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A b s t r a c t  

Inductive Logic Programming (ILP) is a research area which investi- 
gates the construction of quantified definite clause theories from examples 
and background knowledge. ILP systems have been applied successfully in 
a number of real-world domains. These include the learning of structure- 
activity rules for drug design, finite-element mesh design rules, rules for 
primary-secondary prediction of protein structure and fault diagnosis rules 
for satellites. There is a well established tradition of learning-in-the-limit 
results in ILP. Recently some results within Valiant's PAC-learning frame- 
work have also been demonstrated for ILP systems. In this paper it is ar- 
gued that algorithms can be directly derived from the formal specifications 
of ILP. This provides a common basis for Inverse Resolution, Explanation- 
Based Learning, Abduction and Relative Least Genera] Generalisation. A 
new general-purpose, efficient approach to predicate invention is demon- 
strated. ILP is underconstrained by its logical specification. Therefore 
a brief overview of extra-logical constraints used in ILP systems is given. 
Some present limitations and research directions for the field are identified. 

1 I n t r o d u c t i o n  

The framework for Inductive Logic Programming (ILP) [37, 38] is one of the most  
general within the field of Machine Learning. ILP systems construct concept 
definitions (logic programs) from examples and a logical domain theory (back- 
ground knowledge). This goes beyond the more established empirical learning 
framework [32, 48, 5, 6] because of the use of a quantified relational logic to- 
gether with background knowledge. It goes beyond the explanation-based learn- 
ing fi 'amework [33, 11] due to the lack of insistence on complete and correct 
background knowledge. 
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The use of a relational logic formalism has allowed successful application of 
ILP systems in a number of domains in which the concepts to be learned cannot 
easily be described in an attribute-value language. These applications include 
structure-activity prediction for drug design [25, 57], protein secondary-structure 
prediction [42], and finite element mesh design [12]. It is worth comparing these 
results with existing scientific discovery systems in machine learning. By normal 
scientific standards it does not make sense to call BACON's [27] and AM's [29] 
achievements scientific/mathematical discovery since they did not produce new 
knowledge refereed and published in the journals of their subject area. The above 
applications of drug design and protein folding did produce machine-derived 
new knowledge, published in top scientific journals. There are very few other 
examples within AI where this has been achieved. 

The generality of the ILP approach has allowed many exciting new types of 
application domain. In addition to the above real-world application areas ILP 
systems such as MIS [55], Marvin [54], CIGOL [44], ML-SMART [3], FOIL [50], 
Golem [41], ITOU [52], RDT [24], CLINT [9], FOCL [46], SIERES [61] and 
LINUS [14] are all capable of synthesising logic programs containing recursion. 
They can also deal with domains containing explicit representation of time [16] 
and learn grammar rules for natural language processing [60]. 

Learning-in-the-limit results are well-established in the ILP literature both 
for full-clausal logic [47] and definite clause logic [1, 9]. However, these results 
tell one little about the efficiency of learning. In contrast, Valiant's [59] PAC 
(Probably-Approximately-Correct) framework is aimed at providing complexity 
results for machine learning algorithms. However, Haussler's [21] negative PAC 
result concerning existentially quantified formulae seemed initially to exclude the 
possibility of PAC results for quantified logic. The situation has been improved 
by recent positive results in significant sized subsets of definite clause logic. 
Namely, single constrained Horn clauses [45] and k-clause ij-determinate logic 
programs [15]. Recent results by Kietz [23] indicate that every proper superset 
of the k-clause ij-determinate language is not PAC learnable. This seems to 
indicate a ceiling to extensions of present approaches. 

As the ILP applications areas show, Horn clause logic is a powerful rep- 
resentation language for concept learning. It also has a clear model-theoretic 
semantics which is inherited from Logic Prggramming [30]. However, with the 
generality of the approach come problems with searching a large hypothesis 
space. A clear logical framework helps in deriving efficient algorithms for con- 
straining and searching this space. In Section 2 the formal definitions of ILP 
are used to derive existing specific-general and general-specific algorithms. Ad- 
ditionally, in Section 2.5 a new method for carrying out predicate invention is 
derived in this way. In Section 3 extralogical constraints used within existing 
ILP systems are discussed. In Section 4 some of the shortcomings of existing 
ILP systems are discussed and potential remedies suggested. 
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2 Formal logical setting for ILP 

One might ask why ILP should need a very formal definition of its logical set- 
ting? After all, Machine Learning research has progressed quite happily without 
much formal apparatus. Surely formalisation is time-consuming and impedes 
progress in implementing systems? This paper argues the opposite. Without 
formalisation it is not clear what one is trying to achieve in an implementation. 
Techniques from one implementation cannot be transferred easily to another. 
However, this section will demonstrate a more direct and immediate advantage. 
That is, if a small number of formulae are used to define the high level prop- 
erties of a learning system it is often possible to manipulate these formulae 
algebraically to derive a complete and correct algorithm which satisfies them. 

2.1 T h e  s e t t i n g  

The usual context for ILP is as follows. The learning agent is provided with 
background knowledge B, positive examples E + and negative examples E -  and 
constructs an hypothesis H. B, E + E -  and H are each logic programs. A logic 
program is a set of definite clauses each having the form 

h ~ bl,b2,... 

where h is an atom and bl, b2, . . .  is a set of atoms. Usually E + and E -  contain 
only ground clauses, with empty bodies. The following symbols are used below: 
A (logical and), V (logical or), ~- (logically proves), [] (Falsity). The conditions 
for construction of H are 

Necessity:  B ~ E  + 

Sufficiency: B A H ~- E + 

Weak consistency: B A H ~/[] 

St rong consistency:  B A H A E -  ~ [] 

Note that strong consistency is not required for systems that deal with noise (eg. 
Golem, FOIL and LINUS). The four conditions above capture all the logical 
requirements of an ILP system. Both Necessity and Consistency can be checked 
using a theorem prover. Given that all formulae involved are Horn clauses, the 
theorem prover used need be nothing more than a Prolog interpreter, with some 
minor alterations, such as iterative deepening, to ensure logical completeness. 

2 .2  D e r i v i n g  a l g o r i t h m s  f r o m  t h e  s p e c i f i c a t i o n  o f  I L P  

The sufficiency condition captures the notion of generalising examples relative 
to background knowledge. A theorem prover cannot be directly applied to derive 
H from B and E +. However , by simple application of the Deduction Theorem 
the sufficiency condition can be rewritten as follows. 
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Sufficiency*" B A E + F- H 

This simple alteration has a very profound effect. The negation of the hypothe- 
sis can now be deductively derived from the negation of the examples together 
with the background knowledge. This is true no matter what form the examples 
take and what form the hypothesis takes. So, in order to understand the impli- 
cations of sufficiency* better, in the following sections it is shown how different 
algorithms, for different purposes can be derived from this relation. 

2 . 3  S i n g l e  e x a m p l e  c l a u s e ,  s i n g l e  h y p o t h e s i s  c l a u s e  

This problem has been studied extensively by researchers investigating both 
EBL [33, 11], Inverse Resolution [54, 1, 44, 37, 52, 9] and Abduction [26, 31]. 
For simplicity, let us assume that  both the example and the hypothesised clause 
are definite clauses. Thus 

E + = h * - - - b l , b 2 , . . . = h V b l V b 2 . . .  

H = 

Now substituting these into sufficiency* gives 

B A ( h V b l  Vb2 . . . )  ~- (h'Vb'l  Vb'2. . .)  

B A ' h A b l A b 2  .... F h'-TAb'lAb~,.. 

Note that  h, h ~, b~ and b i are all ground skolemised literals. Suppose we use B A 
E + to generate allground unit clause consequences. When negated, the resulting 
(possibly infinite 1) clause is a unique, most specific solution for all hypotheses 
which fit the sufficiency condition. All such clauses entail this clause. Thus the 
entire hypothesis space can be generated by dropping literals, variabilising terms 
or inverting implication [28, 39, 22]. No matter what control method is used for 
searching this space (general-specific or specific-general), all algorithms within 
EBL and Inverse Resolution are based on the above relationship. This is shown 
in detail for Inverse Resolution in [37]. 

