
Inductive Logic Programming:
derivations, successes and shortcomings

Stephen Muggleton
Oxford University Computing Laboratory,

11 Keble Road,
Oxford,

OX1 3QD,
United Kingdom.

A b s t r a c t

Inductive Logic Programming (ILP) is a research area which investi-
gates the construction of quantified definite clause theories from examples
and background knowledge. ILP systems have been applied successfully in
a number of real-world domains. These include the learning of structure-
activity rules for drug design, finite-element mesh design rules, rules for
primary-secondary prediction of protein structure and fault diagnosis rules
for satellites. There is a well established tradition of learning-in-the-limit
results in ILP. Recently some results within Valiant's PAC-learning frame-
work have also been demonstrated for ILP systems. In this paper it is ar-
gued that algorithms can be directly derived from the formal specifications
of ILP. This provides a common basis for Inverse Resolution, Explanation-
Based Learning, Abduction and Relative Least Genera] Generalisation. A
new general-purpose, efficient approach to predicate invention is demon-
strated. ILP is underconstrained by its logical specification. Therefore
a brief overview of extra-logical constraints used in ILP systems is given.
Some present limitations and research directions for the field are identified.

1 I n t r o d u c t i o n

The framework for Inductive Logic Programming (ILP) [37, 38] is one of the most
general within the field of Machine Learning. ILP systems construct concept
definitions (logic programs) from examples and a logical domain theory (back-
ground knowledge). This goes beyond the more established empirical learning
framework [32, 48, 5, 6] because of the use of a quantified relational logic to-
gether with background knowledge. It goes beyond the explanation-based learn-
ing fi 'amework [33, 11] due to the lack of insistence on complete and correct
background knowledge.

22

The use of a relational logic formalism has allowed successful application of
ILP systems in a number of domains in which the concepts to be learned cannot
easily be described in an attribute-value language. These applications include
structure-activity prediction for drug design [25, 57], protein secondary-structure
prediction [42], and finite element mesh design [12]. It is worth comparing these
results with existing scientific discovery systems in machine learning. By normal
scientific standards it does not make sense to call BACON's [27] and AM's [29]
achievements scientific/mathematical discovery since they did not produce new
knowledge refereed and published in the journals of their subject area. The above
applications of drug design and protein folding did produce machine-derived
new knowledge, published in top scientific journals. There are very few other
examples within AI where this has been achieved.

The generality of the ILP approach has allowed many exciting new types of
application domain. In addition to the above real-world application areas ILP
systems such as MIS [55], Marvin [54], CIGOL [44], ML-SMART [3], FOIL [50],
Golem [41], ITOU [52], RDT [24], CLINT [9], FOCL [46], SIERES [61] and
LINUS [14] are all capable of synthesising logic programs containing recursion.
They can also deal with domains containing explicit representation of time [16]
and learn grammar rules for natural language processing [60].

Learning-in-the-limit results are well-established in the ILP literature both
for full-clausal logic [47] and definite clause logic [1, 9]. However, these results
tell one little about the efficiency of learning. In contrast, Valiant's [59] PAC
(Probably-Approximately-Correct) framework is aimed at providing complexity
results for machine learning algorithms. However, Haussler's [21] negative PAC
result concerning existentially quantified formulae seemed initially to exclude the
possibility of PAC results for quantified logic. The situation has been improved
by recent positive results in significant sized subsets of definite clause logic.
Namely, single constrained Horn clauses [45] and k-clause ij-determinate logic
programs [15]. Recent results by Kietz [23] indicate that every proper superset
of the k-clause ij-determinate language is not PAC learnable. This seems to
indicate a ceiling to extensions of present approaches.

As the ILP applications areas show, Horn clause logic is a powerful rep-
resentation language for concept learning. It also has a clear model-theoretic
semantics which is inherited from Logic Prggramming [30]. However, with the
generality of the approach come problems with searching a large hypothesis
space. A clear logical framework helps in deriving efficient algorithms for con-
straining and searching this space. In Section 2 the formal definitions of ILP
are used to derive existing specific-general and general-specific algorithms. Ad-
ditionally, in Section 2.5 a new method for carrying out predicate invention is
derived in this way. In Section 3 extralogical constraints used within existing
ILP systems are discussed. In Section 4 some of the shortcomings of existing
ILP systems are discussed and potential remedies suggested.

