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Abstract: FOIL is a learning system that constructs Horn clause 
programs from examples. This paper summarises the development of 
FOIL from 1989 up to early 1993 and evaluates its effectiveness on a 
non-trivial sequence of learning tasks taken from a Prolog programming 
text. Although many of these tasks are handled reasonably well, the 
experiment highlights some weaknesses of the current implementation. 
Areas for further research are identified. 

1. I n t r o d u c t i o n  

The principal differences between zeroth-order and first-order supervised learn- 
ing systems are the form of the training data and the way that a learned theory 
is expressed. Data for zeroth-order learning programs such as ASSISTANT 
[Cestnik, Kononenko and Bratko, 1986], CART [Breiman, Friedman, Olshen and 
Stone, 1984], CN2 [Clark and Niblett, 1987] and C4.5 [Quinlan, 1992] comprise 
preclassified cases, each described by its values for a fixed collection of attributes. 
These systems develop theories, in the form of decision trees or production 
rules, that relate a case's class to its attribute values. In contrast, the input 
to first-order learners (usually) contains ground assertions about a number of 
multi-argument predicates or relations and the learned theory consists of a logic 
program, restricted to Horn clauses or something similar, that predicts when a 
vector of arguments will satisfy a designated predicate. 

Early first-order learning systems such as MIS [Shapiro, 1983] and MARVIN 
[Sammut and Banerji, 1986] were based on the notion of first-order proof. A 
partial theory was modified when it was insufficient to prove a known fact or 
able to (mis)prove a known fiction. The dependence on finding proofs meant 
that systems like these were relatively slow, most of the time being consumed 
in theorem-proving mode, so that they were able to analyse only small training 
sets. Later systems such as FOIL [Quinlan, 1990, 1991] and GOLEM [Muggleton 
and Feng, 1990] abandoned proof-based algorithms for more efficient methods; 
GOLEM uses Plotkin's relative least general generalisation to form clauses while 
FOIL uses a divide-and-cover strategy adapted from zeroth-order learning. These 



approaches have proved to be more efficient and robust, enabling larger train- 
ing sets to be analysed to learn more complex programs. Later systems such 
as CHAM [Kijsirikul, Numao and Shimura, 1991], FOCL [Pazzani, Brunk and 
Silverstein, 1991; Pazzani and Kibler, 1992] ILE [l~ouveirol, 1991] and FORTE 
[Richards and Mooney, 1991] often contain elements of both proof-based and 
empirical approaches. 

This paper examines FOIL, summarising its development over the last four years. 
After outlining its key features, we describe an experiment designed to evaluate 
its program-writing ability, using problems that human Prolog students are 
expected to be able to master. Not surprisingly, FOIL has difficulty with some 
of the problems. We discuss FOIL's shortcomings and what they tell us about 
the research that will be needed to extend it into a useful logic programming 
tool. 

2. FOIL 

In a nutshell, FOIL is a system for learning function-free Horn clause definitions 
of a relation in terms of itself and other relations. The program is actually 
slightly more flexible since it can learn several relations in sequence, allows 
negated literals in the definitions (using standard Prolog semantics), and can 
employ certain constants in the definitions it produces. 

FOIL's input consists of information about the relations, one of which (the target 
relation) is to be defined by a Horn clause program. For each relation it is given 
a set of tuples of constants that belong to the relation. For the target relation 
it might also be given tuples that are known not to belong to the relation; 
alternatively, the closed world assumption may be invoked to state that no tuples, 
other than those specified, belong to the target relation. Tuples known to be in 
the target relation will be referred to as @ tuples and those not in the relation as 
O tuples. The learning task is then to find a set of clauses for the target relation 
that accounts for all the @ tuples while not covering any of the O tuples. 

The basic approach used by FOIL is an AQ-like covering algorithm [Michalski, 
Mozetis Hong and Lavra%, 1986]. It starts with a trai~ing set containing all @ 
and ~ tuples, constructs a function-free Horn clause to 'explain' some of the @ 
tuples, removes the covered • tuples from the training set, and continues with 
the search for the next clause. When clauses covering all the | tuples have been 
found, they are reviewed to eliminate any redundant clauses and reordered so 
that any recursive clauses come after the non-recursive base cases. 

Perfect definitions that exactly match the data are not always possible, particu- 
larly in real-world situations where incorrect values and missing tuples are to be 
expected. To get around this problem, FOIL uses encoding-length heuristics to 



limit the complexity of clauses and programs. The final clauses may cover most 
(rather than all) of the @ tuples while covering few (rather than none) of the @ 
tuples. See [Quinlan, 1990] for details. 

