
Subsumpt ion and Ref inement in Model
Inference

Patrick R . J . van der Laag 1,2 and Shan-Hwei Nienhuys-Cheng 1

1 Department of Computer Science, Erasmus University of Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

2 Tinbergen Institute

A b s t r a c t . In his famous Model Inference System, Shapiro [10] uses so-
called refinement operators to replace too general hypotheses by logically
weaker ones. One of these refinement operators works in the search space
of reduced first order sentences. In this article we show that this operator
is not complete for reduced sentences, as he claims. We investigate the
relations between subsumption and refinement as well as the role of a
complexity measure. We present an inverse reduction algorithm which is
used in a new refinement operator. This operator is complete for reduced
sentences. Finally, we will relate our new refinement operator with its
dual, a generalization operator, and its possible application in model
inference using inverse resolution.

1 Introduct ion

In 1981, Shapiro [10] has introduced the notion of model inference. I t has since
then drawn a lot of at tention in the world of inductive learning using logic. Even
now the new operation of inverse resolution [5] is in fashion, people still discuss
and use his ideas of inference and learning problems [1, 3, 7]. Given a sequence
of positive and negative examples of an unknown concept, his incremental Mo-
del Inference System tries to find a theory (finite set of hypotheses) that can
infer M1 given positive examples and none of the negative examples. The system
essentially uses two techniques: if the theory is too strong (a negative example
can be inferred f rom it) the backtracing Mgorithm locates a guilty hypothesis
and refutes it; if the theory is too weak (a positive example can not be inferred)
then refinements (specializations), found by a refinement operator, of the thrown
away hypotheses are added. In the limit, a theory will be found that is neither
too strong nor too weak.

In this article we will discuss Shapiro's refinement operator #o. This operator
is defined for reduced sentences in a first order language where sentences and
refinements of them are restricted by some complexity measure size. The notion
of reduced sentences, related to subsumption, is introduced by Plotkin [8].

The strength of Shapiro's model inference algori thm is its theoretical ap-
proach, the formal description of the operators used in it and their properties.
One of these properties is the completeness of a refinement operator for a subset
of a first order language, i.e., every sentence in the subset can be derived from the

96

empty sentence by repeatedly applying the refinement operator. We will show
that, exactly because of theoretical reasons, the refinement operator P0 is not
complete for reduced sentences, as Shapiro claims. To understand the problems,
we should know more about the concepts of subsmnption and size. Also, we will
show that the definition of size which Shapiro has adopted from Reynolds [9] is
inadequate for the theories he tries to build. We will introduce another kind of
complexity measure.

Due to special properties of subsumption, we will show that the technique of
inverse reduction is needed for certain problems. An algorithm for inverse reduc-
tion finds non-reduced clauses that are equivalent to a given reduced sentence.
With this new technique and the new complexity measure we can change the
p0-operator into a refinement operator that is complete for reduced sentences.

Our refinement operator can derive exactly one representative of every equi-
valence class under subsumption, namely the reduced sentence in it (this sentence
can be reached by different sentences since the subsumption ordering is a lattice,
not a tree). The space of all reduced sentences is much smaller than the space of
all sentences in a first order logic. Therefore, considering reduced sentences only
is more efficient than considering all sentences.

Some of the results of a working report [12] are included in this article.

The article is divided in the following sections. In Sect. 2 we concentrate
on some properties of subsumption which are important in proving the (in-
)correctness of refinement operators. In Sect. 3 we introduce some terminology
adopted from Shapiro and we show the incompleteness of p0 with examples.
Also, we discuss the complexity measure rsize and its shortcomings when related
to subsumption. In Sect. 4 we define a new refinement operator and a new
complexity measure. In Sect. 5 we compare our new refinement operator with
another refinement operator [2] that is complete for first order sentences. In Sect.
6 we look at refinements in a wider framework. We relate refinement operators
to their duals, generalization operators, and these generalization operators to
inverse resolution and model inference. These relations will also be a subject for
future research.

2 S u b s u m p t i o n , R e d u c t i o n a n d I n v e r s e R e d u c t i o n

Let /: be a language of first order logic. In this language we use P, Q, R , . . .
for predicate symbols, f , g, h,. . . for function symbols, a, b, c , . . . for constants,
and x, y, z , . . . for variables. Throughout this article, constants are treated as
functions with arity zero. Atoms are denoted by A, B, . . . , A literal is an atom
or the negation of an atom, and is denoted by L, M, Every sentence i n / : is
a set of literals:

{A1, . . . , Am, -~B1,..., -~B~}

where -~Bj is the negation of the atom Bj. A sentence represents the disjunction
of its literals, where all variables in it are universally quantified over the whole
sentence. Sentences can also be written in the following form:

97

{A1, . . . ,A,~} +-- { B 1 , . . . , B ~ }

Sentences are denoted by p, q, . . . , and substitutions by 0, o', 7-. All these symbols
may have subscripts. A Horn sentence requires m _< 1. The results in this article
are described for the set of first order sentences but hold for the set of Horn
sentences as well.

2.1 Subsumpt ion and Reduct ion

The notions of subsumption and reduction originate from Plotkin [8], and are
defined as follows:

D e f i n i t i o n l . A sentence p subsumes a sentence q (p _ q) if[there exists a
substitution 0 such that pO C q.

A sentence p properly subsumes a sentence q (p >-- q) iff p subsumes q but q does
not subsume p.

Two sentences p and q are called (subsume) equivalent (p ~ q) iff p subsumes
q and q subsumes p. This is an equivalence relation which defines a parti t ion
on sentences. Every set of equivalent sentences is called a (subsume) equivalence
class.

A sentence p is called reduced if p~ q p together with p ~ p~ implies p = pl.

Example 1. The reduced sentence {P(x, y)) is equivalent to {P(x, y), P(x , z)}
which is (therefore) not reduced.

If q is not reduced, we can reduce q to a sentence p C q (p C q and p r q)
such that p is reduced and p ~ q. An algorithm to reduce sentences to their
smallest equivalent subset is presented by Plotkin [8].