23

2 Formal logical setting for ILP

One might ask why ILP should need a very formal definition of its logical set-
ting? After all, Machine Learning research has progressed quite happily without
much formal apparatus. Surely formalisation is time-consuming and impedes
progress in implementing systems? This paper argues the opposite. Without
formalisation it is not clear what one is trying to achieve in an implementation.
Techniques from one implementation cannot be transferred easily to another.
However, this section will demonstrate a more direct and immediate advantage.
That is, if a small number of formulae are used to define the high level prop-
erties of a learning system it is often possible to manipulate these formulae
algebraically to derive a complete and correct algorithm which satisfies them.

2.1 T h e s e t t i n g

The usual context for ILP is as follows. The learning agent is provided with
background knowledge B, positive examples E + and negative examples E - and
constructs an hypothesis H. B, E + E - and H are each logic programs. A logic
program is a set of definite clauses each having the form

h ~ bl,b2,...

where h is an atom and bl, b2, . . . is a set of atoms. Usually E + and E - contain
only ground clauses, with empty bodies. The following symbols are used below:
A (logical and), V (logical or), ~- (logically proves), [] (Falsity). The conditions
for construction of H are

Necessity: B ~ E +

Sufficiency: B A H ~- E +

Weak consistency: B A H ~/[]

St rong consistency: B A H A E - ~ []

Note that strong consistency is not required for systems that deal with noise (eg.
Golem, FOIL and LINUS). The four conditions above capture all the logical
requirements of an ILP system. Both Necessity and Consistency can be checked
using a theorem prover. Given that all formulae involved are Horn clauses, the
theorem prover used need be nothing more than a Prolog interpreter, with some
minor alterations, such as iterative deepening, to ensure logical completeness.

2 .2 D e r i v i n g a l g o r i t h m s f r o m t h e s p e c i f i c a t i o n o f I L P

The sufficiency condition captures the notion of generalising examples relative
to background knowledge. A theorem prover cannot be directly applied to derive
H from B and E +. However , by simple application of the Deduction Theorem
the sufficiency condition can be rewritten as follows.

24

Sufficiency*" B A E + F- H

This simple alteration has a very profound effect. The negation of the hypothe-
sis can now be deductively derived from the negation of the examples together
with the background knowledge. This is true no matter what form the examples
take and what form the hypothesis takes. So, in order to understand the impli-
cations of sufficiency* better, in the following sections it is shown how different
algorithms, for different purposes can be derived from this relation.

2 . 3 S i n g l e e x a m p l e c l a u s e , s i n g l e h y p o t h e s i s c l a u s e

This problem has been studied extensively by researchers investigating both
EBL [33, 11], Inverse Resolution [54, 1, 44, 37, 52, 9] and Abduction [26, 31].
For simplicity, let us assume that both the example and the hypothesised clause
are definite clauses. Thus

E + = h * - - - b l , b 2 , . . . = h V b l V b 2 . . .

H =

Now substituting these into sufficiency* gives

B A (h V b l Vb2 . . .) ~- (h'Vb'l Vb'2. . .)

B A ' h A b l A b 2 F h'-TAb'lAb~,..

Note that h, h ~, b~ and b i are all ground skolemised literals. Suppose we use B A
E + to generate allground unit clause consequences. When negated, the resulting
(possibly infinite 1) clause is a unique, most specific solution for all hypotheses
which fit the sufficiency condition. All such clauses entail this clause. Thus the
entire hypothesis space can be generated by dropping literals, variabilising terms
or inverting implication [28, 39, 22]. No matter what control method is used for
searching this space (general-specific or specific-general), all algorithms within
EBL and Inverse Resolution are based on the above relationship. This is shown
in detail for Inverse Resolution in [37].

What happens when more than one negative literal is a ground consequence
of B A E+? In the general case, the most specific clause will then be h i V
h~, .. V b~, Vb~ If the hypothesis is required to be a definite clause, the set of
most-specific solutions is

! I h~ ~-- bl ,b2, . . .
! !

h~ +--- bl ,b2, . . .

h~ and h~ may not have the same predicate symbol as h in the example. This
set of most specific clauses, representing a set of hypothesis spaces, can be seen

1Speclfic-general ILP a lgor i thms such as CL1NT [9] Gcflem [41] use con t ra ined subse t s of
defi~fite clause logic to ensure f ini teness of the most-speclf ic clause.