2.1 F i n d i n g  a C l a u s e  

FOIL starts with the left-hand side of the clause and specialises it by adding 
literals to the right-hand side, stopping when no @ tuples are covered by the 
clause or when encoding-length heuristics indicate that  the clause is too complex�9 
As new variables are introduced by the added literals, the size of the tuples in 
the training set increases so that  each tuple represents a possible binding for all 
variables tha t  appear in the partially-developed clause�9 

If the target relation R has k arguments, the process of finding one clause for 
the definition of R can be summarised as follows: 

�9 Initialise the clause to 

. . . ,  , - -  

and a local training set T to the | tuples not covered by any previous 
clause and all the O tuples. 

�9 While T contains O tuples and is not too complex: 

- Find a literal L to add to the right-hand side of the clause�9 

- Form a new training set T~: 

�9 for each tuple t in T, and 

�9 for each binding b of any new variables introduced by literal L, 

�9 if the tuple t.b (obtained by concatenating t and b) satisfies 
L, then add t.b to T ~ with the same label (@ or @) as t. 

- Replace T by T ~. 

�9 Prune the clause by removing any unnecessary literals. 

Although FOIL incorporates a simple backup mechanism, the clause-building 
process is essentially a greedy search; once a literal is added to a clause, alter- 
native literals are usually not investigated. 

The key question is how to determine appropriate literals to append to the 
developing clause. FOIL uses two criteria: a literal must either help to exclude 
unwanted 0 tuples from the training set, or must introduce new variables that  
may  be needed for future literals. Literals of the first kind are called gainful 
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while determinate literals axe included primaxfly because they introduce new 
variables. 

2.2 Choosing Gainful Literals 

Consider the partially developed clause 

R(VI, V2, ..., V~) +- LI, L~, ..., L~-l 

containing variables V1, V2, ..., V~. Each tuple in the training set T looks like 
(cl, c2, ..., c~) for some constants {cj}, and represents a ground instance of the 
variables in the clause. Now, consider what happens when a literal Lrn of the 
form 

P ( ~ , ,  Y~2, ..., Y~,) 

is added to the right-hand side. If the literal contains one or more new variables, 
the arity of the new training set will increase; let z'  denote the number of 
variables in the new clause. Then, each tuple in the new training set T'  will 
be of the form (dl, d2, ..., d~,} for constants {dj }, and will have the following 
properties: 

* (dl,d2, ...,d~:) is a tuple in T, and 

* (d~,, d~2, ..., dlp) is in the relation P. 

That  is, each tuple in T'  is an extension of one of the tuples in T, and the ground 
instance that  it represents satisfies the literal. Every tuple in T thus gives rise 
to zero or more tuples in T'  with the @ or O label of a tuple in T'  being copied 
from its ancestor tuple in T. 

Let T+ denote the number of @ tuples in T and T~_ the number in T'.  The 
effect of adding a literal Lm can be assessed from an information perspective as 
follows. The information conveyed by the knowledge that  a tuple in T has label 
@ is given by 

I(T) =-Iog2(T+ /ITI) 

and similarly for I(T') .  If I(T')  is less than I(T) we have 'gained' information 
by adding the literal Lm to the clause; if s of the tuples in T have extensions in 
T', the total information gained about the @ tuples in T is 

= ,  • ( I ( T )  - I ( T ' ) ) .  



FOIL explores the space of possible literals that  might be added to a clause at 
each step, looking for the one with greatest positive gain. 

The form of the gain metric allows significant pruning of the literal space, so 
that  FOIL can usually rule out large subspaces without having to examine any 
literals in them. If a potential literal contains new variables, it is possible to 
compute the maximum gain that  could be obtained by replacing some or all of 
them with existing variables. When the maximum gain is below that  of some 
literal already considered, the literals resulting from such replacements do not 
need to be investigated. 

Another form of pruning involves literals that  use the target relation itself. Since 
we do not want FOIL to produce non-executable programs that  fail due to infinite 
recursive looping, recursive definitions must be screened carefully. Recursive 
literals tha t  could lead to problems are barred from consideration, as described 
below. 

2.3 D e t e r m i n a t e  L i t e r a l s  

Some clauses in reasonable definitions will inevitably contain literals with zero 
gain. Suppose, for instance, that  all objects have a value for some property 
D, and the literal D(X, Y) defines the value Y for object X.  Since this literal 
represents a one-to-one mapping from X to Y, each tuple in T will give rise to 
exactly one tuple in T I and so the gain of the literal will always be zero. We 
could also imagine a literal P(X, Y) that ,  for any value of X,  supplied several 
possible values for Y. Such a literal might even have negative gain. 