Subsumption is weaker than logicM implication [6]. If a sentence p subsu-
mes a sentence q then p logically implies q but not the other way around.
p = {P(f (x))) +-- {P(x)} logically implies q = {P(f (f (y)))} +-- {P(y)}, but
p does not subsume q. In the rest of this article, we investigate the ordering
induced by subsumption. We will define an operator that , given a reduced re-
presentative of an equivalence class under subsumption, yields reduced repesen-
tatives that are subsumed by it. However, sentences that are logically implied
but not subsumed will not be found.

It is proved by Plotkin [8] that if two equivalent sentences both are reduced
then they are equal up to renaming variables, i.e., they are alphabetical variants.

Throughout this paper alphabetical variants are considered identical. We can
therefore speak of one reduced representative of every equivalence class.

Subsumption has some unexpected properties. For example, substitutions do
not always preserve equivalence, and subsets of reduced sentences need not be
reduced.

98

Let p = { P (x , y) } , q = { P (x , y) , P (x , z) } , r = { P (x , y) , P (x , z) , P (y , z) } , and
= { x / z } . Then p C q C r, p ~ q, p0 = {P(z , y)} and qO = {P(z , y), P (z , z)}.

{P(z, z)} is the reduced equivalent of q0, and p0 is not equivalent to q0. Also,
q C r, where r is reduced and q is not.

The ordering induced by subsumption is a quasi ordering because x ~ x
(reflexivity), and if x _ y and y ~ z then x ~ z (transitivity). The empty
sentence (D) is the maximal element in this ordering.

In a (learning) system that uses a search space of logic formulae, it often is a
waste of time and memory to examine more than one sentence of an equivalence
class. Since for any two sentences p and q if p --~ q then p ~- r i f f q f- r, using
reduced sentences as a representative of an equivalence class might lead to more
efficient (learning) systems.

However, operations such as substitutions on equivalent sentences can lead
to non-equivalent sentences. To overcome this problem we want to build a simple
algorithm to reverse the process of reduction. We need the following lemma and
theorem for this algorithm.

L e m m a 2 . Let p be a sentence. I f pO = p, then for some natural number k,
LO k = L, for all literals L in p.

Proof. 0 must be injective: if L10 = L20 for different L1, L2 E p then t~ would
decrease the number of literals in p, i.e., Ip0] <]Pl. For every l i t e ra lL in p
consider the following sequence

L, L8, LO S , Lt~ s, . . .

Since p = p~ = p02 = . . . and since p is finite, not all L~ i can be different. Then
for some i, j , i < j, we have L~? ~ = L # . Because 0 is injective, this implies
LO j - i : L.

For every L, let n(L) be the smallest number such that LO n(L) = L. Then
Lt9 i = L if i is a multiple of n(L). Let k be the least common multiple of all
n(L). Then L~ k = L for all L E p. []

L e m m a 3. Let p be a reduced sentence, and p C q such that p ..~ q. Then there
exists a substitution ~ such that q~ = p and LO = L for all literals L E p.

Proof. Since q subsumes p, for some r qr _C p, this implies pa C p. If q~ C p,
then also pc~ C p and p would not be reduced, and we conclude that per = p. By
Lemma 2, we know that for some k, Lc ~k = L for all L E p. Define/~ = cr k. []

2.2 I n v e r s e R e d u c t i o n

Given a reduced sentence, an inverse reduction algorithm finds equivalent sen-
tences. An inverse reduction algorithm is needed in Sect. 4 to define a complete
refinement operator, Pr. Also, it shows the kind of sentences that are in the same
equivalence class under subsumption.

99

Let p be a reduced sentence and m a given positive integer. We want to
find all sentences that are equivalent to p and contain less than or exactly m
literals. For every sentence q~ such tha t p ~ q~, an alphabetic variant q of q~
exists such that q = p U r. For example p = {P(x , x)} is equivalent to q' =
{P(u, u), P(u, v)} which is an alphabetic variant of q = {P(x , x), P(x , y)} that
contains p. Therefore we only have to find equivalent sentences that contain p.
By L e m m a 3 we know tha t for every such sentence q a substi tution 0 exists, such
that q0 = p and L0 = L for all literals L E p. This implies that q can be reduced
to p via 0, where 0 is defined only on variables not occuring in p. The following
example gives an idea which sentences are to be found.

Example 2. Let p - {P(x , x)}, and let m = 3. All possible q's such that q ~ p
and Iql = 2 are of the form {P(x , x), M1} where M1 could be P(y, z), P(x, y),
P(y, x) or P(y, y).
For Iql = 3, we get q = {P(x , x), M1, M2} where some of the possible M1, M2
and corresponding 0 are

M1 M2 0
P(y,z) P(x,y) {y/x,z/x}
P(y,z) P(y,x) {y/x,z/x}
e(y,z) p(y,w) {y/x,z/x,w/x}
P(x,y) e(y,x) {y/x}
p(y,y) p(z,z) {y/x,z/x}

To find all sentences that are equivalent to a sentence p, literals have to
be added to p. Since for a certain substitution 0, all added literals have to be
mapped onto a literal in p, only literals that are more general than literals in p
have to be added.

A l g o r i t h m 1 (Inverse Reduction) Let p be a reduced sentence and let m > 0
be given. The following algorithm finds all sentences equivalent to p with ~ m
literals.

Let I = O, if IPl <- m then output p
While l < (m -IPl) do

l : = l + l
For every sequence { L 1 , . . . , Lt},
where every Li E p, but the Li 's are not necessarily distinct.

Find all sets r = { Mi , . . . , Mr } such that MiO = Li for all i,
where every Mi contains at least one variable not occuring p
and 0 = {x l / t l , . . . , x~pm}, x~ ~ var(p) for all j;
For every such r output p U r

3 I n c o r r e c t n e s s o f t h e R e f i n e m e n t O p e r a t o r po

3.1 R e f i n e m e n t

The ideas we present in this article are based on the refinement operators used in
Shapiro 's Model Inference System [10], for which he has defined three concrete

I00

refinement operators p0, Pl, and P2. We therefore first give a brief description
of model inference. Let a first order language 12, an observational language 12o,
and a hypotheses language 12h, such that 12o C_12h Gs be given. Let M be an
unknown model defined on s and let s = {c~ E12o]~ is true in M}. Suppose
that we can enumerate all the sentences in s by a l , o~, . . . , and that we can
tell the truth value ld of every ai. From these facts (ai, V/}, we want to find a
finite set of sentences T expressed in 12h such that 12o M = {o~ E12olT F- a}. Such a
theory T is called a 12o-complete axiomatization and it can be used to represent
the model M.

Example 3. As an example, given a first order language s Shapiro's refinement
operator p~ uses 12o = the set of ground atoms in 12 and 12h = the set of a toms
and context free t ransformations in 12, where context free t ransformations are
sentences in the form {p(t l , . . . , t~)} +-- {p (xa , . . . , Xn)} where all xi's a r e distinct
and occur in ti.

I f the language 12 contains the constant 0 (zero) and a function s (which can
be interpreted as the successor function), then given some positive and negative
examples like

@lus(s(s(O)), s(O), s(s(s(O)))), true) and
(plus(s(O), O, 0), false>,

the Model Inference System will find the hypotheses

{plus(x, 0, x)} ~-, and
{plus(~, s(y), s(z))} ~- {plus(x, y, z)) .

Following Shapiro, we assume some structural complexity measure size, which
is a function from sentences of s to natural numbers, with the property that for
every n > 0 the set of sentences of size n is finite. The following definitions are
also his.

D e f i n i t i o n 4 . [10] A sentence q is a refinement of p if p (logically) implies q
and size(p) < size(q).

A refinement operator p is a mapping from sentences of s to subsets of their
refinements, such that for any p E s and any n > 0 the set of p(p)(n), that is,
the set p(p) restricted to sentences of size< n, is computable.

I f there is a chain p = P 0 , P l , . . . , P . = q such that pi E P(Pi-1), then we call it a
finite total p-chain. We use p*(p) to denote the set of all sentences that can be
reached by a finite total p-chain from p.

We change Shapiro's definition of completeness to weakly completeness because
we want to use the notion of completeness for a stronger concept.

D e f i n i t i o n 5 . Let S be a subset of 12 which includes the empty sentence rn. A
refinement operator p over/2 is called weakly complete for S if p* (D) = S.

A refinement operator p is called (strongly) complete for S if for any two sentences
p, q E S such that q is a refinement of p, q E p* (p).

lOl

3 .2 D e f i n i t i o n o f po

In the section where Shapiro presents the refinement operator P0, he claims
tha t P0 is weakly complete for any first order language s On the other hand,
he redefines 'a sentence' to mean 'a reduced representative of the equivalence
class of this sentence' [10, p27]. We assume tha t his intention was to define a
refinement operator which is weakly complete for the set of reduced sentences.
Even in this situation, however, it is not.

D e f i n i t i o n 6 . [10] If pO = q and Ipl = lqL then 0 does not decrease p, i.e., by
choosing the right indices, we have p = { L 1 , . . . , L m } , q = { M 1 , . . . , M ~ } and
LiO = Mi for all i.

A literal L is more general than M with respect to p if there is a substi tution 0
such tha t LO = M and pO = p.

If L is any literal that contains as arguments only distinct variables that do
not occur i n p , then we call L most general with respect to p.

Let M be a literal that is not most general w.r.t, a sentence p. Then we can
always find a literal L that is more general than M w.r.t, p and that is most
general w. r . t .p . In fact, we just need to replace all arguments of M by distinct
variables that are not in p.

D e f i n i t i o n T . [10] A literal L is most general with respect top such that pU{ L }
is reduced if for any M such that M is properly more general than L w.r.t, p,
p U {M} is not reduced.

Example4. Let p = {P(x , y)}, and let L1 = Q(u), L2 = -,P(u, v), L3 = P(u, v)
and L4 = P(u , x) .

Then L1, L~ and L3 are most general literals with respect to p, since they
contain only distinct variables as arguments that do not occur in p. As can be
verified, L4 is a most general literal with respect to p such that p U {L4} is
reduced.

D e f i n i t i o n 8 . [10] Let p be a reduced sentence of/2. Then q E Po(P) when
exactly one of the following holds:

pl: q = pO, where 0 = { x / y } does not decrease p and both variables x
and y occur in p.

p02: q = p0, where 0 = { x / f (y l , . . . , y ~) } does not decrease p, f is an
n-place function symbol, x occurs in p and all y~'s are distinct variables
not in p.

p0a: q = p U {L}, where L is a most general literal with respect to p for
which p U {L} is reduced.

102

Although the definition of the refinement operator uses the concept of size,
these p01, p0 2 and p3 are concretely defined without it. Hence, we can begin our
discussion of the completeness of P0 without worrying about size. In Sect. 3.4
we will relate refinement operators with size.

3.3 I n c o m p l e t e n e s s o f Po

In this subsection we will show that Shapiro's Lemma 5.15 and 5.16 [10] are
not correct, and hence that P0 is not (strongly) complete. Shapiro never uses
the terminology of strong completeness of p0, Lemma 5.15 and 5.16 together,
however, would imply it. We will also show that his Theorem 5.14 is not correct,
and hence that P0 is not even weakly complete.

L e m m a 5.15 o f S h a p i r o [10]. Let p and q be two reduced sentences such that
pO = q for some substitution 0 that does not decrease p. Then there is a finite
total po-chain from p to q.

Proof. [10] This lemma is a generalization of Theorem 4 in Reynolds' paper
[9]. Examination of the proof of this Theorem shows that it can be applied to p
and pO to obtain a finite total chain. []

Reynolds has proved this theorem for atoms. Indeed if we do not restrict
ourselves to reduced sentences and consider only non-decreasing substitutions,
then we can consider a sentence as a generalized atom.

Example 5. Consider the following chains of sentences p = P0, Pl, P2, P3, P4 = q
! ! !

and p = Po,Pl,P2,P3,P4 = q. Since p0 = q, and p and q are reduced, Shapiro
claims that there is a finite totM po-chain from p to q.