25

as the basis for abduction, theory revision [51] and multiple predicate learning
[10].

E x a m p l e 1 Let

h a s w i n g s (X) ,--- b ird(X)
B -- b ird(X) *-- vu l ture (X)

E + -= haswings(twee ty) ~--

The ground unit consequences of B A E+ are

C = bird(tweety) A vul ture(tweety) A haswings(twee ty)

This leads to 3 most-specific starting clauses.

bird(tweety) ~--
H = vul ture(tweety) *--

haswings(tweety) *---

I f any one of these clauses is added to B then E + becomes a consequence of the
new theory.

2 . 4 M u l t i p l e e x a m p l e s , s i n g l e h y p o t h e s i s c l a u s e

This problem is faced in general-specific learning algorithms such as MIS [55],
FOIL [50], RDT [24] as well as specific-general algorithms such as Golem [41].
Let us assume that E + = el A e ~ A . . . is a s e t of ground atoms. Suppose C
denotes the set of unit consequences of B A E +. From sufficiency* it is clear
that

B A E + I - E + A C

Substituting for E + and rearranging gives

BAE+ P (~ V ~ V . . .) A C
B A E+ F A C) V A C) V . . .

Therefore H = (el VC)A(e2VC)A..., which is a set of clauses. Since the solution
must be a single clause, systeir~s such as Golem construct the most specific clause
which subsumes all these clauses. General-specific algorithms search the set of
clauses which subsume subsets of these clauses, starting from the empty clause.
If the hypothesis is a set of two or more clauses, then again each clause in
this set subsumes the set of most-specific clauses above. FOIL assumes explicit
pre-construction of the ground atoms in C to speed subsumption testing.

Example 2 Let

26

B =
father(harry, john) ~--
father(john, fred)
uncle(harry, jill)

E+ = ~ parent(harry, john) ~--
[parent(john, fred) ~--

The ground unit consequences of B A E + are

C = father(harry, john) A father(john, fred) A uncle(harry, jill)

This leads to the following most specific clauses

el V C = parent(harry, john) ~- father(harry,john), father(john, fred),

uncle(harry, jill)

e2 V C = parent(john, fred) ~-- father(harry, john), father(john, fred),

uncle(harry, jill)

The least general generalisation is then

lgg(el V C, e2 V C) = parent(A, B) ~ father(A, B), fa~her(C, D)

2.5 S i n g l e e x a m p l e , m u l t i p l e c l a u s e h y p o t h e s i s (p r e d i c a t e

i n v e n t i o n)

The sufficiency* condition can be used for any form of hypothesis construction.
Thus it should be possible to derive how predicate invention (introduction of
new predicates) is carried out with this relationship. Let us first define predicate
invention more formally. If P is a logic program then the set of all predicate
symbols found in the heads of clauses of P is called the definitional vocabulary
of P or V(P). ILP has the following three definitional vocabularies.

Observat ional vocabulary: 0 = V(E + t3 E -)

Theore t ica l vocabulary: T = V(B) - 0

Inven ted vocabulary: 7? = V(H) - (T t2 O)

An ILP system is said to carry out predicate invention whenever 1 r 0.
Most specific predicate invention can be carried out using the rule of And-

introduction (conversely Or-introduction [22]). These logical equivalences are as
follows.

27

B

And- in t roduc t ion : X _= (X A Y) V (X A Y)

Or- in t roduc t ion : X _= (X V Y) A (X V Y)

Note that the predicate symbols in Y can be chosen arbitrarily and may be quite
distinct from those in X. Now letting C be the set of all unit consequences of
B A E + and using And-introduction gives

B A E + I - C

B A E~ ~ (p ^ c) v (~ A C)

where p is a ground atom whose predicate symbol is not in (T U 0). Thus H
is any set of clauses which entails (~ V C) A (p V C). This can be viewed as the
introduction of a clause head (p) and a calling atom from the body of a clause
(~). All methods of predicate invention, such as those using the W-operator
[44], construct clauses which entail the above forms of clauses. However, there
is an infinite set of atoms p which could be And-introduced in this way. Each
of these represents the invention of a different predicate. In [40] it is shown how
these invented predicate can be arranged in a partially-ordered lattice of utility
with a unique top (T) and bottom (_1.) element. Within this lattice invented
predicates are unique up to renaming of the predicate symbol and re-ordering
of arguments. This provides for a unique p, which is an instance of • to be
introduced which simply contains the set of all ground terms in C. Clauses can
then be generalised through the relative clause refinement lattice by dropping
arguments from p or generalising C V p and C V ~.