If X is a previously defined variable and Y a new variable, there is an important  
difference between adding literals D(X, Y) and P(X, Y) to a clause; the first 
will produce a new training set of exactly the same size, while the second may 
exclude some @ tuples or may  cause the number of tuples in the training set to 
grow. This is the key insight underlying determinate literals, an idea inspired 
by GOLEM's determinate terms [Muggleton and Feng, 1990]: the value of each 
new variable is forced or determined by the values of existing variables. 

More precisely, suppose that  we have an incomplete clause 

R(V~, V2, ..., V~) ~- L~, L2, ..., L~_~ 

with an associated training set T as before. A hteral L,n is determinate with 
respect to this partial clause if Lm contains one or more new variables and there 
is exactly one extension of each @ tuple in T, and no more than one extension 
of each O tuple, tha t  satisfies Lm. The idea is that,  if Lm is added to the clause, 
no @ tuple will be eliminated and the new training set T I will be no larger than 
T. 



FOIL notes determinate hterals found while searching for gainful literals as above. 
The maximum possible gain is given by a literal that  excludes all @ tuples and 
no G tuples; in the notation used before, this gain is T+ x I(T). Unless a 
literal is found whose gain is close to (> 80% of) the maximum possible gain, 
FOIL adds all determinate hterals to the clause and tries again. This may 
seem rather extravagant, since it is unlikely that  all these literals will be useful. 
However, FOIL incorporates clause-refining mechanisms that  remove unnecessary 
literals as each clause is completed, so there is no ultimate penalty for this all-in 
approach. Since no @ tuples are eliminated and the training set does not grow, 
the only computational cost is associated with the introduction of new variables 
and the corresponding increase in the space of subsequent possible literals. It is 
precisely the enlargement of this space that  the addition of determinate literals 
is intended to achieve. 

There is a potential runaway situation in which determinate hterals found at 
one cycle give rise to further determinate literals at the next ad infinitum. To 
circumvent this problem, FOIL borrows another idea from GOLEM. The depth 
of a variable is determined by its first occurrence in the clause. All variables in 
the left-hand side of the clause have depth 0; a variable that  first occurs in some 
literal has depth one greater than the greatest depth of any previously-occurring 
variable in that  literal. By placing an upper limit on the depth of any variable 
introduced by a determinate literal, we rule out indefinite runaway. This limit 
does reduce the class of learnable programs. However, the stringent requirement 
that  a determinate literal must be uniquely satisfied by all | tuples means that  
this runaway situation is unlikely and FOIL's default depth limit of 5 is rarely 
reached. 

2.4 F u r t h e r  L i t e r a l  F o r m s  

We are now moving into areas covered by recent extensions to FOIL. The first 
of these concerns the kinds of literals tha t  can appear in the right-hand side of 
a clause. 

Early versions of FOIL considered literals of the forms 

�9 P(W1,  P(W1, 
where P is a relation and the V~'s are variables, at least one of which must 
have occurred already in the clause; and 

�9 = v, # v j  
that  compare the values of existing variables. 

Two further forms have now been added. 

In the first of these, certain constants can be identified as theory constants that  



can appear explicitly in a definition. Examples might include a constant [] 
representing the null list in list-processing tasks, or the integers 0 and I in tasks 
that involve the natural numbers. For such a theory constant c, FOIL will also 
consider literals of the forms 

V~=c, ~ # c  

where Y~ is a variable of the appropriate type that appears earlier in the clause. 
This minor addition is equivalent to declaring a special relation is-c for each such 
constant c; in fact, the extension is implemented in this way. 

The second extension is more substantial. Relations encountered in the real 
world are not limited to discrete information but commonly include numeric 
fields as well. We could imagine simple relations such as 

atomic-weight(E,W) 

that provides the (numeric) atomic weight W of each element E, or 

quote(C,B,S) 

detailing the buy and sell prices for a commodity C. As a first step towards being 
able to exploit numeric information like this, FOIL now includes literal types 

v~>k, v~_<k, ~ > ~ ,  v~_<v, 

that allow an existing variable ~ with numeric values to be compared against a 
threshold k found by FOIL or against another variable Vj of the same type. Such 
an extension falls a long way short of Prolog facilities that allow a continuous 
value for ~ to be computed in the clause; however, it does permit bound numeric 
values to be used in conditions on the right-hand side of a clause. 

2.5 Manag ing  Recurs ion  

Recursive theories are expressive and hence powerful, so that the ability to learn 
recursive programs is one of the principal advantages of first-order systems like 
GOLEM and FOIL. The increase in expressiveness, however, is counterbalanced 
by the care that must be taken to avoid nonsensical recursion. 

