Skip to main content

Transparent (holographic) proofs

  • Invited Talk
  • Conference paper
  • First Online:
STACS 93 (STACS 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 665))

Included in the following conference series:

Abstract

Informally, a mathematical proof is transparent (or holographic) if it can be verified with large confidence by a small number of spotchecks. Recent work of a large group of researchers has shown that this seemingly paradoxical concept can be formalized and is feasible in a remarkably strong sense. This fact in turn has surprising implications toward the intractability of approximate solutions of a wide range of discrete optimization problems. Below we state some of the main results in the area, with pointers to the literature. David Johnson's excellent survey [Jo] of the same subject gives a different angle and greater detail, including many additional references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In:Proc. 33rd IEEE FOCS (1992), pp. 14–23.

    Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs. In: Proc. 33rd IEEE FOCS (1992), pp. 2–13.

    Google Scholar 

  3. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity 1 (1991) 3–40.

    Google Scholar 

  4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 23rd ACM STOC (1991), pp. 21–31.

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove the intractability assumptions. In: Proc. 20th ACM STOC (1988), pp. 113–131.

    Google Scholar 

  6. Blum, A., Jiang, T., Li, M., Tromp. J., Yannakakis, M.: Linear approximation of shortest superstrings. In: Proc. 23rd ACM STOC (1991), pp. 328–336.

    Google Scholar 

  7. Blum, M., Kannan, S.: Designing Programs that Check Their Work. In: Proc. 21st ACM STOC (1989), pp. 86–97.

    Google Scholar 

  8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with Applications to Numerical Problems. In: Proc. 22nd ACM Symp. on Theory of Computing (1990), pp. 73–83.

    Google Scholar 

  9. Gonick, Larry: Proof Positive? Discover Magazine, “Science classics” section, August 1992, pp. 2–27.

    Google Scholar 

  10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. In: Proc. 32nd IEEE FOCS (1991) 2–12.

    Google Scholar 

  11. Feige, U., Lovász, L.: Two-prover one-round proof systems: their power and their problems. In: Proc. 24th ACM STOC (1992), pp. 733–744.

    Google Scholar 

  12. Fortnow, L.: private communication, 1992

    Google Scholar 

  13. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. In: Proc. 3rd Structure in Complexity Theory Conf. (1988), pp. 156–161.

    Google Scholar 

  14. Garey, M. R., Johnson, D. S.: Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

    Google Scholar 

  15. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Selftesting/correcting for polynomials and for approximate functions. In: Proc. 23rd ACM STOC (1991) pp. 32–42.

    Google Scholar 

  16. Impagliazzo, R., Zuckerman, D., How to recycle random bits. In: Proc. 30th IEEE FOCS (1989), pp. 248–253.

    Google Scholar 

  17. Johnson, D. S.: The NP-Completeness Column: An Ongoing Guide. J. of Algorithms 13 (1992), 502–524.

    Google Scholar 

  18. Kann, Viggo: On the approximability of NP-complete optimization problems. Ph.D. Thesis. Royal Institute of Technology, Stockholm, Sweden. May 1992.

    Google Scholar 

  19. Karger, D., Motwani, R., Ramkumar, G. D. S.: On approximating the longest path in a graph. Manuscript, 1992.

    Google Scholar 

  20. Lapidot, D., Shamir, A.: Fully Parallelized Multi Prover Protocols for NEXPTIME. In: Proc. 32nd IEEE FOCS, 1991, pp. 13–18.

    Google Scholar 

  21. Lund, Carsten: Efficient probabilistically checkable proofs. Manuscript, November 1992.

    Google Scholar 

  22. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic Methods for Interactive Proof Systems. In: Proc. 31th IEEE FOCS (1990), pp. 2–10.

    Google Scholar 

  23. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. AT& T Technical Memorandum, 1992. Submitted to STOC'93.

    Google Scholar 

  24. Kolata, Gina: New Short Cut Found for Long Math Proofs. The New York Times, April 7, 1992, Science Times section, p. B5.

    Google Scholar 

  25. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. In: Proc. 20th ACM STOC (1988), pp. 510–513.

    Google Scholar 

  26. Phillips, S., Safra, S.: PCP and tighter bounds for approximating MAX — SNP. Manuscript, Stanford University, April 1992.

    Google Scholar 

  27. Rubinfeld, R.: A Mathematical Theory of Self-Checking, Self-Testing and Self-Correcting Programs. Ph.D. Thesis, Computer Science Dept., U.C. Berkeley (1990)

    Google Scholar 

  28. Rubinfeld, R., Sudan, M.: Testing polynomial functions efficiently and over rational domains. In:Proc. 3rd ACM-SIAM SODA (1992) 23–32

    Google Scholar 

  29. Peterson, Ivars: Holographic proofs: keeping computers and mathematicians honest. Science News, vol. 141 (1992), 382–383.

    Google Scholar 

  30. Cipra, Barry A.: Theoretical Computer Scientists Develop Transparent Proof Technique. SIAM News, vol. 25, No. 3, May 1992.

    Google Scholar 

  31. Sudan, Madhu: Efficient checking of polynomials and proofs and the hardness of approximation problems. Ph.D. Thesis. U.C. Berkeley. October 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Enjalbert A. Finkel K. W. Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babai, L. (1993). Transparent (holographic) proofs. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds) STACS 93. STACS 1993. Lecture Notes in Computer Science, vol 665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56503-5_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-56503-5_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56503-1

  • Online ISBN: 978-3-540-47574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics