
On the proper definition of minimal i ty  in  
special ization and theory revision 

Stefan Wrobel 

GMD (German National Research Center for Computer Science) 
FIT.KI, Pf. 1316 

W-5205 St. Augustin 1 
wrobel@gmdzi.gmd.de 

A b s t r a c t .  A central operation in an incremental learning system is 
the specialization of an incorrect theory in order exclude incorrect in- 
ferences. In this paper, we discuss what properties are to be required 
from such theory revision operations. In particular, we examine what it 
should mean for a revision to be minimal. As a surprising result, the see- 
mingly most natural criterion, requiring revisions to produce maximally 
general correct specializations, leads to a number of serious problems. 
We therefore propose an alternative interpretation of minimality based 
on the notion of base revision from theory contraction work, and formally 
define it as a set of base revision postulates. We then present a revision 
operator (MI31~) that meets these postulates, and shown that it produces 
the maximally general correct revision satisfying the postulates, i.e., the 
revisions produced by MBrt are indeed minimal in our sense. The opera- 
tor is implemented and used in Krtw, the knowledge revision tool of the 
MOBAL system. 

1 I n t r o d u c t i o n  

An incremental learning system receives a sequence of positive and negative ex- 
amples f rom its environment,  and always maintains  one current hypothesis that  
is updated  after each new input. Two possible cases can arise: If  the new input 
is a positive example (true s ta tement)  not covered by the current hypothesis, 
the hypothesis needs to be generalized so that  this input can then be explained 
by the hypothesis. If  the new input is a negative example (incorrect s ta tement)  

e r roneously  covered by the system's  current hypothesis, the system must  spe- 
cialize its hypothesis so that  the incorrect inference is not produced any more. 
Ideally, the system should change its current hypothesis minimally in order to 
keep as much as possible of the knowledge it already had. 

In this paper,  we are concerned with the specialization problem for incre- 
menta l  learning systems tha t  mainta in  a first-order theory as their current hy- 
pothesis, i.e., the system learns not only a single clause for one concept, but  a 

s e t  of clauses for a set of interrelated concepts. For single clauses or rules, there 
is a good understanding of what it means to modify them minimally  in order 
to exclude a negative example - -  the system should simply perform a minimal  
specialization (in the logical sense) on the clause. The situation is more difficult 
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when multiple-clause, multiple concept theories are used as the system's hypo- 
thesis, since here, we must not only modify individual clauses, but first decide 
which clauses to modify. Clearly, in this setting the system should also revise its 
current hypothesis minimally, but what is the exact definition of minimality in 
this case? To answer this question Machine Learning can benefit from existing 
work on ~heory revision, specifically from work on the logic of theory change 
IGOr88]. 

In this paper, we for the first time explicitly examine the proper definition of 
minimality to be used when revising a first-order theory in an incremental lear- 
ning system. In particular, we will take issue with the hypothesis that minimal 
revision means minimal specialization of a theory, as has been argued in [MB92]. 
By relating specialization to work on theory contraction, we will show that such 
revisions correspond to contraction operations on closed theories, which have 
very undesirable properties from a computational point of view. We instead pro- 
pose a more adequate notion of minimality by adapting the well-known set of 
G~irdenfors postulates for closed theory revision IGOr88] to revisions of theories 
in an incremental learning system. 

We then present the MBR (for "minimal base revision") operator for revision 
of clausal first-order theories that is shown to meet the revised set of postulates, 
and is fully implemented in KRT, the knowledge revision tool of the MOBAL 
system [MWKEss]. It has been successfully used for revision of a set of telecom- 
munication access control rules when faced with a number of incorrect access 
assignments in an application developed in cooperation with Alcatel Alsthom 
Recherche, Paris [SMAU93]. In contrast to algorithms previously proposed by 
[MB92] and [Lin91], our method correctly computes the set of all possible mini- 
mal changes to the original knowledge base, and can ensure that lost inferences 
are recovered when removed statements are re-added to the theory. By using an 
exception set notation, our method also shows that the use of non-monotonicMly 
interpreted predicates, as advocated in [MB92, Lin91], is an unnecessary com- 
plexity for minimal theory specialization. 

The paper is organized as follows. In the next section (2), we will introduce 
basic definitions and notations to be used in the rest of the paper. In section 3, 
we will define the minimal specialization (mgcs) hypothesis, and point out its 
negative properties by relating to work on closed theory contraction. In section 4, 
we will present our alternative interpretation of minim~lity in revision by defining 
a set of postulates that any revision operation must satisfy if it is to avoid the 
problems of minimal specialization. In section 5, we then present an operator 
that implements our notion of minimality, and show that this operator meets 
our postulates, and actually produces the most general correct revisions that 
meet the postulates, i.e., is indeed minimal in this sense. Section 6 discusses 
some related work, and section 7 contains summary and conclusions. 
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2 Basic  definit ions 

In the following, we will denote with F the current knowledge base (inductive 
hypothesis) of the learning system, where/~ is meant to be a first-order theory 
in the standard logical syntax as defined eg. in [Men87] 1. We will further assume 
that  s tandard first-order derivability is used as a consequence operation, denoted 
by ~2, and let C n ( F )  denote the closure of F under  t-. If/"2 = Ca(F1), F1 is 
called a base of F2; if C a ( F )  = F, F is called closed. As a simple example, 
consider the knowledge base 

/71 = {p(a), Vx: p(x)---* q(z)}. 

Assuming that  the underlying alphabet contains the predicate symbols p and q, 
no function symbols, and the constants a and b, we find that  

F2 := Cn(  F1) = {p(a) ,Yz  : p(x)-+ q(x), q(a),p(a) V p(b),p(a) V-~p(b) , . . .} .  

F1 is a base of F2, and 1"2 is a closed theory. Finally, by a substitution we 
mean a possibly empty set of pairs ~r = { v l / t l , . . . ,  v=/t~}, where all the vi are 
variable symbols and pairwise different, and the ti are terms. The application 
of a substitution to a statement s, denoted scr, is the s tatement  obtained by 
replacing in s each occurrence of vi with ti for all i. 

To more formally define the problem of specializing a theory against a ne- 
gative example, note that  in the general case, this negative example can be any 
statement about the world that  the system currently believes, and is now told 
to be wrong. Therefore, if we define a fact to be a (not necessarily ground) 3 
positive or negated atom, we can formally define the specialization or revision 
problem as follows. 

D e f i n i t i o n  1 ( R e v i s i o n )  G i v e n  a theory F and a set of facts F = { f l ,  . . ., f~}, 
f ind  a revised theory F L F  ("17 minus F " )  such that 

C n ( F : F )  n F = O. 

g_h-' = {f} is a sinfleton set we will write F L  f instead of F & { f } .  

For simplicity of notation, in the following we will give all results for the singleton 
set case; as pointed at the end of section 5, they all carry over to the case 
of multiple simultaneous revisions by performing the obvious modifications on 
definitions and theorems. 

Below, we will also need the generalization/specialization relationship on 
theories, which as usual we define with respect to derivability. 

D e f i n i t i o n  2 ( G e n e r a l i t y )  A theory F1 is said to be more general than a 
theory 1"2, written FI >-a 1"2 iff 

By the definition of Cn, this is equivalent to F1 >a 1"2 r162 Ca(F1) D__ Ca(F2). 

1 We use ---* instead of =t, to denote implication, however. 
We will usually write Fb-S instead of " f b s  for all s E S. 

3 If nonground, variables are assumed to be universally quantified. 
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3 M i n i m a l  s p e c i a l i z a t i o n  a n d  t h e o r y  c o n t r a c t i o n  

Since the definition of the revision task seriously underconstrains the operator 
- ,  the question we must consider is which further properties to require from 
the revision result F 2 f .  Above, we already pointed out that  in general, we 
want our revisions to be minimal in some sense. In this section, we will examine 
a seemingly natural instantiation of the notion of minimality that  has been 
proposed in a recent paper by Muggleton and Bain [MB92], who define minimal 
revisions as minimal specializations of a theory. In particular, they define the 
notion of a maximally general correct specialization as follows. 

D e f i n i t i o n  3 (mcgs )  Let f be an incorrect statement derived by a theory 1". 
A maximally general correct specialization (mgcs) of F with respect to f is any 
theory F ~ such that 

1. 1" _>g 1"1 
2. 1"1/_f 
3. For all 1"": If  1" >__g 1"" >g 1"1, then F ' t - f .  

In other words, a mgcs is any theory that  is a specialization of the original theory, 
and does not have any correct supersets, i.e., supersets that  do not imply the 
fact to be removed. We will often refer to the mgcs simply as the minimal 
specialization of F with respect to f .  

To evaluate the properties of this notion of minimal revision, we can draw 
upon some well-known results from work on closed theory contraction IGOr88, 
Neb89]. As we will see, maximally general correct specializations are a special 
case of the operations examined there. In the next section, we will briefly sum- 
marize some important  results, following the exposition in [Neb89, ch. 6]. 

3.1 C lo se d  t h e o r y  c o n t r a c t i o n  

The goal of work on closed theory contraction was a knowledge-level exami- 
nation of theory change operations. Consequently, in this work, it is generally 
assumed that  the theories under consideration are closed. Theory contraction 
then refers to the same task that we have called theory revision above. One of 
the best-known results from theory contraction work is the set of Gdrdenfors po- 
stulates, which are a set of minimal constraints claimed to be necessary for every 
sensible revision operation. The six major postulates are summarized in table 1, 
for a closed theory 1" and a fact f to be removed. These postulates are mostly 
unspectacular and describe reasonable properties one would expect from a re- 
vised theory. Postulate 1 simply requires the revised theory to be closed, which 
if necessary can be ensured by applying Cn. Postulate 2 is more interesting, as 
it requires the revised theory to be a subset of the original theory, thus ruling 
out revision operations that generalize some part of the theory. Postulates 3 and 
4 s imply capture the definition of the revision task, requiring the operation to 
leave the theory alone if f was not in the theory, and requiring it to effectively 
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1. /~2f  is a closed theory (closure). 
2. F ' - f  C F (inclusion). 
3. If f ~ F, then F2-f = F (vacuity). 
4. If f f~ Cn(tl), then f r F'- f  (success). 
5. If Cn(f) = Cn(g), then F-~f = I'2g (preservation). 
6. r c_ c ~ ( r ; / u  {/}) (recover~). 

Table 1. The main Gs postulates for closed theory contraction 

remove f if f is not a tautology (which is always the case if f is a fact)�9 Postulate 
5 requires the preservation of semantic equivalence�9 

The final postulate, recovery, is the most interesting one from the standpoint 
of machine learning, as it addresses a likely scenario for an incremental learning 
system. The recovery postulate requires that  if we modify a theory to exclude 
an inference f ,  and later find out that  f was true after all, we should be able 
to obtain at least the same set of inferences again that  we used to have before 
removing f in the first place. It thus acts as a lower bound on the revisions we 
may perform, and excludes for instance the trivial empty theory as a revision 
result. 

Interestingly, as pointed out in [Neb89], all possible revision operations that  
meet the above postulates can be defined with respect to the set of maximal 
correct subsets of a closed theory. 

D e f i n i t i o n  4 ( M a x i m a l  c o r r e c t  s u b s e t s )  If  F is a theory, and f a statement 
to be removed, the family of maximal subsets o f f  not implying f ,  denoted F ~ f 
(pronounced "1" down f "  or "1" less f" )  is defined by: 

r J~ f := {F'  C El f  ~ Cn(U) and for all F " :  if F '  C F "  C_ C then f E Cn(r")} .  

As an example, consider the closed theory /12 from the example in section 2 
above, i.e., 

I"2 = {p(a), Vx : p(x)---+ q(x), q(a), p(a) V p(b), p(a) V ~p(b),. . .}.  

If we want to remove q(a) from this theory, some of the maximally correct subsets 
are: 

{vx: p(x)--, q(x), p(a) v p(b),...} 
F2 ~ q(a) ---- {Vx: p(x)---* q(x), p(a) V --,p(b),...} 

The following theorem (first shown in [AGM85]) allows us to express any revision 
operation on closed theories that meets the G/irdenfors postulates in one common 
form. 
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T h e o r e m  1 - is a revision operation that meets the Gffrdenfors postulates 1-6 
if and only if there is a selection function 7 :/~.~ f *-+ 7(F.I, f )  C F ~ f such that 

('17(/' ~. f )  if f q~ Cn(O) 
_.r'2f = .F otherwise. 

In other words, any revision operation meeting postulates 1 through 6 can be 
defined by specifying a function 7 that  returns a subset of F I f ,  the set of all 
maximally correct subsets of F,  and computing the intersection of these sets. 
Depending on the size of the set returned by 7, the resulting operations are 
given different names: 

D e f i n i t i o n  5 ( P a r t i a l  m e e t ,  fu l l  m e e t ,  max i - cho ice  c o n t r a c t i o n s )  All re- 
vision operations of the form defined in theorem 1 are called partial meet contrac- 
tions. I f7  returns a singleton, the operation is called a maxi-choice contraction, 
if 7 simply returns i" ~ f ,  the operation is called full-meet contraction. 

3.2 Mgcs  as max i - cho ice  c o n t r a c t i o n s  

Returning to minimal specializations resp. maximally general correct speciali- 
zations (mgcs), we can see that  they correspond precisely to the maxi-choice 
contractions on a closed theory as defined above. 

T h e o r e m  2 Given a (not necessarily closed) theory F, and statement to be 
removed f ,  the mgcs of 1" with respect to f are exactly the results of all possible 
maxi-choice contractions on Cn(F), i.e., the members of the set Cn(F) ~ ]'. 

Proof. The proof follows trivially from definition 4, according to which Cn(F) 
f =  

{F' C_ Cn(l~)lf ~ Cn(F') and for all F " :  if F' C F" C_ Cn(F) then x E Cn(F")} ,  

which is a reformulation of the definition of mgcs. [] 

This correspondence, unfortunately, means that  minimal specializations in- 
herit all the known undesirable properties of maxi-choice contractions as revision 
operations, as pointed out by [Neb89] and others: 

Nonfinite representation. Since minimal specialization revisions are equivalent 
to maxi-choice operations on closed theories, they also produce closed theories. 
In general, it is impossible to determine whether a closed theory has a finite axio- 
matization, which is a necessary prerequisite for the use of minimal specialization 
for practical theory revision. 
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Loss of reason mdintenance. An operation on the closure of a theory does not 
take into account which s ta tements  were derived from which others. For instance, 
if f rom F1 (section 2), we were to remove p(a) by minimal  specialization, one of 
the possible minimal  specializations would be 

mgcs(F1, p(a)) = Cn(F1) ~p(a) 

= {{Vz: p(z)--* q(z), q(a),p(a)V p(b) , . . . } , . . . } ,  

i.e., we would remove the antecedent p(a), but keep s ta tements  that  were derived 
f rom it such as q(a). 

Besserwissers. Last, for a maxi-choice contraction - ,  we know (theorem 6.2 
f rom [Neb89] foll. [AM82]) that  for any proposition g: 

either g E Cn(F~-f U "-,f), or "-,g E C n ( F 2 f  U ~f) .  

This means tha t  if a learning system finds out tha t  instead of f ,  as currently 
believed, --,f is true, and uses minimal  specialization to remove f before adding 
--f ,  the system will have miraculously completed its theory, which is certainly 
not desirable 4 . 

4 M i n i m a l  b a s e  r e v i s i o n s  

We can thus conclude tha t  an interpretation of minimal  revisions as minimal  
specializations, or mgcs in the terminology of [MB92], is not an advantageous 
strategy, since it is an operation that  can be performed only on closed theories, 
resulting in the drawbacks enumerated above. Based on the base contraction 
postulates in [Neb89], we have therefore developed a revised set of revision po- 
stulates that  applies to revision operations on non-closed first-order theories; 
these postulates are shown in table 2. 

1. l 'Z f C F U {g'13g E F such that g >g g'} (minimal syntactic distance). 
2. Cn(i"'--f) C_ Cn(F) (inclusion). 
3. If f f~ Ca(F), then / ' .Lf  = F (vacuity). 
4. If f f[ Ca(e), then f f[ Cn(F2-f) (success). 
5. Is Cn(f) = Ca(g), then Cn(F'-f) = Cn(I'2-g) (preservation). 
6. Cn(1 ~) C Cn(F: f U {f}) (recovery). 

Table  2. Revised set of postulates for revision of theory bases 

The most  impor tan t  difference between the closed theory postulates and the 
ones defined here is the first postulate,  which together with the recovery postu- 
late, expresses a new notion of minimal  revision for theory bases. According to 

4 The term besserwisser is due to [G~r88]. 
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the first postulate, a revision is minimal if the new theory contains only state- 
ments that  had been in the old theory, and perhaps other statements that  are 
specializations of statements in the original theory. Note that  minimal speciali- 
zation revisions in general do not meet this new first postulate, as their results 
will contain elements from the closure of F that  were not originally in F nor are 
specializations of single statements in F. 

If we assume that  our theories are in clausal form, as we will from now on, 
we can define >g for individual clauses simply as 0-subsumption [Plo70]: 

f >_g f~ iff there is a substitution 0 such that  fO C f .  

This definition ensures that  indeed the revised knowledge base is syntactically 
close to the original knowledge base, since new clauses must be derived by sub- 
stitution or added literals from existing clauses. 

5 A m i n i m a l  b a s e  r e v i s i o n  o p e r a t o r  

To show that  the above set of revised postulates indeed allows useful theory 
revision operations, we will now present a revision operator for clausal theories 
that  meets all of these postulates. This operator, which we will call MBa, for 
minimal base revision, and denote by ~-, has been implemented and is used in 
KRT, the knowledge revision tool of the MOBAL system [MWKEss], to perform 
knowledge revision. In order to define - ,  we need to define the derivation tree of 
a fact in a theory. As usual, we will assume that  I- is implemented as refutation 
proofs by resolution. 

D e f i n i t i o n  6 ( D e r i v a t i o n )  Let F be a theory, and f �9 Cn(F) a factual query 
finitely refutable from F by resolution. The derivation of f in i", A( f ,  F), is the 
pair 

n(f ,  r )  : :  (f, s), 

where S, the supports of f ,  is the following set of triples: 

S := { ( C , r 1 4 9  r A 3 g l , . . . , g n  �9 C n ( r ) :  C resolves with 
{gx , . . . ,  g~) using substitution ~ to produce f} .  

A, the antecedents of S, are recursively defined as follows: 

A := {A(gl,  F ) , . . . ,  A(g, ,  F)}. 

Wherever F is clear from context, we will simply write A( f )  instead of A( f ,  F). 

Since different refutation proofs of f may share the same clauses and sub- 
stitutions, the (C, (r, A) triples representing clause applications may repeat in a 
derivation structure, meaning that  a derivation is best understood as a directed 
acyclic graph. In the following, we will assume that  for any inferences f to be 
removed, A( f ,  F)  is finite, which may not be the case in theories with function 
symbols. From a derivation, a standard proof tree can be obtained by beginning 
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at the root, choosing one of its supports, and then repeating this recursively for 
the derivation subtrees rooted at the antecedents of this supports. By varying 
the choices in all possible ways, the set of all proof trees can be obtained. As an 
example of a derivation, consider the theory 

F1 -~ {p(a),Vx :p(x)---+ q(x)}. 

defined in section 2. Dropping the quantification symbol, and using capitalized 
variables instead, this theory is written as 

r l  = q ( x ) } .  

Let us assume that  q(a) is to be removed from this theory. There is only one 
way of proving q(a), so 

A(q(a),F1)=(q(a), 

{(P("), 
{(p(.),0,0)}) }) }), 

Using this definition of a derivation, we can define the clause application set 
of a theory N with respect to a fact f .  

D e f i n i t i o n  7 ( A p p l i c a t i o n  set)  Let 1" be a theory and f E Cn(F) a fact. We 
define the clause application set of 1" with respect to f as: 

H( f ,  F) := {(C, a)13S = (C, o', A) somewhere in A(f ,  T')). 