P = Po - {P(a, w), P(x, b), P(e, y), P(z , d)}, Po is reduced
Pl = {P(a, b), P(x, b), P(c, y), P(z , d)} ,~ Pl = {P(a, b), P(c, y), P(z , d)}
P2 = {P(a, b), P(c, b), P(c, y), P(z , d)} ~ p~ = {P(a, b), P(c, b), P(z, d)}
P3 = {P(a, b), P(c, b), P(c, d), P(z , d)} ,~ p~ = {P(a, b), P(c, b), P(c, d)}
q = P4 = {P(a, b), P(c, b), P(c, d), P(a, d)}, P4 is reduced

Here we are facing a dilemma, either we allow non-reduced sentences (pl, P2, P3)
or we reduce after substitution and hence allow decreasing substitutions (e.g.,
pl e po(po)).

L e m m a 9 . For some reduced sentences p and q such that pO = q, there is no
finite total po-chain from p to q.

Proof. Let p = {P(a, w), P(x , b), P(c, y), P(z , d)}, and let
q = {P(a, b), P(c, b), P(c, d), P(a, d)} as above. We prove that none of p01, p~ and
p] is a candidate to generate the successor of p in a p0-chain from p to q.

103

pl: All variables of p have to be substituted by constants to achieve q and
all constants a, b, c, d are to be substituted only once. Unification of va-
riables causes that a variable occurs at least twice. Therefore unification
of variables is no t applicable to get the next element in the chain.

p20: All substitutions by constants in the intended place lead to non-
reduced sentences. Every other introduction of a function-symbol can
not be removed and does not lead to q.

p03: Increasing the number of literals is not applicable, since 0nly non-
decreasing substitutions are allowed. Once increased, this number can
never be reduced again.

[]

L e m m a 5.16 of S h a p i r o [10]. Let p and q be two reduced sentences such that
p C_ q. Then there is a finite total po-chain from p to q.

Proof (Outline of [10]). The proof is by induction on the number of literals in
the difference set q - p. If some of the literals in this difference set are removed
from q, it is assumed that the resulting sentence still is reduced. []

This assumption, i fp and q are reduced sentences such that p C q then every
sentence r such that p C_ r _C q is also reduced, is falsified by the following
example:

Example 6. Consider the reduced sentences

p = { P (x) , ~ Q (x , a) } ,
q = {P(x),-~Q(x, a),-~Q(y, z),-~Q(z, y)}.

Then

r = {P(x),-~Q(x, a), ~Q(y, z)}

fulfills p c_ r C_ q and r is not reduced.

L e m m a 10. For some reduced sentences p and q such that p C_ q, there is no
finite total po-chain from p to q.

Proof (Outline). Consider the sentences p and q from the last example. The
problem is to find a successor of p in a p0-ch~in from p to q. Clearly, literals have
to be added by p0 3. Both literals in q - p are most general with respect to p, but
adding to p a literal of q - p results in a non-reduced sentence. Formally, it can
be proved that there is no candidate for a successor of p in a p0-chain from p to
q by the same technique as at Lemma 9. []

The problems of incompleteness are illustrated in Fig. 1. Non-reduced sen-
tences are represented by filled circles~ reduced sentences by open circles. Ovals
represent equivalence classes under subsumption, and arrows represent a single
p0-application.

104

Fig. 1. Equivalence classes and refinements, a reduced sentence that can only be
reached from non-reduced sentences

Shapiro's intention was that for every pair of reduced sentences p and q,
satisfying p _C q or pO = q where 0 is non-decreasing, there is a chain of arrows
from p to q where only reduced sentences are visited. Problems with p0 arise
when a reduced sentence (open circle) like q is only reachable from non-reduced
sentences (filled circles) like Pl and r l .

Consider the following sentences:

p : {P(x, y), P(y, z), P(z , x)}
pl= {P(u, w), P(w, v), P(x, y), P(y, z), P(z, x)}

= { p (v , v)}
rl~--- {P(v, w), P(w, v), P(x, y), P(y, z)}
q = v), y), P(y, z), P(z,

Both p and r properly subsume q, P1 "~ P and r l ~ r. If we apply the substitution
{u/v} to Pl we get q. q can also be obtained from rl by adding P(z, x), a most
general literal w.r.t, rl such that r l U {P(z, x)} is reduced.

It is proved in the working report [12] that there is no reduced sentence (open
circle) such that q can be derived from it by p0. Therefore, this sentence q is a
counterexample of Shapiro's Theorem 5.14 which states that there is a p0-chain
from the empty sentence [] to every reduced sentence.

3.4 T h e I n c o r r e c t n e s s o f Us ing rsize

Shapiro has defined a refinement as follows: 'We say that q is a refinement of
p if p implies q and size(q) > size(p)'. Although any complexity measure size
that satisfies the requirement that for any fixed value k there are finitely many
sentences of size _< k is allowed, in his concrete refinement operators Reynolds' [9]

105

complexity measure (that we denote by rsize) for atoms is used. This complexity
measure can be generalized to sentences by defining

rsize(p) = the number of symbol occurrences in p minus the number of dis-
tinct variables in p.

A nice property of Reynolds' rsize is that if an atomic sentence p subsumes an
atomic sentence q (q = p0 for some substitution 0), then p properly subsumes q
iff rsize(q) > rsize(p). The idea behind Shapiro's refinement operators is also to
find properly subsumed sentences. If a sentence p properly subsumes a sentence
q, he intends q to be reachable from p by a chain of refinements found by a
refinement operator. Since size can only return integer values and refinements
are required to be of strictly larger size, if size(q) - size(p) = 1 then the chain of
refinements from p to q is guaranteed not to exceed length I. As we know, for
any sentence p, for example {P(x)}, we can find an infinite chain of refinements,
{P(f (x)) } , { P (f (f (x))) } , If, however, only sentences of size < k are allowed,
no chain can exceed length k.

Shapiro's refinement operator Pl is defined for atomic sentences by p01 and p0 2.
In the atomic case, increasing rsize coincides with proper specialization and vice
versa. Also, there are only finitely many atoms of rsize < k. Therefore, restricting
the Search of refinements to atomic sentences of rsize < k and restricting to
refinements of increasing rsize, all atomic sentences of rsize < k can be found by
pl.

When we study Shapiro's refinement operator p0, some problems arise with
the use of Reynolds' rsize and subsumption as ordering.