Example 3 The following example involves inventing 'lessthan' in learning to
find the minimum element of a list. Let

B : rain(X, [X]) *--

E+ : rain(2, [3, 2])

The ground unit consequences of B A E + are

.~in(2, [3, 2]) A rain(2, [2]) A ,,~in(3, [31)

Let p = p1(2, 3, [2], [3], [3, 2]). Vhis leads to the following 2 most-speci~ staaing
clauses for predicate invention.

{ ,~i,~(2, [3, 2]) ~ rain(2, [2]), rain(3, [3]),pa(2, 3, [2], [3], [3, 2])
H = p1(2, 3, [2], [3], [3, 2]); rnin(2, [3, 2]) ~ rain(2, [2]), min(3, [3])

Generalising and renaming the predicate symbol gives

H' = .(rain(Y, [VlZ]) ~- mi~(X, Z), lesstha.(V, X)
[lessthan(2, 3) ~--

28

3 Extralogical constraints in ILP

In the previous section only the logical constraints used in ILP systems were
discussed. It was shown that these can be usefully manipulated to derive the
skeleton of an ILP system. However, in order to ensure efficiency, it is usually
found necessary to employ extra-logical constraints within ILP systems. This
is done in two complementary ways: statistical confirmation and language re-
strictions (bias). Confirmation theory fits a graded preference surface to the
hypothesis space, while language restrictions reduce the size of the hypothesis
space. In the following two subsections ILP developments in these areas are
discussed.

3.1 Statistical confirmation

Philosophy of Science uses the notion of a confirmation function [19] to give
a grading of preferred hypotheses. A confirmation function is a total function
that maps elements of the hypothesis space onto a subset of the real numbers.
Within ILP confirmation functions based on concepts from Algorithmic Com-
plexity Theory and Minimal Description Length Theory have been developed
[36, 50, 43, 8]. Confirmation functions based on Bayesian statistical analysis
have also been found useful in handling noise in ILP real-world domains [13].

In [56] the authors explore the use of upper and lower bound estimates of
a confirmation function to guide multi-layered predicate invention. The result-
ing algorithm is a non-backtracking version of an A* search. This approach is
effective for guiding "deep" predicate invention, with multiple layers.

3 .2 L a n g u a g e r e s t r i c t i o n s (b i a s)

Recent results in PAC-learning [45, 15, 23] show that reducing the size of the
target language often makes ILP learning more tractable. The main restrictions
are on the introduction of existentially quantified variables in the bodies of def-
inite clauses. CLINT [9] places a finite limit on the number of such variables
that are allowed to be introduced. Golem [41] requires that the quantification
of such variables is limited to Hilbert r quantification (exists at most one) and
that these "determSnate" variables be introduced into the clause body in a fixed
number of at most i layers. FOIL [49] has since also made use of the determinate
restriction introduced first in Golem.

An alternative approach to language restriction involves the provision of
declarative templates which describe the form hypotheses must take. For in-
stance, the algorithm may be told the hypothesis takes the form

Q(S1) ~- PI(S1), preceding_state(S1, SO), P2(S0)

where Q, P1, P2 can be instantiated with any predicate symbols from the back-
ground knowledge. This approach is sometimes referred to as "rule-models" [24],
but can also be viewed as learning by analogies expressed as higher-order logic

29

Restriction Systems Problematic Domains

Ground background FOIL, Golem Qualitative, chess,
knowledge natural language
Non-numerical data ITOU, FOIL, Golem, Meshes, drugs

SIERES, CLINT, RDT
Determinacy Golem, FOIL, LINUS Qualitative, chess

meshes
Search myopia FOIL, FOCL List~cnumber theory,
Efficiency of learning ITOU, CLINT Proteins, chess,

satellites

Figure 1: Restrictions that have led to problems in real-world applications

defaults [18, 20, 9]. This has led to some interest within ILP in being able to
learn higher-order predicates [17].