As an illustration, consider the task of learning a program for multiplication of 
non-negative integers in terms of addition and decrement. We might have three 
relations: 

rnult(A,B,C) meaning C - -  A • B 
plus(A,B,C) C = A + B 
dec(A,B) B = A - I .  
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A suitable definition for multiply is 

mult(A,B,C) *-- A=0, C=0 
mult(A,B,C) , -  dec(A,n), plus(B,E,C), mult(D,B,E) 

where the last clause captures the identity 

A x B =  B + ( A - 1 )  xB.  

This definition seems intuitively to be well-behaved in the sense that it will 
always terminate. On the other hand, a simpler definition 

mult(A,B,C) ~-- rnult(B,A,C) 

will clearly lead to an infinite recursive loop. How does FOIL, which is biased 
towards finding simpler definitions, eschew the latter in favour of the former? 
The short answer is that, as a clause is being developed, recursive literals must 
satisfy certain criteria for inclusion in the right-hand side. In particular, a 
recursive literal on the right-hand side must be judged to be less than the head 
of the clause in some ordering of literals. 

The earliest version of FOIL used a method based on discovering an ordering 
of the constants appearing in tuples. This method guaranteed that a single 
clause could not lead to a recursive loop by calling itself directly. The order 
discovery was removed in following releases, which relied on the user specifying 
the constants of each type in an appropriate order. Order discovery mechanisms 
have been reinstated in the most recent versions and the method of ordering 
recursive literals has been generalised so that the guarantee now applies to sets 
of clauses for a single relation, not just to a single clause. The following is meant 
to give an informal sketch of the idea, with a complete discussion available in 
[Cameron-~Iones and Quinlan, 1993]. 

Returning to the multiply example above, we see that the clause for the general 
c a s e  

mult(A,B,C) *- dec(A,D), plus(B,E,C), mult(D,B,E) 

cannot lead to infinite recursion since the literal dec(A,D) guarantees that D is 
always less tha~u A; rnu[t(D,B,E) is thus less than mu[t(A,B,C) in an intuitive 
ordering of mu[t literals. FOIL assumes that some relations provided for a task 
will behave like dec in establishing an ordering of their arguments and attempts 
to identify them. For every relation R and every pair of arguments A, B of R 
that are of the same type Q, FOIL asks: 

Are there orderings of the constants of type Q that are consistent 
with the hypothesis that A < B? 
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When answers to all these questions have been determined, FOIL establishes a 
single definitive ordering of the constants of type Q so that  the number of such 
inequalities is maximised. 

The now-fixed ordering of constants of each type allows us to determine rank- 
ings among pairs of variables in an incomplete clause. If such a clause con- 
tains variables V1, V2, ..., V, and the training set consists of tuples of constants 
(d=l, d=2, ..., d=~}, a = 1, 2, ..., ITI, then V~ < ~ if they belong to the same type 
and d=i always comes before d=y in the constant ordering for that  type. 

The inequalities among pairs of variables can be extended to an ordering of 
literals involving a predicate R and variables. In broad terms, if W1, W2, ... 
denote variables in V1, V2, ..., V~, then 

R(W1, W2, ..., W,) < R(Vl, V2, ..., V,) if 
W~ < V~, or 
W~ = V~ and W~ < V#, or 
W~ = V~ and W~ = V~ and W, < V~, or ... 

Here a,  fl, 7 etc. denote argument positions that,  together with the ordering of 
variables in the clause, specify a particular ordering of the literals involving R. 

Suppose now that  we have an incomplete definition for relation R that  consists 
of zero or more completed clauses and a partial clause. A recursive literal 
R(W1, W2, ..., W~) can be added to the right-hand side of the developing clause 
only when there are values of ~, fl etc. as above so that  

�9 this literal is less than the left-hand side of the clause, and 

�9 the same is true for all recursive literals in the completed clauses. 

This may sound complex but  its implementation is simple and efficient. The 
restriction on recursive literals in the right-hand side of clauses prevents infinite 
recursive loops due to a definition of R Calling itself directly, yet does not exclude 
even complex recursive definitions such as that  for Ackermann's function: 

Ack(A,B,C) ~ A=0,  dec(C,B) 
Ack(A,B,C) +- B=0, dec(A,D), Ack(D,E,C), dec(E,B) 
Ack(A,B,C) +-- dec(A,n), dec(B,E), Ack(A,E,F), Ack(D,F,C) 

In this case, the ordering of literals found by FOIL is 

Ack(W,, Wa, Wa) < Ack(V,, V2, Va) if 
W1 < l~, or 
Wl = Vl and W2 < Va. 
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In the definition above, dec(A,D) gives D<A in the second and third clauses, 
and dec(B,E) in the third clause gives E<B, so all recursive literals in these 
clauses are less than the heads of the clauses. Consequently, this definition can 
be guaranteed to terminate when invoked with ground instances of A and B. 