Consider the following sentences:

p = {P(x , y), P(y, x)}, rsize(p) = 4
ql -= {P(a, y), P(y, a)}, r s i ze (q l) : 5
q2= {P(x , x)}, rsize(q~)= 2

Then
rsize(p) < rsize(ql) and p subsumes ql (pO = ql for 0 = {x/a})
rsize(p) > rsize(q2) and p subsumes q2 (pO = q2 for 0 = {y/x})

Clearly, there is no direct relationship between subsumption and rsize.
To solve this problem, Shapiro restricts to so-called non-decreasing substi-

tutions (the number of literals is not allowed to decrease). By this constraint,
every sentence q found by applying the refinement operator P0 to p satisfies
rsize(p) < rsize(q). However, although p properly subsumes q2, in this approach
it is no longer possible to construct a chain of refinements from p to q2 because
rsize(p) > rsize(q). This also leads to incompleteness.

In Sect. 4.2 we will introduce a new complexity measure called newsize that
avoids these problems.

4 A N e w Ref inement Operator

When we define an equivalence relation on a set, it is usually required that
the equivalence relation is compatible with the important operations on this

106

set, i.e., operations on different members of the same equivalence class yield
equivalent results. Unfortunately, this is not true for the equivalence relation
defined by subsumption. Two subsumption equivalent sentences may not be
equivalent after substitution. Therefore, if substi tution is one of the operations,
it is not enough to consider only the reduced representative of an equivalence
class. This is an impor tan t reason why p0 is not complete. Also, subsumption
is not compatible with rsize, equivalent sentences may have a different rsize.
Allowing non-decreasing subst i tu t ions only, guarantees tha t resulting sentences
have a strictly larger rsize. However, if such a sentence is not reduced it will not
be accepted. Even if reduction after a non-decresing substi tut ion is allowed, its
reduced equivalent can have a strictly smaller rsize and will not be regarded as
a refinement.

In this section we will define a new refinement operator p~ which is complete
for the set of all reduced sentences in L:. Although we will define a new complexity
measure in Sect. 4.2, we are not going to use it explicitly in Sect. 4.1 when we
define Pr.

4.1 A N e w Ref inement Operator for R e d u c e d Sentences

Before defining pr, we revisit the problems and difficulties of Shapiro's P0. For
every two reduced sentences p and q such that p properly subsumes q, there
should be pr-chain from p to q.

o Consider the following two reduced sentences:

p = {P(x), Q(x, a)}
q = {P(x) , -~Q(x, a), -,Q(y, z), ~Q(z, y)}

Here, p properly subsumes q since p C q. In L e m m a 10 we have shown that there
is no sentence r such that r E p0 (P) and r ~- q. Adding to p one of the literals
in q - p results in a non-reduced sentence equivalent to p. Since q should be
derivable f rom p, this suggests that sometimes more than one literal has to be
added in one refinement step.

o Next, consider the following two reduced sentences:

p = {P(~, Y), P(Y, x)}
q -= {P(x ,x))

Now, p properly subsumes q since pO = q for 0 = {y/x}. Since]Pl > lq], we must
allow decreasing substitutions.

In Sect. 2.2 we have presented an algorithm that generates all sentences pl
with less than or equal to m literals that are equivalent to a given (reduced)
sentence p. In the definition ofpr (p~ and pr 2) we will use eq(p) to denote the set
of all such p ' s . Note that every sentence p~ # p in this set satisfies p' = p U r for
some set of literals r. Since Ir] can be larger than 1, we can use pt to solve the
first problem presented above.

In one of the refinement steps of our new refinement operator (p3), only one
literal is added. For example, i f p = {P(x, y)}, then ~P(u, v), Q(u) and ~Q(u)
can be added to p. We first give a l emma to illustrate its use.

107

L e m m a 11. Let p be a sentence, and let L be a most general literal with respect
to p, i.e., L has only distinct variables as arguments that do not occur in p. Then
the following two conditions are equivalent:

1. p properly subsumes q = p U {L}
2. For any literal M in p, L differs from M in either predicate name or sign.

Proof. 1 ~ 2: Assume tha t 2 does not hold. Then there is an M in p such tha t
M and L have the same predicate n a m e and sign. Let 0 be defined on variables
of L only, such tha t LO = M. Then qO = (p U {L})0 = p. This means tha t q also
subsumes p. Therefore, p ~ q.

2 : a 1: p C q, so clearly p subsumes q. Assume tha t also q subsumes p, then
for some O, qO C_ p. But then also LO E p, and LO and L must have the same
predicate name and sign. []

It is easy to verify tha t , if p is reduced and L satisfies the condit ions of
L e m m a 11, then q = p U {L} is also reduced.

D e f i n i t i o n l 2 . Let p be a reduced sentence. Then q E Pr(P) if q is reduced and
one of the following condit ions holds:

prl: p ~ q and there are p' E eq(p) and q' E eq(q) such tha t q' = p'O,
where 0 = i x~y} and bo th z and y occur in p~.

pr2: p ~- q and there are p ' E eq(p) and q' E eq(q) such tha t q' = p'O,
where 0 = { x / f (y l , . . . , y,~)}, f is an n-place funct ion symbol , z occurs
in p~, and all yi 's are dist inct variables not occurr ing in pC

pr3: q = p U {L}, where L is a mos t general literal such tha t for every
literal M E p, L differs f rom M in either predicate name or sign.

T h e o r e m 13. Let p and q be reduced sentences. I f p ~- q, then there is a pr-chain
from p to q.

L e m m a 14. Let p, q E s be two reduced sentences such that p properly subsumes
q and let p' E eq(p), q' E eq(q) satisfy p'O = q'. Then there is a r E fir(P) such
that r subsumes q.

Proof. Let p~ = P 0 , P l , . . . , P , = q~ be a chain of sentences such tha t Pi =
p i -10 i -1 , 0 < i < n, where every 0i is a subst i tu t ion as defined in pl or p~.
Reynolds [9, p roof of Theorem 4] has shown how such a chain of subst i tu t ions
can be constructed. Let Pk be the first Pi tha t is not equivalent to p. Since p ~ q
such a Pk exists. I f we let r be the reduced equivalent o fpk , then Pk-1 E eq(p),
Pk : Pk-lOk-1 and r E fir(P). Also, since r subsumes pk, PkOk �9 "" On-1 -~ Pn = ql,
and qt ~ q, r subsumes q. []

The following example illustrates the p roof of L e m m a 14.