What happens when more than one negative literal is a ground consequence 
of B A E+? In the general case, the most specific clause will then be h i V 
h~, .. V b~, Vb~ . . . .  If the hypothesis is required to be a definite clause, the set of 
most-specific solutions is 

! I h~ ~-- bl ,b2, . . .  
! ! 

h~ +--- bl ,b2, . . .  

h~ and h~ may not have the same predicate symbol as h in the example. This 
set of most specific clauses, representing a set of hypothesis spaces, can be seen 

1Speclfic-general ILP a lgor i thms  such  as CL1NT [9] Gcflem [41] use  con t ra ined  subse t s  of 
defi~fite clause logic to ensure  f ini teness  of the  most-speclf ic  clause.  
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as the basis for abduction, theory revision [51] and multiple predicate learning 
[10]. 

E x a m p l e  1 Let 

h a s w i n g s ( X )  ,--- b ird(X)  
B -- b ird(X)  *-- vu l ture (X)  

E + -= haswings( twee ty )  ~-- 

The ground unit consequences of B A E+ are 

C = bird(tweety)  A vul ture( tweety)  A haswings( twee ty )  

This leads to 3 most-specific starting clauses. 

bird(tweety) ~-- 
H = vul ture( tweety)  *-- 

haswings( tweety)  *--- 

I f  any one of these clauses is added to B then E + becomes a consequence of the 
new theory. 

2 . 4  M u l t i p l e  e x a m p l e s ,  s i n g l e  h y p o t h e s i s  c l a u s e  

This problem is faced in general-specific learning algorithms such as MIS [55], 
FOIL [50], RDT [24] as well as specific-general algorithms such as Golem [41]. 
Let us assume that  E + = el A e ~ A . . .  is a s e t  of ground atoms. Suppose C 
denotes the set of unit consequences of B A E +. From sufficiency* it is clear 
that  

B A E + I - E + A C  

Substituting for E + and rearranging gives 

BAE+ P ( ~ V ~ V . . . ) A C  
B A E+ F A C) V A C) V . . .  

Therefore H = (el VC)A(e2VC)A..., which is a set of clauses. Since the solution 
must be a single clause, systeir~s such as Golem construct the most specific clause 
which subsumes all these clauses. General-specific algorithms search the set of 
clauses which subsume subsets of these clauses, starting from the empty clause. 
If the hypothesis is a set of two or more clauses, then again each clause in 
this set subsumes the set of most-specific clauses above. FOIL assumes explicit 
pre-construction of the ground atoms in C to speed subsumption testing. 
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B = 
father(harry, john) ~-- 
father(john, fred) 
uncle(harry, jill) 

E+ = ~ parent(harry, john) ~-- 
[ parent(john, fred) ~-- 

The ground unit consequences of B A E + are 

C = father(harry, john) A father(john, fred) A uncle(harry, jill) 

This leads to the following most specific clauses 

el V C = parent(harry, john) ~- father(harry,john), father(john, fred), 

uncle(harry, jill) 

e2 V C = parent(john, fred) ~-- father(harry, john), father(john, fred), 

uncle(harry, jill) 

The least general generalisation is then 

lgg(el V C, e2 V C) = parent(A, B) ~ father(A, B), fa~her(C, D) 

2.5 S i n g l e  e x a m p l e ,  m u l t i p l e  c l a u s e  h y p o t h e s i s  ( p r e d i c a t e  

i n v e n t i o n )  

The sufficiency* condition can be used for any form of hypothesis construction. 
Thus it should be possible to derive how predicate invention (introduction of 
new predicates) is carried out with this relationship. Let us first define predicate 
invention more formally. If P is a logic program then the set of all predicate 
symbols found in the heads of clauses of P is called the definitional vocabulary 
of P or V(P). ILP has the following three definitional vocabularies. 