Instead of (C,O) (where (3 in this context is the empty substitution), we often 
simply write C in II( f ,  F). 

In our example, the clause application set is 

fl(q(a), 1"1) = {(p(a), 0), (p(X)--+ q(X), {X/a})} ,  

and we define for later use abbreviations for the two nonempty subsets of this 
application set: 

P1 := {(p(a), 0)} 
P2 := { (p (x ) - - ,  q(X), {X/a})} 

These application sets are needed so that  each clause application in the proof 
of an offending fact can be individually kept or removed; otherwise, we would 
unnecessarily overspecialize in cases where one rule is used several times. Con- 
sequently, below we will define a version of/~ ~ f that  can work on application 
sets instead of on theories. First, however, we need to define substitution and 
instance sets. 
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Def ini t ion 8 (Subs t i t u t ion  and  Ins tance  sets) Let C be a clause in a theory 
r ,  with variables pars(C) = { X ~ , . . . , X , } ,  let f 6 C n ( r )  be a fact, and P C_ 
H( f ,  F). The substitution set of C with respect to P is defined as follows. We 
say that one substitution is more general than another, (r 1 >g or2, iff there is a 
substitution 0 such that ~10 = az. Let 

S0(C, P ) : =  {al(C, ~) 6 P]  . 

denote all substitutions used with C in P. Then 

Z:(C, P) C L'0(C, P) 

is any set such that: 

- for any cr E ~o(C, P), there is a ~' 6 S(C,  P) such that a' >g or. 
- for no ~ ~ S (C ,  P),  there is a ~' ~ ~(C, P) such that ~' >g ~. 

For non-ground clauses (n >__ 1), the instance set of C with respect to P is defined 
as 

z(c,  P) := {(x, . . . .  , x . ) ~ l ~  e z ( c ,  e ) ) .  

We should note that the construction of ~ (C ,P )  ensures that there are no 
redundant substitutions in this set. Continuing with our example, we see that 

~(p(.) ,  P1) = {0} 
~(p(X)--+ q(X), P,) = {iX~a)) 
~(p(a), P2) = Z(p(X)--* q(X), P~) = (~ 
I(p(X)--+ q(X), P1) "- 
I(p(X)--+ q(X), P2) = {(a)}. 

We can now define which theory corresponds to an application set: 

Def ini t ion 9 (Cor respond ing  theory)  Let F be a theory and f 6 C n ( F )  a 

fact, and P C H( f ,  F). If  we define the clauses occurring in P as 

C(P)  := {CI(C, ~) 6 P}, 

we can define the theory corresponding to P as: 

Fr~(P) := (F\C(P)) 
U {vats(C) r I(C, P)o C IV e C(P) and C nonground) 
u {c~l (c ,  ~) e P}. 

Here, Lo o C is a shorthand notation for the addition of a premise, i.e., if C is 
a clause of the form LI& . . .& Ln--+ Ln+l, then 

L o o C  := Lo& LI& " " &  Lu--* Ln+I. 

vars(C) denotes the tuple of variables of the clause. 

We can now define the promised version of F ~ f that can work on application 
sets instead of on theories. 
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D e f i n i t i o n  10 ( M a x i m a l  a p p l i c a t i o n ,  M i n i m a l  r e m o v a l  s e t s )  Let F be a 
theory, and f a fact to be removed. The set of maximal  application sets of F 
with respect r f is defined as: 

F *n f := H(f ,  1")l f := {P _C II( f ,  1")l f q~ Cn(1"11(P)) and for all P ' :  
if P C P' C_ H(f ,  1") then f e Cn(Fn(P'))}.  

The complement of 1" ,11f is called the set of minimal  removal sets, and defined 
by 

1" *n f := H(f,_r'), f := {H(f ,  1")\PIP e 1"*a f} .  

In our example,  there are two maximal  correct application subsets, which are 
each others complement,  so 

1"1 '11 q(a) = 1"1 111 q(a) = { P1, P2}. 

As our last preliminary, we now define sets of clauses that  are added to a 
theory to replace any clause, or more precisely, any application of a clause, tha t  
needs to be removed. 

D e f i n i t i o n  11 ( A d d  se t )  For a clause C with variables vars(C) = { X 1 , . . . ,  Xn}, 
n > 1, in a theory 17, a fact f to be removed, and P C_ II(f ,  1") such that 
C E C(P), i.e. occurs in P, define 

add(C, f , P )  := { ( X 1 , . . . , X n )  • I (C,P)  o C }  U { ( f o C ) a ] ~  E Z ( C , p ) } 5 .  

If  n = O, i.e., C is ground, ~ (C ,P)  = {0}, so we define 

add(C, f, P) := { f  o C}. 

This definition assumes that  set membership  (C) is a predefined predicate tha t  
is properly handled by the proof  procedure with sets of both  ground and non- 
ground tuples, i.e. as if E were defined by 

( T 1 , . . . , T = )  E S iff there exists T E S and a substi tut ion cr so tha t  
T ~  = (T1 , . . . ,  T , ) .  