108

Example 7. Let p = {P(a, w), P(x , b), P(c, y), P(z, d)} and
q = {P(a, b), P(c, b), P(c, d), P(a, d)} as in the first example of Sect. 3.3. If p ' =
p and q' = q then p'O = q' for 0 = { w / b , x / c , y / d , z / a } . 0 can be split in

O0 --" {w/b} ,O1 -~- { x / c) } , 0 2 .:- { y / d } and 03 = {z /a} .

po = pl = p
pl = poOo = {P(a , b), P(x , b), P(c, y), P(Z, d)}

Pl is not equivalent to p. The reduced equivalent r of Pl is

r = {P(a, b), P(c, y), P(z , d)},

and r is a member of Pr(P) tha t subsumes q.

L e m m a 15. Let p, q E s be two reduced sentences such that p properly subsumes
q and p C q. Then there is a refinement r E Pr(P) such that r subsumes q.

Proof. Let s be a max ima l subset of q - p such tha t p U s N p. T h a t means, for
every literal M in (q - p) - s , p proper ly subsumes p U s U {M}. Let L be a mos t
general literal with respect to p U s such tha t LO = M for one of those literals.

I f p U s U {L} is not equivalent to p u s , then, by L e m m a 11, L differs f rom all
literals in p U s in either predicate name or sign. L also has this p roper ty with
respect to p. Let r = p U {n}. Then r E p3(p), and clearly r subsumes q.

Otherwise, p ' = p U s U {L} and q' = p U s U {M} satisfies p'O = q'. Using
L e m m a 14 a sentence r can be found such tha t r E Pr(P) and r subsumes ql.
Since q~ C q, r also subsumes q. []

The following examples i l lustrate the p roof of L e m m a 15.

Example 8. Let p = {P(x)} and q = {P(x) , -~Q(a , x)}.

The only subset s o f q - p such tha t pUs ,.~ p is {}, the empty set. M = -~Q(a, x)
is the only literal in (q - p) - s . L = -~Q(y, z) is mos t general w.r.t, p and LO = M
for 0 = {y/a, z / x } . p U {L} is reduced and

= {p(x) , Q(y, z)}

satisfies r E Pr(P) and r subsumes q.

Example 9. Let p = { P (x) , - , Q (x , a)} and
q = {P(x), Q(x, a), Q(u, z),- ,Q(z, y)}.
s = {-~Q(y, z)} is a max imal subset of q - p such tha t p U s ,-, p. Taking M =
-~Q(z, y) we get L = -,Q(u, v) as a mos t general literal with respect to p U s.
p ' = p U s U {L} is equivalent to p and p ' properly subsumes q' = p U s U {M}.
By L e m m a 14 we can find a refinement r o f p tha t subsumes q.

In L e m m a 14 we have p ' = {P(x) , -~Q(x , a),-,Q(y, z) , - ,Q(u , v)},
q' = {P(x) , - - ,Q(x, a), -,Q(y, z),--,Q(z, y)} and O = {u /z , v /y} . 0 can be split in
Oo = {u / z } and 01 = {v/y} . p'Oo is not equivalent to p ' so

r = {P(x) , -~Q(x , a) , - ,Q(y , z) , - ,Q(z, v)}

satisfies r E pl (p) and r subsumes q.

109

Proof of Theorem 13. For every pair of reduced sentences p and q such that p
properly subsumes q, pO C q for some 0, let s be the reduced equivalent of pO.

If p properly subsumes s then p and s satisfy the conditions of L e m m a 14.
Otherwise, s E eq(p), and s and q satisfy the conditions of L e m m a 15.

In both cases the first element r of a pr-chain f rom p to q can be found. We
can complete a pr-chain f rom p to q by repeatedly finding the first element in a
chain f rom r to q. In L e m m a 18 in the next subsection we prove that this chain
is of finite length. []

4.2 A N e w C o m p l e x i t y M e a s u r e

Shapiro has defined tha t q is a refinement o f p i fp implies q and size(p) < size(q).
If we consider a toms and rsize, then q is a refinement of p is equivalent to p
properly subsumes q. Suppose that rsize can indeed be generalized to sentences
or that there is another kind of size which satisfies this property, then the use
of size has the following advantages: it can restrict the search space of sentences
by discarding sentences of size> k; it prohibits infinite chains of refinements,
by demanding size to increase no cycles will occur; also, it can be used to ease
proofs of completeness and finiteness.

However, in concrete examples, Shapiro uses rsize. In Sect. 3, we have shown
that i f p subsumes q, then rsize(p) can be smaller as well as larger than rsize(q).
In the latter situation, q is not even regarded as a refinement of p, so there surely
is no chain f rom p to q. Shapiro uses non-decreasing substitutions to prevent rsize
to decrease. An argument in favor of this approach is that if pO = q then there is
always a subset p~ ofp such tha t p~O = q and 0 is non-decreasing w.r.t, p~. Since p~
also subsumes q, and assuming that p~ can be derived f rom the empty sentence,
q can still be derivable via p~. This gives two problems. Firstly, as we have shown
before, non-decreasing substi tutions are not compatible with reduced sentences.
Secondly, suppose that we already have some background information about the
theory to be inferred, say that we know that a given sentence p subsumes a
sentence q that has to be found. Then it is much more efficient to search for a
chain f rom p to q than f rom the empty sentence to q. Wha t we want is strong
completeness, and non-decreasing substitutions do not fit in this approach.

All complications seem to be caused by adapt ing the refinement operator
to the definition of size. If we know that we are looking for properly subsumed
sentences, why don ' t we define refinement concretely by proper subsumption?
This prevents cycles to occur. Size is then only needed to restrict the search
space to a finite number of sentences.

D e f i n i t i o n 16. Given a sentence p E ~2:
newsize(p) = (maxsize(p), IPl), where
maxsize(p) = max{rsize(L)[L E p} and IPl is the number of literals in p.