Related to the idea of rule-models is the use of mode and type declarations
in MIS, Golem, SIERES, FOIL and LINUS. A general scheme of using mode
declarations is under development by the author in the ILP system Progol. The
mode declarations for Progol take the following form.

mode(i, append(+list, +list,-list))
mode(*, append(-list,-list, +list))

The first mode states that append will succeed once (1) when the first two ar-
guments are instantiated with lists and on return the third argument will be in-
stantiated by a list. Types such as 'list' are user-defined as monadic background
predicates. The second declaration states that append will succeed finitely many
times (*) with the third argument instantiated as a list. The specified limit on
the degree of indeterminacy of the call can be any counting number or '*'

In [7, 2] the concept of "rule-models" is further generalised to that of an
hypothesis space language specified by a set of grammar rules. This approach
provides a general purpose "declarative bias" and is reminiscent of earlier work
on "determinations" [53]. Although determinations in their present form are re-
stricted to propositional logic learning, they have been proved to have a dramatic
effect on reducing learning complexity [53].

4 Shortcomings of ILP systems

Despite the rapid development of the ILP research area there is some way to
go before ILP could deliver a technology that would be used widely by working
scientists and engineers. Figure 1 lists restrictions that certain ILP systems
have that have led to awkwardness in applying them to real-world applications.
The domains referred to cryptically in the table are, in alphabetical order, the
following

30

Chess. Learning endgame strategies [35].

Drugs. Structure-activity prediction [25].

Lis tSznumber theory . Quick-sort, multiply, etc. [41].

Meshes . Rules for Finite Element Mesh design [12].

Na t u r a l language. Grammar acquisition [60].

Prote ins . Secondary-structure prediction [42].

Qual i ta t ive . Learning qualitative models [4].

Satellites. Temporal fault diagnosis. [16].

In the following subsections some approaches to avoiding these restrictions will
be sketched. The problems encountered in applications will be explained and
some remedies suggested.

4.1 Ground background knowledge

Golem and FOIL require all background knowledge to be given extensionally in
tabular form. This is acceptable and very efficient when the number of ground
instances required is small. In domains such as qualitative model construction,
chess and natural language this is not feasible. Effective learning algorithms need
to be able to call a Prolog interpreter to derive ground atoms from intensionally-
coded specifications of background predicates. To do so they should only derive
background atoms that are relevant to the examples. CLINT, ITOU and LINUS
all achieve these aims to varying degrees.

4.2 Non-numerical data

The mesh domain involves predicting the number of sections that an edge of a
CAD object should be broken into for efficient finite-element analysis. The rules
developed by Golem thus have the following form.

mesh(Obj, 8) ~- connected(Obj, Obj l), . . .

However with a small number of examples it is hard to get enough examples in
which the prediction is an exact number, such as 8. Instead we would like the
rules to predict an interval such as

mesh(Obj, X) ~-- 7 < X < 9,connected(Obj, O b j l) , . . .

This kind of construction is not handled elegantly by existing systems. In statis-
tics this problem of numerical prediction is known as regression. Many efficient
statistical algorithms exist for handling numerical data. ILP system designers
might do well to look at smoothly integrating such approaches into their sys-
tems. Recent work on introducing linear inequalities into inductively constructed
definite clauses [34] provides an elegant logical framework for this problem.

3]

4.3 Determinacy
The ij-determinate restriction is both powerful and widely used. However, it is
very unnatural for many domains. Consider the following chess strategy clause.

won(Position, black) ~-- move(Position, Positionl), . . .

Clearly there will usually be many valid substitutions for Position1. This prob-
lem comes up whenever the objects in the domain represent nodes in a connected
graph. This is precisely the kind of problem in which ILP algorithms should be
more easily applied than attribute-value systems. Kietz's result [23] indicates
that there may not be any general PAC solution to learning non-determinate
logic programs.

4.4 Search myopia

This problem is an inherent weakness of heuristically-guided general-specific
clause construction systems such as FOIL and FOCL. Consider the following
recursive clause for multiplication.

mult(A, B, C) ~-- succ(A, D), mult(D, B, E), plus(E, B, C).