Observat ional  vocabulary:  0 = V(E + t3 E - )  

Theore t ica l  vocabulary:  T = V(B) - 0 

Inven ted  vocabulary:  7? = V( H) - (T t2 O) 

An ILP system is said to carry out predicate invention whenever 1 r 0. 
Most specific predicate invention can be carried out using the rule of And- 

introduction (conversely Or-introduction [22]). These logical equivalences are as 
follows. 
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B 

And- in t roduc t ion :  X _= (X A Y) V (X A Y) 

Or- in t roduc t ion :  X _= (X V Y) A (X V Y) 

Note that the predicate symbols in Y can be chosen arbitrarily and may be quite 
distinct from those in X. Now letting C be the set of all unit consequences of 
B A E + and using And-introduction gives 

B A E + I - C  

B A E~ ~ (p ^ c)  v (~ A C) 

where p is a ground atom whose predicate symbol is not in (T U 0).  Thus H 
is any set of clauses which entails (~ V C) A (p V C). This can be viewed as the 
introduction of a clause head (p) and a calling atom from the body of a clause 
(~). All methods of predicate invention, such as those using the W-operator 
[44], construct clauses which entail the above forms of clauses. However, there 
is an infinite set of atoms p which could be And-introduced in this way. Each 
of these represents the invention of a different predicate. In [40] it is shown how 
these invented predicate can be arranged in a partially-ordered lattice of utility 
with a unique top (T) and bottom (_1.) element. Within this lattice invented 
predicates are unique up to renaming of the predicate symbol and re-ordering 
of arguments. This provides for a unique p, which is an instance of • to be 
introduced which simply contains the set of all ground terms in C. Clauses can 
then be generalised through the relative clause refinement lattice by dropping 
arguments from p or generalising C V p and C V ~. 

Example  3 The following example involves inventing 'lessthan' in learning to 
find the minimum element of a list. Let 

B : rain(X, [X]) *-- 

E+ : rain(2, [3, 2]) 

The ground unit consequences of B A E + are 

.~in(2, [3, 2]) A rain(2, [2]) A ,,~in(3, [31) 

Let p = p1(2, 3, [2], [3], [3, 2]). Vhis leads to the following 2 most-speci~ staaing 
clauses for predicate invention. 

{ ,~i,~(2, [3, 2]) ~ rain(2, [2]), rain(3, [3]),pa(2, 3, [2], [3], [3, 2]) 
H = p1(2, 3, [2], [3], [3, 2]); rnin(2, [3, 2]) ~ rain(2, [2]), min(3, [3]) 

Generalising and renaming the predicate symbol gives 

H' = .( rain(Y, [VlZ]) ~- mi~(X, Z), lesstha.(V, X) 
[ lessthan(2, 3) ~-- 
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3 Extralogical constraints in ILP 

In the previous section only the logical constraints used in ILP systems were 
discussed. It was shown that these can be usefully manipulated to derive the 
skeleton of an ILP system. However, in order to ensure efficiency, it is usually 
found necessary to employ extra-logical constraints within ILP systems. This 
is done in two complementary ways: statistical confirmation and language re- 
strictions (bias). Confirmation theory fits a graded preference surface to the 
hypothesis space, while language restrictions reduce the size of the hypothesis 
space. In the following two subsections ILP developments in these areas are 
discussed. 

3.1 Statistical confirmation 

Philosophy of Science uses the notion of a confirmation function [19] to give 
a grading of preferred hypotheses. A confirmation function is a total function 
that maps elements of the hypothesis space onto a subset of the real numbers. 
Within ILP confirmation functions based on concepts from Algorithmic Com- 
plexity Theory and Minimal Description Length Theory have been developed 
[36, 50, 43, 8]. Confirmation functions based on Bayesian statistical analysis 
have also been found useful in handling noise in ILP real-world domains [13]. 

In [56] the authors explore the use of upper and lower bound estimates of 
a confirmation function to guide multi-layered predicate invention. The result- 
ing algorithm is a non-backtracking version of an A* search. This approach is 
effective for guiding "deep" predicate invention, with multiple layers. 

3 .2 L a n g u a g e  r e s t r i c t i o n s  ( b i a s )  

Recent results in PAC-learning [45, 15, 23] show that reducing the size of the 
target language often makes ILP learning more tractable. The main restrictions 
are on the introduction of existentially quantified variables in the bodies of def- 
inite clauses. CLINT [9] places a finite limit on the number of such variables 
that are allowed to be introduced. Golem [41] requires that the quantification 
of such variables is limited to Hilbert r quantification (exists at most one) and 
that these "determSnate" variables be introduced into the clause body in a fixed 
number of at most i layers. FOIL [49] has since also made use of the determinate 
restriction introduced first in Golem. 