For instance, (a) E {(b)} will evaluate to false, whereas (f(a)) 6 { ( f (X) )}  will 
evaluate to true 6. In our example,  the add sets for our two s ta tements  in 1"1 
would be: 

add(p(a), q(a), Pz) = {q(a)-+ p(a)}, 
add(p(X)-+ q(X), q(a), P2) 

= {(X) r {(a)}& p(X)---+ q(X), q(a)& p(a)---+ q(a)} 
= {(X) ~ {(a)}& p(X)----+ q(X)}. 

We can now define the minimal  base revision (Mira) operator  - .  

s Instead of the set of ( f  o C)a, it would be possible to simply use (fa o C), but this 
would produce redundancy in the revised theory. 

6 For unary tuples, we usually omit the parentheses. In KRT/MOBAL, the exception 
sets are represented in an equivalent, but syntactically slightly different form called 
a support set [Wro88]. In this paper, we will stick with the form as just defined for 
simplicity. 
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D e f i n i t i o n  12 (MBR o p e r a t o r  --~) Let F be a knowledge base, f be a fact to 
be removed, and 7 a selection function on 1" ~H f.  If P := 7 (F  ~rt f) denotes the 
chosen maximally correct application subset of H(f,  F), and-ff := H(f, I")\P 
its complement, we can define the minimal base revision (MBR) operator L as 
follows: 

F~_f := { ; \C(P)  U Ucec(-~)add(C,f,P)otherwise.if f E Cn(F) 

The above definition assumes that  we are given some choice function 7 that  
returns a single element from F I n  f .  For the purposes of this paper, we may 
simply assume that  7 is implemented by user queries, and that  F ~H f is compu- 
ted by a top-down search through the subset lattice of F. We should point out, 
however, that  F ~H f (or rather, its complement) can be computed efficiently 
with a recursive procedure based on the derivation tree of the fact to be removed. 
In [Wro93], we describe this procedure in detail, and also develop a two-tiered 
confidence model on the basis of which 7 can be defined. The implementation of 
- in KRT/MOBAL in addition uses a confidence-ranked beam search to ensure 
bounded computat ion times for F IH f .  

In the above example, the MBR operation would produce the following re- 
sults. If the first element of/"1 ~H q(a), P1, were chosen by 7, we would have to 
remove P2, so the resulting new theory would be 

F1 ~--q(a) = {p(a), (X) ~ {(a)}~ p(3().-+ q(X), q(a)~ p(a)--+ q(a)}; 
= {p(a), (X) r {(a)}~ p(X)--~ q(X)}; 

if the second element, P2 were chosen, we would remove P1, resulting in 

F1Zq(a) = {q(a)--+ p(a),p(X)-+ q(X)} .  

As another example involving a non-ground fact to be removed, consider the 
theory (shown in rule form with capitalized variables for readability) 

f l  : p(X) } 
r~ = ,,1 : p ( x ) - - ,  q ( X )  

~.2 : q(x)-- ,  r (X)  

from which we want to remove q(f(Y)). In this example, we see that  the minimal 
removal sets are 

1"3 ~H q(f(Y)) = {{(r l ,  {X/ f (Y)}} ,  { ( f l ,  {X/ f (Y)}}} .  

The two theories that  result from these choices are: 

f l :  p(X) } 
r l l :  X ~ {f(Y)}&5 p(X)---+ q(X) 

FzLq(f(Y)) = [r12: q(f(Y))& p(f(Y))---+ q(f(Y))] 
r2 : q(X)--, r (x)  



77 

where r12 is a tautology and would be omit ted,  and 

f l l :  X 9~ {f(Y)}--+ p(X) } 
f12 q(f(Y))-+ p(f(Y)) 

Fa~-q(f(Y)) = r l :  p(X)-+ q(X) 
r 2 :  q(X)--+ r(X) 

respectively. To see why the revision operator  must  consider individual clause 
applications in deciding about  minimal  removal sets, consider the example of 

r4= (p(x) p(a)&p(b)--~ r(a)} 
f rom which we want to remove r(a). If we choose to modify p(X) (or rather,  one 
or more of its applications), ^ will correctly produce either one of 

(X) ~ {(a)}-+p(X) } 
r(a)--+p(a) or 
p(a)~ p(b)-~r(a) 

(x) r {(b))~p(X) } 
r(a)-~p(b) 
p(a)&p(b)---~r(a) 

whereas a revision operation not based on individual clause applications would 
have to produce the overly specific 

(x) r {(a),(b)}-~p(x) } 
r(a)--~p(a) 
r(a)-~p(b) 
p(a)~p(b)-~r(a) 

^ 

We now prove that  indeed - meets the set of postulates for base revision 
operations defined in table 2. 

T h e o r e m  3 - is a theory revision operation that meets the base revision postu- 
lates (1) through (5) from table 2. 

Proof. We show each postulate individually. For the exceptional case where f 
Cn(F), the postulates are trivially true, so in the following we will assume f E 
c~(r). 

m 

(1). Since F\C(P) C_ 1" anyway, we only need to show that  for any removed 
clause C E C(-fi), add(C, f,-P) only contains s ta tements  that  are 0-subsumed by 
elements of F.  Looking at the definition of add, we see that  new s ta tements  are 
defined by adding literals to and/or  instantiat ing existing statements ,  so this is 
indeed true. 