The original FOIL [50] could not learn this clause because with a partially devel-
oped clause, none of the atoms in the body make a distinction between positive
and negative instances. Only the entire set of three atoms together have a non-
zero "gain". FOIL2 [49] overcame this problem by introducing all zero-gain
determinate literals at the beginning. This gives FOIL2 a mixed general-specific
and specific-general control strategy. However, the problem now simply recedes
to non-determinate clauses with the same property. For instance, consider the
following clause concerning graphs.

threeloop(g ode) ~- edge(N ode, Node l), edge(N ode l, Node2),

edge(Node2, Node)

When FOIL2 tries to construct this clause, each 'edge' literal will again have
zero gain. Since the atoms are nondeterminate FOIL2 will fail. This form of
myopia is not encountered by specific-general algorithms such as CLINT which
start with all relevant literals and prune out unnecessary ones.

4.5 Efficiency of learning
One of the most demanding problems for ILP system developers is that of ef-
ficiency. Many interesting real-world problems, such as the protein prediction
problem, involve thousands or even millions of examples. Scaling ILP systems
to deal with such large databases is a non-trivial task. It may be that methods
such as "windowing", successfully applied in ID3, could be incorporated into
ILP systems.

32

5 C o n c l u s i o n a n d fu ture d i r e c t i o n s

Inductive Logic Programming is a fast-growing research area. The last few years
have seen the area of quantified logic learning develop from a theoretical backwa-
ter into a mainstream applied research area. Many of the problems encountered
on the way can make use of solutions developed in Machine Learning, Statistics
and Logic Programming.

It should be clear from Section 2 that logical theorem-proving is at the heart
of all ILP methods. For this reason it must be worth asking whether the tech-
nology of Prolog interpreters is sufficient for all purposes. Reconsider Example
1 in Section 2.3. Implementing a general system that carried out the inference
in this example would require a full-clausal theorem prover. Is it worth going
to this more computationally expensive thechnique? Luc de Raedt has recently
started investigating the new generation of efficient full-clausal theorem-prover s
such as that described by Stickel [58]. Stickel's theorem prover compiles full
clauses into a set of definite clauses. These definite clauses are then executed by
a Prolog interpreter using iterative deepening. This technique maintains most
of Prolog's efficiency while allowing full theorem proving. Full theorem proving
is also useful for implementing constraint checking in ILP systems [9]. Learning
full-clansal theories is a largely unexplored and exciting new area for ILP.

ILP research has many issues to deal with and many directions to go. By
maintaining strong connections between theory, implementations and applica-
tions, ILP has the potential to develop into a powerful and widely-used technol-
ogy.

A c k n o w l e d g e m e n t s .
The author would like to thank Luc de Raedt for helpful and interesting discus-
sions on the topics in this paper. This work was supported by the Esprit Basic
Research Action ILP, project 6020.

R e f e r e n c e s

[1]

[3]

R.B. Banerji. Learning in the limit in a growing language. In IJCAI-87,
pages 280-282, San Mateo, CA, 1987. Morgan-Kanfinann.

F. Bergadano. Towards an inductive logic programming language. Technical
report, University of Torino, Torino, Italy, 1992.

F. Bergadano and A. Giordana. Guiding induction with domain theories.
In Y. Kodratoff and R. Michalski, editors, Machine learning: an artificial
intelligence approach, volume 3, pages 474-492. Morgan Kaufmann, San
Mateo, CA, 1990.

33

[4] I. Bratko, S. Muggleton, and A. Varsek. Learning qualitative models of dy-
namic systems. In Proceedings o f the Eighth International Machine Learning
Workshop, San Mateo, Ca, 1991. Morgan-Kanfmann.

[5] B. Cestnik, I. Kononenko, and I. Bratko. Assistant 86: a knowledge-
elicitation tool for sophisticated users. In Progress in machine learning,
pages 31-45, Wilmslow, England, 1987. Sigma.

[6] P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261-
283, 1989.

[7] W. Cohen. Compiling prior knowledge into an explicit bias. In D. Sleeman
and P. Edwards, editors , Proceedings of the Ninth International Workshop
on Machine Learning, pages 102-110. Morgan Kaufmann, San Mateo: CA,
1992.

[8] D. Conklin and I. Witten. Complexity-based induction. Technical report,
Dept. of Computing and Information Science, Queen's University, Kingston,
Ontario, Canada, 1992.

[9] L. de Raedt. Interactive concept-learning and constructive induction by
analogy. Machine Learning, 8:107-150, 1992.

[10] L. de Raedt, N. Lavrac, and S. Dzeroski. Multiple predicate learning.
CW 65, Dept. of Computer Science, Katholieke Universiteit Leuven, Leu-
ven, Belgium, 1992.