It is easy to prove that if p subsumes q then maxsize(p) < maxsize(q), f rom
this it follows tha t if p ~ q then maxsize(p) = maxsize(q). Also, if maxsize(p) >

110

maxsize(q) then p cannot subsume q. Contrary to rsize, maxsize has a natural
relationship with subsumption.

Since the number of literals of rsize < k is finite, the number of sentences
satisfying newsize(p) < (k, m) (maxsize(p)- < k and Ipl < m) i s also finite.

We now redefine the notions of refinement and refinement operator in the
context of subsumption.

D e f i n i t i o n 17. A sentence q is called a refinement of a sentence p iff p properly
subsumes q. A refinement operator is a mapping from sentences to a subset of
their refinements, such that for any p E L: and any k, m > 0 the set of all
p(p)(k, m), that is the set p(p) restricted to sentences q such that newsize(q) <
(k, m), is computable.

In this definition 'computabil i ty ' is guaranteed if every sentence that is in-
volved to compute p(p) satisfies newsize < (k, m). We should add this condition
to the definition of/9r (i.e., p, q, p' and q' have a newsize < (k, m)). This also
restricts the sentences to be generated by the inverse reduction algorithm to sen-
tences with less than or equal to rn literals. Notice that if p properly subsumes
q and both p and q satisfy newsize < (k, m), then every related sentence to find
r in Lemma 14 and 15 satisfies newsize < (k, m).

Since every element in a chain of refinements properly subsumes its successor
and subsumption is transitive, a chain cannot contain cycles.

These observations together with the following lemma imply that p~ is a
refinement operator, complete for reduced sentences.

L e m m a 18. Let po, pl , P2 . . . be a pr-chain, where newsize(pi) <_ (k, m) for every
Pi. Then this chain is of finite length.

Proof. There are finitely many sentences such that newsize(p) < (k, m), so there
are finitely many different sentences in every pr-chain. Since for every two redu-
ced sentences p, q E ~ such that q E Pr(P), P ~- q, no sentence can occur more
than once in a pr-chain. []

The properties of newsize and its strong relation with subsumption as descri-
bed above, are a motivation for adopting it as a complexity measure to restrict
the search space of refinements.

Using these new definitions, Pr is a refinement operator and it behaves like
Shapiro thought P0 would do, it is complete for reduced sentences.

5 C o m p a r i s o n w i t h L a i r d s ' tOL

Laird [2] has also defined a refinement operator, pL- He uses a different notation
to define his refinement operator. Instead of sentences C +-- D where C and
D are sets of atoms, Laird considers clauses of a language/ :L where repetition

111

of literals is allowed, substi tutions are never decreasing, and also non-reduced
clauses are allowed. The price we have to pay for this is the presence of many
equivalent hypotheses in the search space.

D e f i n i t i o n 1 9 . [2] Let p = C +-- D be a clause in the language s Then
q E PL(P) when exactly one of the following holds:

1. q = pO, where 0 = {x/y} and bo th variables x and y occur in p.
2. q = pO, where 0 = {x/ t} and t is a most general term, i.e., all variables in t

are distinct and do not occur in p.
3. q = C V L +-- D, where L is a most general a tom.
4. q = C e- D A L, where L is a most general a tom.

In [11], Shapiro has included the Prolog-source of another general refinement
operator that is similar to Laird 's PL. Like Laird's, this operator does not restrict
the search space of hypotheses to reduced sentences (clauses).

Laird does not give a proof of completeness of his version of P0, instead he
refers to the proof of Shapiro's Theorem 5.14. Moreover, Laird does not mention
the difference between his and Shapiro's operator. In the working report [12] a
proof of the completeness of PL can be found.

Let ~L be a language that contains one constant a, one 1-place function f ,
and one 2-place predicate P. Suppose at some moment , P(a, a) +- is a clause tha t
has to be refined. The set of one-step refinements will contain P(a, a)VP(x, y) +-,
equivalent to P(a, a) +--. All one-step refinements of this clause are P(a, a) V
P(x, x) +-, P(a~ a)V P(a, y) ~--, P(a, a)V P(x, a) 4-, P(a, a)V P(x, y)V P(v, w) +-,
P(a, a) V P(f (z) , y) t--, P(a, a) V P(x, f(z)) +-- and P(a, a) V P(x, y) +-- P(v, w).
The first four of these seven refinements are all equivalent to P(a, a) +-. In
the next refinement steps this number will increase even faster. In fact we have
a gigantic search space which contains a lot of equivalent clauses. All these
(equivalent) clauses are regarded as different, all are kept in memory, and are
subjected to refinement separately.

Laird has pointed out that in an implementa t ion of pL, variants of clauses can
be treated as identical, and one can avoid generating variants of the same clause
in comput ing PL(P). In this way repeated literals and sentences that are equal
up to renaming variables are prohibited. None of the sentences in our example
would be avoided in this way.

In our approach, only properly subsumed reduced sentences are refinements.
Of every equivalence class at most one representative is refined. When we refine
a reduced sentence, inverse reduction is used. The t ime-complexi ty of inverse re-
duction, to generate equivalent sentences that are refined, is not very attractive.
These sentences, however, can be thrown away immediate ly after refinement. In
Lairds ' approach these non-reduced equivalent sentences will also be generated
when application of PL results in non-reduced sentences. They will be kept in
memory seperately until they are refined. Since only one sentence is refined at
a time, our memory requirements are much smaller Lairds' . We therefore think,

112

that with 'interesting problems', i.e., theories with a high complexity (measure)!
the extra time needed to compute refinements can be compensated for by the
much smaller memory requirements since every equivalence class under sub-
sumption has only one representative. This is subject of future research.

6 R e f i n e m e n t i n a W i d e r F r a m e w o r k

In this section we will briefly introduce the connections between Shapiro's mo-
del inference and inverse resolution. It is said that model inference and inverse
resolution reach the same destination from opposite directions: The first uses
specialization, the second generalization. First we will invert the specialization
operator defined in this paper to obtain a generalization operator, then we will
relate it to inverse resolution and model inference using generalization.