(2). True as an immediate  consequence of (1). 

(3). True by definition o f - .  
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(4). By the definition of Y i n  f ,  f is not derivable from the theories correspon- 
ding to its members. It thus remains to verify that  this is not changed by the 
additional statements from add. This is easy to see, because the additional pre- 
mises added to removed statements ensure that  all substitutions which could be 
used to prove f are excluded; the other additional statements can be used only 
if f is present. 

(5). Trivially true since for factual queries, Ca( f )  = Ca(g) implies f = g. 

(6). We can easily show that  F C C n ( F & f U { f } ) .  For non-removed statements, 
this is trivially true. For each nonground removed statement C, we find that  

Ca(add(C, f ,  P)  U { f ) )  

= C a ( { ( X l , . . . , X , )  • I (C,P)  oC}  U { ( f o C ) a l a  E S ( C , P ) }  U {f}) 

= c n ( { ( x , , . . . ,  x,,) r z(c, P) o c }  u {Co-lo- e z:(c, p)} )  
= Ca(C), 

and similarly for ground statements. B 

The reader may be curious how - relates to the closed theory contraction 
operations defined above, and in particular, whether using a singleton choice 
function 7 will not produce the same besserwisser effect that  we criticized for 
minimal specialization revisions. Indeed this is not the case, since on the level 
of closed theories, this singleton choice actually corresponds to a set of subsets 
of the closed theory, as shown by the following theorem, the proof of which can 
be found in [Wro93]. 

T h e o r e m  4 For a theory F and a fact f ,  - is equivalent to a partial meet 
contraction on the theory F' := Frx(H(f, F)), i.e., the theory that results when all 
clauses are split into their individual applications (cf. definition 9). In particular, 
given a selection function 7, 

{ a '  Cn(1",Zf  ) = A T c n ( C  ( l " )~ f )  if f ~ Ca(O) 
Ca(F) otherwise ' 

where 

7 c ~ ( C n ( F ' ) l f )  := {B E ( C a ( F ' ) l f )  13C C Fii(7(F~[If))such that  C C_ B}.  

Knowing that  -~ meets the set of revision postulates from table 2, the re- 
maining open question is whether it truly captures the essence of minimality as 
expressed by these postulates, i.e., whether it produces the maximally general 
base revisions consistent with these postulates. Indeed this is the case. 

T h e o r e m  5 ( M i n i m a l i t y )  Let L~ any base revision operation that also meets 
the base revision postulates. Then for any theory F, and any fact f,  

F L f  ~_g F~-Jf. 
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Proof. By postulate (1), FL~f  must consist of a subset of F,  plus perhaps some 
added statements. With a proper selection function, we can make ^ choose the 
same subset. As for the added statements, we know they must be specializa- 
tions of existing statements. We thus must only show that  add(C, f, P), where 
P = 7(/" J.ri f ) ,  is a minimal specialization of C to complete the proof. So assume 
that  there is a statement C ~ such that  C >__g C ~ >g add(C, f, P). That  is, there 
must be some substitution (inference) possible with both C and C ~ that  is not 
admitted by add(C, f,-fi). Since add(C, f,-P) excludes precisely the substituti- 
ons mentioned in the minimal removal set P, however, we know that  none of 
them may be readmitted without rederiving f again. Thus C ~ is not a correct 
specialization of C. [] 

We conclude by pointing out that  - can very simply be extended to multiple 
parallel revisions. So let F = { f l , . - . ,  f,~} a set of facts to be removed. If we 
define 

A(F, r )  := (z~(f,, r ) , . . . ,  z~(f,,  r ) ,  

and replace f by F in all other definitions, we see that  all of the methods still 
apply, and that  all proofs still carry through as the reader will be able to verify. 

6 R e l a t e d  w o r k  

The approach presented here is an elaboration of the knowledge revision method 
used in the knowledge acquisition and machine learning system BLIP, a prede- 
cessor of MOBAL. As described in [Wro88, Wro89], BLIP already used exception 
sets to produce minimal specializations of individual rules. As in MOBAL, these 
exception sets were represented as support sets, a simple form of which was 
first proposed in [EHR83]. In other respects, BLIP was seriously lacking in con- 
trast to the method described here that  is used by KRT/MOBAL. In particular, 
the computation of removal sets was incomplete in many cases, and no formal 
characterization was available. Furthermore, BLIP could not work on multiple 
revisions at the same time, and could not ensure recovery (postulate 6). 