[11] G. DeJong. Generalisations based on explanations. In IJCAI-81, pages
67-69, San Mateo, CA, 1981. Morgan-Kaufmann.

[12] B. Dolsak and S. Muggleton. The application of Inductive Logic Program-
ming to finite element mesh design. In S. Muggleton, editor, Inductive Logic
Programming, London, 1992. Academic Press.

[13] S. Dzeroski. Handling noise in Inductive Logic Programming. PhD thesis,
:University of Ljubljana, 1991.

[14] S. Dzeroski and N. Lavrac. Refinement graphs for FOIL and LINUS. In
S. Muggletonl editor, Inductive Logic Programming. Academic Press, Lon-
don, 1992.

[15] S. Dzeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate
logic programs. In COLT 92: Proceedings of the Conference on Learning
Theory, San Mateo, CA, 1992. Morgan-Kaufmann.

[16] C. Feng. Inducing temporal fault dignostic rules from a qualitative model.
In S. Muggleton, editor, Inductive Logic Programming. Academic Press,
London, 1992.

34

[17] C. Feng and S. Muggleton. Towards inductive generalisation in higher order
logic. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth In-
ternational Workshop on Machine Learning, pages 154-162. Morgan Kauf-
mann, San Mateo: CA, 1992.

[18] D. Gentner. Structure-mapping: a theoretical framework for analogy. Cog-
nitive Science, 7:155-170, 1983.

[19] D. Gillies. Confirmation theory and machine learning. In Proceedings of the
Second Inductive Learning Workshop, Tokyo, 1992. ICOT TM-1182.

[20] M. Harao. Analogical reasoning based on higher-order unification. In Pro-
ceedings of the First International Conference on Algorithmic Learning The-
ory, Tokyo, 1990. Ohmsha.

[21] D. Haussler. Applying Valiant's learning framework to AI concept-learning
problems. In Y. Kodratoff and R. Michalski, editors, Machine learning: an
artificial intelligence approach, volume 3, pages 641-669. Morgan Kaufman,
San Mateo, CA, 1990.

[22] P. Idestam-Almquist. Generalization under implication: Expansion of
clauses for linear roots. Technical report, Dept. of Computer and Systems
Sciences, Stockholm University, 1992.

[23] J-U Kietz. Some lower bounds for the computational complexity of inductive
logic programming. In Proceedings of the European Conference on Machine
Learning, Berlin, 1993. Springer-Verlag.

[24] J-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic
through syntactic and task-oriented models. In S. Muggleton, editor, In-
ductive Logic Programming. Academic Press, London, 1992.

[25] R. King, S. Muggleton R. ~ Lewis, and M. Sternberg. Drug design by machine
learning: The use of inductive logic programming to model the structure-
activity relationships of trimethoprim analogues binding to dihydrofolate
reductase. Proceedings of the National Academy of Sciences, 89(23), 1992.

[26] R. Kowalski. Logic Programming in Artificial Intelligence. In IJCAI-91:
proceedings of the twelfth international joint conference on artificial intelli-
gence, pages 596-603, San Mateo, CA, 1991. Morgan-Kaufmann.

[27] P. Langley, G.L Bradshaw, and H. Simon. Rediscovering chemistry with the
Bacon system. In R. Michalski, J. Carbounel, and T. Mitchell, editors, Ma-
chine Learning: An Artificial Intelligence Approach, pages 307-330. Tioga,
Palo Alto, CA, 1983.

[28] S. Lapointe and S. Matwin. Sub-unification: a tool for efficient induction
of recursive programs. In Proceedings of the Ninth International Machine
Learning Conference, Los Altos, 1992. Morgan Kaufmann.

35

[29] D.B. Lenat. On automated scientific theory formation: a case study using
the AM program. In J.E. Hayes and D. Michie, editors, Machine Intelligence
9. Horwood, New York, 1981.

[30] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

[31] A. Kakas P. Manearella. Generalized stable models: a semantics for ab-
duction. In L. Aiello, E. Sandewall, G. Hagert, and B. Gnstavsson, editors,
ECA[-90: proceedings of the ninth European conference on artificial intel-
ligence, pages 385-391, London, 1990. Pitman.

[32] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive
learning system: an overview and experiments. In Proceedings of IMAL
1986, Orsay, 1986. Universit@ de Paris-Sud.

[33] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1(1):47-80, 1986.