6.1 G e n e r a l i z a t i o n O p e r a t o r s

Our refinement operator Pr can easily be inverted to a generalization operator
5r. Given a reduced sentence q, a reduced sentence p E 5r(q) if q E pr(p).

In [3] Ling has described so-called abstraction operators for atoms and Horn
clauses. These operators are similar to the inverted versions of Shapiro's pl and
p2. They are used in a system called SIM which is roughly a system that works
like Shapiro's MIS the other way around. Starting with some positive examples
as hypotheses, generalizations are found by applying an abstraction operator
to hypotheses if the hypotheses are too weak. An advantage of this specific to
general approach over Shapiro's general to specific approach is that in SIM the
positive examples play a more important role in determining the target theory.

5~ can be viewed as a theoretically interesting generalization operator for the
domain of reduced first order sentences, for example in a system like MIS.

6.2 I n v e r s e R e s o l u t i o n

Given a logic program, we can use it to derive its logical consequences by using
resolution. To reverse this process, we ask ourselves the following question: Given
some positive examples that cannot be derived from the given program, how can
we extend this program so that the new examples can be derived from it?

One possible answer is using Ling's sytem SIM, as described in the last sub-
section. Another approach is inverse resolution. In inverse resolution operators
are used that invert one or more resolution steps. One of these operators is the
so-called V-operator [5]: given two sentences p and r, a V-operator finds different
sentences q such that r is a resolvent (or instance of a resolvent) of p and q.

For example, let s be a language that contains the predicate even, a constant
symbol 0, and a function s (successor). Given the sentences

p = {even(O)} ~ , and
= 4--,

113

a V-operator should be able to derive

q = { e v e n (s (s (x))) } +-- { e v e n (x) } .

In general there are many solutions for q. These depend on many choices. Some
of the choices are: which literal L1 in p is resolved with a literal L2 in q; and what
are the substitutions 01 and 0~ 1 such that L2 = L1010~ 1. However, Muggleton
[4] has shown that for every choice of L1 and 01 there is a unique least general
solution q*. He notes that every solution q subsumes q*. In order to determine
(all or some) solutions q when q* is found, 5r, the inverse of Pr, might prove
useful. In the example above, 5~ could be used to derive q from the most specific
solution

q* = {even(s (s (O)))} +- {even(0)}.

For more detail on most specific V-operators we refer to [4].

6.3 Mode l Inference and General izat ion

Shapiro's Model Inference System is concerned with finding a theory that is
consistent with the given examples. Starting from the most general theory, a
refinement operator is used to replace too strong hypotheses by logically weaker
ones. This process can also be reversed. We do not know any learning system
that uses generalization operators and restricts the search space to reduced sen-
tences. We are thinking of a MIS- (or SIM-)like system that works with reduced
sentences only. Starting with positive examples as hypothese, a generalization
operator like 5r is used to generalize too weak hypotheses like in Ling's MIS [3].

When the target theory contains recursive predicates or when auxiliary pre-
dicates occur in it, literals have to be added to hypotheses. We think that a
V-operator is very useful for this part of the system. Guided by the positive
examples and the predicates in the background theory, only the least general
solutions of this V-operator will be accepted as new hypotheses. Too weak solu-
tions can be generalized by applying 5F" The formulation of an inductive inference
algorithm that operates in this way is a subject of future research.

7 C o n c l u s i o n s

In this article we showed by concrete examples that P0 is not complete for reduced
sentences. The reasons behind this incompleteness were given by analyzing the
special properties of subsumption and a complexity measure size. We noticed
that it is most important that refinements of a sentence are properly subsumed
by it. Size is used only to limit the number of refinements. Therefore, we redefined
the notion of a refinement operator. Also, we defined a new refinement operator
p~, complete for reduced sentences, and a new complexity measure to limit the
search space of refinements. In the end, we related our new refinement operator to
generalization operators such as ~r and the V-operator used in inverse resolution.
In the future, we hope to use these operators to solve the model inference problem
by generalization.

114

A c k n o w l e d g e m e n t s . We thank Cot Bioch for the suggestions that lead to
the subject of this article. We thank Leon van der Torre and Arie de Bruin
for t he discussions and support. Also, we thank Mark Vermeer for reading and
commenting this article.

R e f e r e n c e s

1. M. Kirschenbaum and L.S. Sterling. Refinement strategies for inductive learning
of simple prolog programs. In Proceedings of IJCAI-91, Sydney, Australia, 1991.
Morgan Kaufmann.

2. P.D. Laird. Learning from Good and Bad Data. Kluwer Academic Publishers,
1988.

3. X. Ling. Inductive learning from good examples. In Proceedings of [JCAI-91,
Sydney, Australia, 1991. Morgan Kaufmarm.

4. S.H. Muggleton. Inductive logic programming. In First Conference on Algorithmic
Learning Theory, Ohmsha, Tokyo, 1990. Invited paper.

5. S.H. Muggleton and W. Buntine. Machine invention of first-order predicates by
inverting resolution. In Proceedings of the Fifth International Conference on Ma-
chine Learning, pages 339-352. Kaufmann, 1988.

6. T. Nibbler. A study of generalisation in logic programs. In Proceedings of E WSL-
88, London, 1988. Pittman.

7. W.E. Nijenhnis and C. Witteveen. Constructive identification with Poole's default
logic. Technical Report 90-96, Faculty of Technical Mathematics and Informatics,
TU-Delft, 1990.

8. G.D. Plotldn. A Note on Inductive Generalization. In Machine Intelligence 5,
pages 153-163. Edinburgh University Press, Edinburgh, 1970.

9. J.C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic
Formulas. In B. Meltzer and D. Mitchie, editor, Machine Intelligence 5, pages
135-153. Edinburgh University Press, Edinburgh, 1970.

10. E.Y. Shapiro. Inductive Inference of Theories from Facts. Technical Report 624,
Department of Computer Science, Yale University, New Haven. CT., 1981.

11. E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.
12. P.R.J. Van der Lang. A Most General Refinement Operator for Reduced Senten-

ces. Technical Report EUR-CS-92-03, Erasmus University Rotterdam, Dept. of
Computer Science, June 1992.