An alternative approach to language restriction involves the provision of 
declarative templates which describe the form hypotheses must take. For in- 
stance, the algorithm may be told the hypothesis takes the form 

Q(S1) ~- PI(S1), preceding_state(S1, SO), P2(S0) 

where Q, P1, P2 can be instantiated with any predicate symbols from the back- 
ground knowledge. This approach is sometimes referred to as "rule-models" [24], 
but can also be viewed as learning by analogies expressed as higher-order logic 
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Restriction Systems Problematic Domains 

Ground background FOIL, Golem Qualitative, chess, 
knowledge natural language 
Non-numerical data ITOU, FOIL, Golem, Meshes, drugs 

SIERES, CLINT, RDT 
Determinacy Golem, FOIL, LINUS Qualitative, chess 

meshes 
Search myopia FOIL, FOCL List~cnumber theory, 
Efficiency of learning ITOU, CLINT Proteins, chess, 

satellites 

Figure 1: Restrictions that have led to problems in real-world applications 

defaults [18, 20, 9]. This has led to some interest within ILP in being able to 
learn higher-order predicates [17]. 

Related to the idea of rule-models is the use of mode and type declarations 
in MIS, Golem, SIERES, FOIL and LINUS. A general scheme of using mode 
declarations is under development by the author in the ILP system Progol. The 
mode declarations for Progol take the following form. 

mode(i, append(+list, +list,-list)) 
mode(*, append(-list,-list, +list)) 

The first mode states that append will succeed once (1) when the first two ar- 
guments are instantiated with lists and on return the third argument will be in- 
stantiated by a list. Types such as 'list' are user-defined as monadic background 
predicates. The second declaration states that append will succeed finitely many 
times (*) with the third argument instantiated as a list. The specified limit on 
the degree of indeterminacy of the call can be any counting number or '*' 

In [7, 2] the concept of "rule-models" is further generalised to that of an 
hypothesis space language specified by a set of grammar rules. This approach 
provides a general purpose "declarative bias" and is reminiscent of earlier work 
on "determinations" [53]. Although determinations in their present form are re- 
stricted to propositional logic learning, they have been proved to have a dramatic 
effect on reducing learning complexity [53]. 

4 Shortcomings of ILP systems 

Despite the rapid development of the ILP research area there is some way to 
go before ILP could deliver a technology that would be used widely by working 
scientists and engineers. Figure 1 lists restrictions that certain ILP systems 
have that have led to awkwardness in applying them to real-world applications. 
The domains referred to cryptically in the table are, in alphabetical order, the 
following 
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Chess.  Learning endgame strategies [35]. 

Drugs.  Structure-activity prediction [25]. 

Lis tSznumber  theory .  Quick-sort, multiply, etc. [41]. 

Meshes .  Rules for Finite Element Mesh design [12]. 

Na t u r a l  language.  Grammar acquisition [60]. 

Prote ins .  Secondary-structure prediction [42]. 

Qual i ta t ive .  Learning qualitative models [4]. 

Satellites.  Temporal fault diagnosis. [16]. 

In the following subsections some approaches to avoiding these restrictions will 
be sketched. The problems encountered in applications will be explained and 
some remedies suggested. 

4.1 Ground background knowledge 

Golem and FOIL require all background knowledge to be given extensionally in 
tabular form. This is acceptable and very efficient when the number of ground 
instances required is small. In domains such as qualitative model construction, 
chess and natural language this is not feasible. Effective learning algorithms need 
to be able to call a Prolog interpreter to derive ground atoms from intensionally- 
coded specifications of background predicates. To do so they should only derive 
background atoms that are relevant to the examples. CLINT, ITOU and LINUS 
all achieve these aims to varying degrees. 

4.2 Non-numerical data 

The mesh domain involves predicting the number of sections that an edge of a 
CAD object should be broken into for efficient finite-element analysis. The rules 
developed by Golem thus have the following form. 

mesh( Obj, 8) ~- connected( Obj, Obj l ), . . . 