In section 3, we already discussed the problems of the minimal specialization 
hypothesis that  was proposed in [MB92]. In the same paper, the authors also pre- 
sent a specialization algorithm based on the introduction of non-monotonically 
interpreted premises with new predicates. Thus, for example, if the substituti- 
ons {{X/a}, {X/b}} were to be excluded from p(X)--+ q(X), the algorithm of 
Muggleton and Pain would produce the theory 

p(X) A not(cl(X))--~ q(X); el(a); cl(b), 

where cl is a new predicate, and not is interpreted as negation by failure. As 
can easily be seen, this is a notational variant of the exception set method used 
to specialize clauses used in BLIP and 'KRT/MOBAL. Thus, the introduction of 
non-monotonically interpreted predicates just adds unnecessary complexity, as 
it is not necessary for correct minimal specialization of clauses. The algorithm 
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of [MB92] always selects to modify those clauses that have directly resolved 
with the fact that is to be removed. Nonetheless, contrary to what is implied in 
[MB92], this is insufficient to guarantee minimal specialization, as can be seen by 
considering our example theory/"3. In this example, when modifying the clause 
7"1 that resolved with q(f(Y)), we necessarily lose the inference r(f(Y)) that was 
possible with the original theory. Nonetheless, this fact cannot be used to derive 
q(f(Y)), so it would be in a minimal specialization. 

Our method of using exception lists to specialize individual clauses has also 
been adopted in the algorithm proposed in [Lin91]. This paper also introduces 
the important notion of learning in a growing language: specialization operati- 
ons should be such that when a new constant is added to the language anything 
provable about the new constant with the original theory should also be provable 
from the specialization. As Ling points out, the exception methods ensures that 
this is the case. He also points to an important problem that was also recogni- 
zed in [Wro88, Wro89]: if exclusion is used as the only specialization operator 
on individual clauses, we may build up long (possibly infinite) exception lists. 
In KRT, this problem is addressed through a user specified plausibility criterion 
that defines when further specialization is necessary to get rid of an overly long 
exception list. KaT then applies a number of specialization operators that specia- 
lize further, essentially by introducing new premise literals on existing variables 
of the clause (cf. [Wro88, Wro89]). Ling instead uses a complete set of refinement 
operators, i.e., capable of producing all specializations of a clause, and simply 
replaces a clause by all of its specializations. This guarantees minimal specia- 
lization and thus identification in the limit, but brings with it the undesirable 
properties of minimal specializations as spelled out in section 3. 

MIS [Sha83] was one of the first first-order learning systems to include theory 
revision. In MIS, however, minimality of revision was not a concern, since subse- 
quent generalization steps were relied upon to fix up a theory that had become 
overspecialized. Nonetheless, the MIs approach is highly relevant to the work 
presented here, since its backtracing algorithm offers a way of determining with 
a minimum number of user queries which possible revision to choose, i.e., it of- 
fers one particular way of implementing 7, the choice function among minimal 
revisions. As pointed out above (but not described in this paper), KRT uses a 
different method of implementing 7 that relies on a two-tiered model of confi- 
dence in statements, and proposes to the user the revision that would entail a 
minimal loss of confidence. Evidently, this could easily combined with a back- 
tracing strategy. The backtracing strategy of MIS is also used in the interactive 
learning programs MARVIN [8B86] and CLINT [DeRgl] to recover from overge- 
neralizations that lead to incorrectly covered negative examples. 

7 C o n c l u s i o n  

In this paper, we have discussed the question of what properties are to be requi- 
red from the results of theory revision operations, i.e., operations that specialize 
the current hypothesis of a learning system in order to remove an erroneously 
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covered inference. In particular, we have examined how the notion of minima- 
lity (or "Occam's razor") should be interpreted in this context. As a surprising 
result, it has turned out that  a most natural restriction from the standpoint of 
Machine Learning, namely the use of minimal specializations, has very undesi- 
rable properties: because it leads to closed theories, loses any notion of reason 
maintenance, and when removing a statement to add its negation, results in 
complete theories. We have therefore developed an alternative notion of mini- 
mality, and formalized this notion in the form of a set of base revision postulates 
derived from similar postulates by G~irdenfors [G~rS8] and Nebel [Neb89]. As 
the perhaps central contribution of the paper, we have described a minimal base 
revision operator MBR ("--~") that  produces revisions meeting all of the revi- 
sion postulates; moreover, it produces the maximally general correct revisions 
meeting the postulates, and is thus really minimal in our alternative sense. 

In precisely specifying how to perform minimal base contractions, the work 
described here can be used as a basis for approaching a number of interesting 
questions of a larger scope in theory revision in incremental learning systems. The 
first one concerns the role of the recovery postulate, which we have adopted from 
G~rdenfors' theory change work. While it is a desirable property for a revision 
algorithm to be able to give a recovery guarantee to a user, it is nonetheless not 
clear in what circumstances a learning system (or a user) would want to actually 
make use of it, since it adds clauses to the theory that  are largely uninteresting 
as long as the removed fact is not added back in. A second question concerns 
the question of when to perform minimal specialization in the sense as defined 
here, and when to perform non-minimal specialization, eg. in order to obtain a 
more succinct theory. The plausibility criterion currently used in K•T is only a 
rudimentary answer to this problem. Last, and certainly not least, is the open 
question of whether there is something to be gained by combining specialization 
and generalizing revisions into one general and theory revision operation, as 
argued by [Emd89]. Such an operation would most likely be driven mainly not 
by criteria such as completeness or correctness, but by "scientific" notions about 
the structural qualities of a good theory. 
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