2.6 I m p r o v e d  Def in i t ions  

Programs like FOIL that depend on greedy search will occasionally follow unprof- 
itable paths leading to poor definitions or no definitions at all. FOIL's backup 
mechanism is designed to ameliorate the latter condition by restarting search at 
saved backup points. The problem of poor definitions is much more difficult to 
circumvent. 

From its earliest version, FOIL has incorporated post-processing of definitions 
in which unnecessary literals are excised from finished clauses and redundant 
clauses are removed from complete definitions. When there are numerous super- 
fluous literals, clause pruning can consume a noticeable amount of time; a recent 
extension is a fast heuristic pruning method that reverts to the slow-but-sure 
algorithm in the event of failure. 

The most recent versions have two additional mechanisms for producing better 
clauses. It sometimes happens that, when the possible literals to be added to a 
clause are being considered, one literal L would complete the clause but another 
literal of higher gain is selected instead. The search can meander along in this 
way, leading eventually to a clause that is inferior to the one that would have 
been produced if L had been chosen. FOIL now remembers the best complete 
clause that could have been obtained by a different choice of literal at any point. 
When the clause is complete, the system checks to see whether the remembered 
clause is at least as good as the final clause and, if so, uses the remembered clause 
instead. This extension, which requires hardly any additional computation, is 
responsible for much improved definitions in some tasks. 

We have also observed cases in which a non-recursive literal L, chosen to com- 
plete a clause, involves only variables that appear in the left-hand side of the 
clause. Such a literal could clearly have appeared at the beginning of the right- 
hand side. If the right-hand side contains hteral~ other than L, they may have 
had the effect of making the clause too specific. To circumvent this possibility, 
the clause is regrown starting with the single literal L on the right-hand side. 

The final polishing involves reordering the clauses. After all clauses making up 
a definition have been sifted as above to remove redundancies, all non-recursive 
"base case" clauses are moved to the front so that they appear before any 
recursive clauses. 
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3. An Experiment 

Many evaluations of learning systems involve a limited amount of background 
information - j u s t  that required for the task at hand - and sometimes care- 
fully chosen training examples as well. Such experiments can demonstrate the 
feasibility of certain types of learning, but do not address the usefulness of the 
learning system in practical applications, where there is usually a large amount 
of irrelevant information and where training examples come from a neutral, 
unbiased source. 

As a step towards a more pragmatic evaluation, we started with Ivan Bratko's 
well-known text Prolog Programming for Artificial Intelligence [Bratko, 1986]. 
Chapter 3 of this book introduces several programs for manipulating lists and 
includes a set of student exercises. We conducted trials to see whether FOIL 
could learn the expository programs and exercises in the same order as they 
appear in the book, omitting only the last two exercises that were quite different 
from the others. (One of them, canget, deals with lists specific to the monkey 
and bananas problem; the other, flatten, uses structured lists.) A brief summary 
of the problems attempted is: 

member(E,L) 
conc(kl,L2,L3) 
memberl(E,L) 
last(EL) 
lastl(E,L) 
deI(E,L1,L2) 
member2(E,L) 
insert(E,L1,L2) 
sublist(L1,L2) 
permutation(L1,L2) 
even/oddlength(L) 

reverse(L1,L2) 
palindrome(L) 
palindromel(L) 
shift(L1,L2) 
translate(L1,L2) 

subset(S1,S2) 
dividelist(L1,L2,L3) 

E is an element of list L 
appending L1 to L2 gives list L3 
as for member with conc available 
E is the last element of L 
ditto, but without using cone 
deleting an occurrence of E from L1 gives L2 
as for member with del available 
inserting E somewhere in kl gives L2 
L1 is a sublist of L2 
L2 is a permutation of list L1 
L has an even/odd number of elements (both 
relations to be defined) 
L2 is the reverse of list L1 
list L is a palindrome 
as above, but not using reverse 
rotating elements of L1 to the left gives L2 
L2 is the results of translating L1 using an 
element-to-element mapping 
$2 is a subset of set S1 
L2 contains the odd-numbered elements of L1, 
L3 contains the even-numbered elements of L1 

We included the additional relation components(L,H,T), meaning list L has head 
H and tail T, that corresponds to Prolog's built-in [H IT] notation for lists. For 
each program, all relations encountered previously were available as background 
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knowledge so that  there were many irrelevant relations to confuse FOIL's search. 

We also at tempted to assemble training examples in an unbiased manner. The 
trials were repeated for two universes, defined as 

U3, the 40 lists containing up to three elements (where each element is in 
the set {1,2,3}); and 

U4, the 341 similar lists containing up to four elements from {1,2,3,4}. 