However with a small number of examples it is hard to get enough examples in 
which the prediction is an exact number, such as 8. Instead we would like the 
rules to predict an interval such as 

mesh(Obj,  X )  ~-- 7 < X < 9,connected(Obj, O b j l ) , . . .  

This kind of construction is not handled elegantly by existing systems. In statis- 
tics this problem of numerical prediction is known as regression. Many efficient 
statistical algorithms exist for handling numerical data. ILP system designers 
might do well to look at smoothly integrating such approaches into their sys- 
tems. Recent work on introducing linear inequalities into inductively constructed 
definite clauses [34] provides an elegant logical framework for this problem. 
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4.3 Determinacy 
The ij-determinate restriction is both powerful and widely used. However, it is 
very unnatural for many domains. Consider the following chess strategy clause. 

won(Position, black) ~-- move(Position, Positionl ), . . . 

Clearly there will usually be many valid substitutions for Position1. This prob- 
lem comes up whenever the objects in the domain represent nodes in a connected 
graph. This is precisely the kind of problem in which ILP algorithms should be 
more easily applied than attribute-value systems. Kietz's result [23] indicates 
that there may not be any general PAC solution to learning non-determinate 
logic programs. 

4.4 Search myopia 

This problem is an inherent weakness of heuristically-guided general-specific 
clause construction systems such as FOIL and FOCL. Consider the following 
recursive clause for multiplication. 

mult(A, B, C) ~-- succ(A, D), mult(D, B, E), plus(E, B, C). 

The original FOIL [50] could not learn this clause because with a partially devel- 
oped clause, none of the atoms in the body make a distinction between positive 
and negative instances. Only the entire set of three atoms together have a non- 
zero "gain". FOIL2 [49] overcame this problem by introducing all zero-gain 
determinate literals at the beginning. This gives FOIL2 a mixed general-specific 
and specific-general control strategy. However, the problem now simply recedes 
to non-determinate clauses with the same property. For instance, consider the 
following clause concerning graphs. 

threeloop( g ode) ~- edge( N ode, Node l ), edge( N ode l, Node2), 

edge(Node2, Node) 

When FOIL2 tries to construct this clause, each 'edge' literal will again have 
zero gain. Since the atoms are nondeterminate FOIL2 will fail. This form of 
myopia is not encountered by specific-general algorithms such as CLINT which 
start with all relevant literals and prune out unnecessary ones. 

4.5 Efficiency of learning 
One of the most demanding problems for ILP system developers is that of ef- 
ficiency. Many interesting real-world problems, such as the protein prediction 
problem, involve thousands or even millions of examples. Scaling ILP systems 
to deal with such large databases is a non-trivial task. It may be that methods 
such as "windowing", successfully applied in ID3, could be incorporated into 
ILP systems. 
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5 C o n c l u s i o n  a n d  fu ture  d i r e c t i o n s  

Inductive Logic Programming is a fast-growing research area. The last few years 
have seen the area of quantified logic learning develop from a theoretical backwa- 
ter into a mainstream applied research area. Many of the problems encountered 
on the way can make use of solutions developed in Machine Learning, Statistics 
and Logic Programming. 

It should be clear from Section 2 that logical theorem-proving is at the heart 
of all ILP methods. For this reason it must be worth asking whether the tech- 
nology of Prolog interpreters is sufficient for all purposes. Reconsider Example 
1 in Section 2.3. Implementing a general system that carried out the inference 
in this example would require a full-clausal theorem prover. Is it worth going 
to this more computationally expensive thechnique? Luc de Raedt has recently 
started investigating the new generation of efficient full-clausal theorem-prover s 
such as that described by Stickel [58]. Stickel's theorem prover compiles full 
clauses into a set of definite clauses. These definite clauses are then executed by 
a Prolog interpreter using iterative deepening. This technique maintains most 
of Prolog's efficiency while allowing full theorem proving. Full theorem proving 
is also useful for implementing constraint checking in ILP systems [9]. Learning 
full-clansal theories is a largely unexplored and exciting new area for ILP. 

ILP research has many issues to deal with and many directions to go. By 
maintaining strong connections between theory, implementations and applica- 
tions, ILP has the potential to develop into a powerful and widely-used technol- 
ogy. 
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