, however, non-determinism is essential, both to model unpredictable events 
(e.g. noise corrupting a data transmission) and to allow abstraction (e.g. mod- 
eling a cache without full details of the line-replacement policy). 

Fortunately, the translation of higher-level language constructs into Ever 
automatically gives us the next-state relation in a form that allows efficient 
computation of both forward and backward images without building the BDD 
for the full next-state relation. Let Image(x, N) be the forward image of the 
characteristic function X under next-state relation N. Recall from Section 4.4 
that we generate Ever code from a higher-level language using a set of recursive 
rules. Therefore, an Ever next-state relation always has one of the following 
forms: 

- N(z, z') is a deterministic assignment. This case is the basis. We must build 
the BDD for N and compute Image(x, N) -- 3z[x(z) A N(z, z')]. 

- N(z, z') = (N,, o . . . o  N1)(z, z'), where the operator o denotes composition: 
(N2 o N1)(z, z') = 3z"[Nl(z, z") A N2(z", z')]. In this case, Image(x, N) is 
just the forward image of Image(x, N1) under (N,, o . . - o  N2)(z, z'). 

- N(z, z') = if C(z) then Nl(Z, z') else N2(z, z'). In this case, Image(x, N) 
equals Image(x A C, NI) V Image(x A C, N2). 

- N(z, z') = N~(z, z')V-.. V N,~(z,z'). This case is Butch et a/.'s [3] dis- 
junctive partitioned transition relation. We compute Image(x, N) as simply 
Image(x, N1) V. . .  V Image(x, N,).  

The computation of backward images is almost identical. These rules require 
building the BDD only for the next-state relations corresponding to each in- 
dividual assignment, thereby eliminating the problem of building an enormous 
BDD for the entire next-state relation. 
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This technique represents an instance of the classic space-time tra~ie-off. The 
number of nodes in the BDD for the full next-state relation is, in the worst 
case, the product of the number of nodes in the component next-state relations 
(yielding exponential behavior). Using the above technique, the number of BDD 
nodes is the sum of the number of nodes in the component next-state relations 
(yielding linear growth). On the other hand, one image computation on the full 
next-state relation becomes one image computation for each of the component 
next-state relations, yielding slower execution. Finally, in some instances, the 
BDD for the full next-state relation is substantially smaller than the worst- 
case behavior. Ever provides an evaluate operator to force the construction of 
the BDD for a given expression. Using this operator gives flexibility in trading 
space for time. For the small example described in Section 3, forcing complete 
evaluation of the next-state relation only increased memory usage to 6.SMB while 
cutting runtime to four and a half minutes. In contrast, on a large model of a 
real directory-based cache-coherence protocol (approximately 1000 lines of Mur~a 
code and 1034-state state space), both the fully-evaluated next-state relation and 
the disjunctive partitioned next-state relation were unable to build the required 
BDDs (with a 60MB memory limit), whereas the technique described above 
enabled teachability computation and verification using less than 24MB memory 
and one hour of CPU time. (All figures are for a SUN 4/75.) 

5 F u t u r e  W o r k  a n d  C o n c l u s i o n  

One issue that  definitely needs further research is the problem of variable order- 
ing. The size of the BDD representation of a Boolean function depends critically 
on the ordering of the variables [7]. One heuristic that  has proven useful for 
scalars is to interleave the corresponding bits (most significant bits first, fol- 
lowed by the next most significant bits, etc.) [18]. In many cases, this ordering 
produces a substantially smaller BDD. For example, to check the equality of two 
scalars z = y, this ordering (z,~, y,~, . . . ,  zl ,  91) produces the optimum 3n-node 
BDD, whereas a naive ordering (z,L, �9 �9 zl ,  y,~,. . . ,  91) produces an exponential- 
sized BDD. Jeong et al.'s Non-Interleaving Lemma [14] provides theoretical jus- 
tification for this heuristic. 4 The i n t e r l e a v e d  keyword mentioned in Section 3 
implements this ordering on each subtype to which it is attached. We plan to 
introduce additional variable-ordering heuristics to permit verification of larger 
examples. 

Another issue is the question of relating specifications at different levels of 
abstraction. For example, we may wish to check that  a synthesized circuit corre- 
sponds to a higher-level specification. We have developed an efficient technique 
to find s imulat ion  preorders, which check that  one specification implements an- 

4 In an unfortunate clash of terminology, what we and Srinivasan et al. call an inter- 
leaved variable order, because the bits comprising the scalars are interleaved, creates 
what Jeong et al. can a non-interleaved order, because the Boolean relations for the 
individual bit-sllces have disjoint supports and are grouped together. 



94 

other [15, 12]. We are currently investigating the integration of this technique 
into Ever. 

We have demonstrated the efficient implementation of higher-level language 
features in a BDD-based verifier and expect that these techniques will be ap- 
plicable to other verifiers as well. These features have greatly simplified writing 
specifications for verification, as they provide a much more natural means of 
expression. Furthermore, they can also increase the efficiency of the verification 
by obviating the expensive computation of the full BDD for the next-state rela- 
tion. In addition, the translation from a higher-level specification language like 
Mur~o is straightforward. As we have already been using Mur~o for several real, 
industrial problems, we are excited by progress in this direction. 
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