In a trial, FOIL was given all @ tuples over the relevant universe for each 
relation. In U3, for example, the 142 @ tuples for cone include ([], [13], [13]> 
and ([32], [2], [322]) but  not ([322], [13], [32213]) since, in the last case, one of the 
lists contains more than three elements. Two relations in the book are defined 
over restricted subclasses of lists, sets in the case of subset and lists without 
repetitions in the case o f  permutation. All other relations are defined over all 
lists. The @ tuples for the relation being learned are generally the complement 
of the @ tuples. However, for the second universe U4, some relations would then 
have an enormous number of such tuples - about 3413 ~ 40 million for c o n c -  so 
we used the FOIL option that  selects a random sample of O tuples to keep them 
down to about 90,000. The relations affected were cone and dividelist (where 
we used 0.2% of O tuples), del and insert (20%), translate (40%), and sublist, 
permutation, reverse and shift (80%). 

FOIL was allowed 1500 seconds on a DECstation 5000/240 for each problem. As 
the book had not introduced negation at this stage, negated literals were barred 
from definitions. All FOIL's other options had their default values, including the 
default memory limit of 100,000 tuples on any training set. 

The outcomes of this experiment are summarised in Table 3.1. In the resuI~ 
column, a x /means that  a correct definition was obtained (often, but  not always, 
the same as the program in the book). The notation restricted indicates tha t  
the definition was correct for the universe over which the examples were defined, 
but  would give incorrect results for lists of arbitrary length. A common problem 
with the restricted definitions is an incorrect base case that  relies on fortuitous 
properties of the limited domain. For instance, the definition of reverse found in 
universe U3 was 

reverse(A,B) ~- A=B, conc(A,C,D), sublist(A,C) 
reverse(A,B) *-- components(A,C,D), reverse(D,E), conc(F,D,A), conc(E,F,B) 

The second (recursive) clause is correct. However, the odd-looking base case 
exploits the fact that  all lists in US have length at most 3; if A is a sublist of C 
and the result of conc'ing A to C has length at most 3, this ensures tha t  A has 
length 0 or 1. Of course, the first clause is correct for such short lists A. 
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Task Tuples Result Time 
e (secs) 

member 

conc 

U3 
U4 
U3 
U4 

75 45 
880 484 
142 63,858 

1593 79,300 

~/ 0.1 
4 0.9 
x/ 28 
~/ 34 

member1 U3 75 45 ~/ 1.7 
U4 880 484 ~/ 1.7 

last U3 39 81 restricted 0.2 
U4 340 1024 x/ 2.7 

lastl U3 39 81 ~/ 0.1 
U4 340 1024 x/ 1.9 

de{ U3 81 4719 ~/ 422 
U4 1024 92,640 time limit > 1500 

insert 

member2 

U3 
U4 
U3 

81 4719 
1024 92,640 

75 45 
880 484 
"202 

~/ 2.1 
~/ 56 
4 o.1 
J 0.9 U4 

sublist U3 1398 x/  1.8 
U 4  2913 90,697 v / 94 

permutation U3 52 204 ~/ 1.6 
U4 749 3476 x/ 337 

even/oddlength U3 10/30 30/10 unsound mutual recursion 0.1 
U4 273/68 68/273 unsound mutual recursion 63 

reverse U3 40 1560 restricted 9.3 
U4 341 92,796 restricted 220 

palindrome U3 16 24 ~/' 0:'1' 
U4 41 300 x/ 0.9 

palindromel U3 
U4 

16 24 
41 300 

'39 1561 
92,787 

shift U3 
U4 340 

translate U3 40 3120 time Limit 
U4 341 92,573 time limit > 1500 

subset U3 27 37 restricted 0.2 
U4 81 175 restricted 19 

dividelist U3 40 63,960 restricted 182 
U4 341 79,302 erroneous 901 

restricted 928 
restricted 212 

J 4.2 
~/ 253 

> 1500 

Table 3.1: results on learning programs 
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One definition produced by FOIL, dividelist in universe U4, was actually in error, 
even when only lists in the restricted universe are considered. FOIL relies on O 
tuples to show up over-generalisations. For this task, the training set included 
only 0.2% of the @ tuples, none of which happened to reveal that the clause was 
defective. This underlines the heuristic nature of any learning from incomplete 
information. 

Apart from running out of time, the other problem occurred in the task that 
required definitions of both evenlength and oddlength. The definitions found for 
U3 were 

evenlength(A) ~- del(B,C,A), oddlength(C) 
oddlength(A) *-- components(A,B,C), evenlength(C). 