[34] F. Mizoguchi and H. Ohwada. Constraint-directed generalization for learn-
ing spatial relations. In Proceedings of the Second Inductive Learning Work-
shop, Tokyo, 1992. ICOT TM-1182.

[35] E. Morales. Learning chess patterns. In S. Muggleton, editor, Inductive
Logic Programming. Academic Press, London, 1992.

[36] S. Muggleton. A strategy for constructing new predicates in first order logic.
In Proceedings of the Third European Working Session on Learning, pages
123-130. Pitman, 1988.

[37] S. Muggleton. Inductive Logic Programming. New Generation Computing,
8(4):295-318, 1991.

[38] S. Muggleton. Inductive Logic Programming. Academic Press, 1992.

[39] S. Muggleton. Inverting implication. Artificial Intelligence Journal, 1993.
(to appear).

[40] S. Muggleton. Predicate invention and utility. Journal of Expe~imental and
Theoretical Artificial Intelligence, 1993. (to appear).

[41] S. Muggleton and C. Feng. Efficient induction of logic programs. In
S. Muggleton, editor, Inductive Logic Programming, London, 1992. Aca-
demic Press.

[42] S. Muggleton, R. King, and M. Sternberg. Protein secondary structure pre-
diction using logic-based machine learning. Protein Engineering, 5(7):647-
657, 1992.

36

[43] S. Muggleton, A. Srinivasan, and M. Bain. Compression, significance and
accuracy. In Proceedings of the Ninth International Machine Learning Con-
ference, San Mateo, CA, 1992. Morgan-Kaufmann.

[44] S.H. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference
on Machine Learning, pages 339-352. Kaufmann, 1988.

[45] D. Page and A. Frisch. Generalization and learnability: A study of con-
strained atoms. In S. Muggleton, editor, Inductive Logic Programming.
Academic Press, London, 1992.

[46] M. Pazzani, C. Brunk, and G. Silverstein. An information-based approach
to integrating empirical and explanation-based learning. In S. Muggleton,
editor, Inductive Logic Programming. Academic Press, London, 1992.

[47] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Ed-
inburgh University, August 1971.

[48] J.R. Quinlan. Generating production rules from decision trees. In Proceed-
ings of the Tenth International Conference on Artificial Intelligence, pages
304-307, San Mateo, CA:, 1987. Morgan-Kaufmann.

[49] J.R. Quinlan. Determinate literals in inductive logic programming. In
IJCAI-91: Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, pages 746-750~ San Mateo, CA:, 1991. Morgan-
Kaufmann.

[50] R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[51] B. Richards. An operator-based approach to first-order theory revision. PhD
thesis, University of Austin, Texas, 1992.

[52] C: Rouveirol. Extensions of inversion of resolution applied to theory com-
pletion. In S. Muggleton, editor, Inductive Logic Programming. Academic
Press, London, 1992.

[53] S. Russell. Tree-structured bias. In Proceedings of the Eighth National Con-
ference on Artificial Intelligence, San Mateo, CA, 1988. Morgan-Kaufmann.

[54] C. Sammut and R.B Banerji. Learning concepts by asking questions. In
P~. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach. Vol. 2, pages 167-192. Morgan-Kaufmann,
San Mateo, CA, 1986,

[55] E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

37

[56] A. Srinivasan, S. Muggleton, and M. Bain. Distinguishing exceptions from
noise in non-monotonic learning. In S. Muggleton, editor, Proceedings of the
Second Inductive Logic Programming Workshop. ICOT TM-1182, Tokyo,
1992.

[57] M. Sternberg, R. Lewis, R. King, and S. Muggleton. Modelling the structure
and function of enzymes by machine learning. Proceedings of the Royal
Society of Chemistry: Faraday Discussions, 93:269-280, 1992.

[58] M. Stickel. A Prolog technology theorem prover: implementation by an
extended prolog compiler. Journal of Automated Reasoning, 4(4):353-380,
1988.

[59] L. Valiant. A theory of the learnable. Communications of the A CM,
27(11):1134-1142, 1984.

[60] R. Wirth. Learning by failure to prove. In EWSL-88, pages 237-251,
London, 1988. Pitman.

[61] R. Wirth and P. O'Rorke. Constraints for predicate invention. In S. Muggle-
ton, editor, Inductive Logic Programming, London, 1992. Academic Press.