Each definition is correct in itself but, together, they lead to recursive looping 
since C is longer than A in the definition of evenlength but shorter in oddlength. 
This highlights the fine print in FOIL's guarantee of recursive soundness; an 
individual definition will not lead to problems, but two definitions invoking each 
other might. 

4. D i s c u s s i o n  

The results of this experiment can only be described as mixed. It is encouraging 
to see that FOIL can find correct definitions for many of the small programs, 
but less encouraging when we remember that students are expected to be able 
to produce all of them as a matter of course. 

In particular, the fact that later definitions tend to be restricted (if they are found 
at all) highlights FOIL's sensitivity to irrelevant information. For example, when 
all the superfluous relations were removed, a correct definition of subset 

subset(A,B) *- B=[] 
subset(A,B) *- components(A,C,D), components(B,C,E), subset(D,E) 
subset(A,B) *- components(A,C,D), subset(D,B) 

was found from U4 in only 0.5 seconds. 

Another cause for concern is that recursive definitions require near-complete 
sets of @ tuples. If we consider the simplest task, member in universe U3, it is 
interesting to observe the effect of deleting a single G tuple without changing 
the O tuples (corresponding to an item of missing information, but no mis- 
information). If the tuple is of the form (X, Y> where X is an element and Y is 
a list, then: 
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�9 There is no effect if Y is of length 3. 

�9 If Y is of length 1 or 2, at least one recursive continuation is affected. 
FOIL still finds a correct definition but adds an extra clause to cover the 
apparent "special case". 

When 25% of the @ tuples were deleted at random, the resulting definition was 
still "correct" but contained three superfluous clauses. 

The tasks in this experiment have the property that  each can be defined by a 
Horn clause program without the use of negated literals. Even when negated 
literals are allowed, the definition language used by FOIL is too weak to capture 
some ideas. As an illustration, the first-order expression 

(V~ likes(~, y)) D happy(y) 

cannot be written as a Prolog definition without the use of a cut or the establish- 
ment of an ancillary concept. Similarly, a program to recognise sentences of the 
language a*b*c* requires an extra concept such as seque,ce-of(Seq,E[t); a Prolog 
programmer would see this immediately and define the subsidiary predicate. 
FOIL cannot invent new relations of this kind, and can only apply negation to 
individual literals. Consequently, there are some quite simple concepts for which 
FOIL cannot find general definitions, no matter  how many examples it is given. 

5. C o n c l u s i o n  

As the title of this paper suggests, FOIL is still under development. In its current 
form it is an experimental vehicle for exploring ideas in learning, not a practical 
tool for constructing substantial logic programs. In the same way, ID3 circa 1978 
was an experimental program that  required a lot more work before a practical 
tool, C4.5, was obtained. 

Several shortcomings of the system were mentioned in the previous section. 
Generalising slightly, we can identify the following features that  will be required 
by any robust system for learning recursive logic programs: 

�9 Cons~r~ction of  new predicates: Logic programmers make frequent use of 
predicates that  do not appear in the problem statement. This is sometimes 
required to express the program in Horn clause form, but more frequently 
because ancillary predicates make the program simpler and more efficient. 
FOIL has no facilities for inventing new predicates, but the promising 
research of Muggleton and Buntine [1988], Kietz and Morik [1993] and 
others suggests that  such facilities may be able to be grafted on. 
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�9 Strategy for constructing programs: Human logic programmers are taught 
to get the simplest base case first, then to develop the general recursive 
case. This kind of strategic approach is missing from FOIL, which just 
attempts to bite off as many @ tuples as possible in each clause. This 
super-greedy strategy can lead to problems of the kind illustrated by the 
reverse example. Instead of the simple base case 

reverse(A.B) ~ A=[], B=[] 

FOIL greedily tries to extend this to include single-element lists, leading 
to the restricted definition of section 3. 

�9 Selective use of relations: At the moment, any learning task can be made 
harder for FOIL simply by including more and more irrelevant relations, 
thereby increasing the number of literals that must be examined at each 
step. We hypothesise that any practical system for learning logic programs 
must employ a characterisation of each remembered relation, so that a 
relation is only considered when there is a prior reason to believe that it 
may be of use. 

�9 Incomplete training sets: It seems unlikely that near-complete sets of | 
tuples will be available when constructing recursive definitions for relations 
in the context of real-world problems. Practical training sets will be small 
and, in problems involving synthesis of a novel theory, the given tuples will 
not be helpfully selected with the form of the final definition in mind. While 
FOIL can currently learn non-recursive definitions from sparse training 
cases, it has difficulty with recursive theories under these conditions. 

�9 Extended treatment of numeric fields: Not many first-order systems seem 
to have addressed the issue of using continuous-valued information. FOIL's 
use of numeric fields is limited to thresholding and comparisons of known 
values rather than computing new values. Since many practical Prolog pro- 
grams involve computation, learning systems that are intended to generate 
these programs must somehow come to grips with computational clauses. 

With the inclusion of theory constants and tests on numeric values, FOIL can now 
express any theory derivable by zeroth-order learning systems such as C4.5. We 
have carried out some initial tests running FOIL on zeroth-order attribute-value 
data in which there is a single relation with one argument for each attribute. 
Since FOIL explores a strictly larger hypothesis space than these systems, it is 
not surprising that FOIL is slower. It will be interesting to see whether the 
increased search results in more accurate theories than those learned by zeroth- 
order systems. 

The current version of FOIL is always available by anonymous ftp from 129.78.8.1, 
file name pub/foiIN.sh for some integer N. 



19 

Acknowledgements 

This research was supported by a grant from the Australian Research Council 
and by a research agreement with Digital Equipment Corporation. 

References 

1. Bratko, I. (1986). Prolog Programming for Artificial Intelligence. 
Wokingham, UK: Addison-Wesley. 

2. Breimaaa, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). 
Classification and Regression Trees. Belmont: Wadsworth International. 

3. Cameron-Jones, R.M., and Quinlan, J.R. (1993). Avoiding pitfalls when 
learning recursive theories (draft). Available by anonymous ftp from 
129.78.8.1, file pub/recurse.tex. 

4. Cestnik, B., Kononenko, I. and Bratko, I. (1987). ASSISTANT 86: a 
knowledge elicitation tool for sophisticated users. In Bratko and Lavra~ 
(Eds.) Progress in Machine Learning. Wilmslow: Sigma Press. 

5. Clark, P and Niblett, T. (1987). Induction in noisy domains. In Bratko 
and Lavra~ (Eds.) Progress in Machine Learning. Wilmslow: Sigma 
Press. 

6. Kietz, J. and Morik, K. (1993). A polynomial approach to the 
constructive induction of structural knowledge. Machine Learning, to 
appear. 

7. Kijsirikul' B., Numao, M. and Shimura, M. (1991). Efficient learning of 
logic programs with non-determinate, non-discriminating literals. 
Proceedings Eighth International Workshop on Machine Learning, 
Evanston, Illinois, 417-421. 

8. Michalski, R.S., Mozeti~, I., Hong, J. and Lavra~, N. (1986). The 
multipurpose incremental learning system AQ15 and its testing 
application to three medical domains. Proceedings Fifth National 
Conference on Artificial Intelligence, Philadelphia, 1041-1045. 

9. Muggleton, S., and Buntine, W. (1988). Machine invention of first-order 
predicates by inverting resolution. Proceedings Fifth International 
Conference Machine Learning, Ann Arbor, 339-352. 

10. Muggleton, S., and Feng, C. (1990). Efficient induction of logic programs. 
Proceedings First Conference on Algorithmic Learning Theory, Tokyo. 

11. Pazzani, M.J., Brunk, C.A. and Silverstein, G. (1991). A knowledge- 
intensive approach to learning relational concepts. Proceedings Eighth 



20 

International Workshop on Machine Learning, Evanston, Illinois, 
432-436. 

12. Pazzani, M.:I. and Kibler, D. (1992). The utility of knowledge in 
inductive learning. Machine Learning 9, 1, 57-94. 

13. Quinlan, :I.R. (1990). Learning logical definitions from relations. 
Machine Learning 5, 239-266. 

14. Quinlan, :I.R. (1991). Determinate literals in inductive logic 
programming. Proceedings Twel~h International Joint Conference on 
Artificial Intelligence, Sydney, 746-750. 

15. Quinlan, :I.R. (1992). C~.5: Programs for Machine Learning. San Mateo: 
Morgan Kaufmann. 

16. Richards, B.L. and Mooney, R.:I. (1991). First-order theory revision. 
Proceedings Eighth International Workshop on Machine Learning, 
Evanston, Illinois, 447-451. 

17. Rouveirol, C. (1991). Completeness for induction procedures. Proceedings 
Eighth International Workshop on Machine Learning, Evanston, Illinois, 
452-456. 

18. Sammut, C.A., and Banerji, R.B. (1986). Learning concepts by asking 
questions. In R.S. Michalski, 3.G. CarboneU and T.M. Mitchell (Eds.) 
Machine Learning: An Artificial Intelligence Approach (Vol 2). Los 
Altos: Morgan Kaufmann. 

19. Shapiro, E.Y' (1983). Algorithmic Program Debugging. Cambridge, MA: 
MIT Press. 


