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A b s t r a c t .  In his famous Model Inference System, Shapiro [10] uses so- 
called refinement operators to replace too general hypotheses by logically 
weaker ones. One of these refinement operators works in the search space 
of reduced first order sentences. In this article we show that this operator 
is not complete for reduced sentences, as he claims. We investigate the 
relations between subsumption and refinement as well as the role of a 
complexity measure. We present an inverse reduction algorithm which is 
used in a new refinement operator. This operator is complete for reduced 
sentences. Finally, we will relate our new refinement operator with its 
dual, a generalization operator, and its possible application in model 
inference using inverse resolution. 

1 Introduct ion  

In 1981, Shapiro [10] has introduced the notion of model inference. I t  has since 
then drawn a lot of at tention in the world of inductive learning using logic. Even 
now the new operation of inverse resolution [5] is in fashion, people still discuss 
and use his ideas of inference and learning problems [1, 3, 7]. Given a sequence 
of positive and negative examples of an unknown concept, his incremental Mo- 
del Inference System tries to find a theory (finite set of hypotheses) that  can 
infer M1 given positive examples and none of the negative examples. The system 
essentially uses two techniques: if the theory is too strong (a negative example 
can be inferred f rom it) the backtracing Mgorithm locates a guilty hypothesis 
and refutes it; if the theory is too weak (a positive example can not be inferred) 
then refinements (specializations), found by a refinement operator,  of the thrown 
away hypotheses are added. In the limit, a theory will be found that  is neither 
too strong nor too weak. 

In this article we will discuss Shapiro's  refinement operator #o. This operator  
is defined for reduced sentences in a first order language where sentences and 
refinements of them are restricted by some complexity measure size. The notion 
of reduced sentences, related to subsumption, is introduced by Plotkin [8]. 

The strength of Shapiro's  model inference algori thm is its theoretical ap- 
proach, the formal  description of the operators used in it and their properties. 
One of these properties is the completeness of a refinement operator for a subset 
of a first order language, i.e., every sentence in the subset can be derived from the 
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empty sentence by repeatedly applying the refinement operator. We will show 
that,  exactly because of theoretical reasons, the refinement operator P0 is not 
complete for reduced sentences, as Shapiro claims. To understand the problems, 
we should know more about the concepts of subsmnption and size. Also, we will 
show that  the definition of size which Shapiro has adopted from Reynolds [9] is 
inadequate for the theories he tries to build. We will introduce another kind of 
complexity measure. 

Due to special properties of subsumption, we will show that  the technique of 
inverse reduction is needed for certain problems. An algorithm for inverse reduc- 
tion finds non-reduced clauses that are equivalent to a given reduced sentence. 
With this new technique and the new complexity measure we can change the 
p0-operator into a refinement operator that  is complete for reduced sentences. 

Our refinement operator can derive exactly one representative of every equi- 
valence class under subsumption, namely the reduced sentence in it (this sentence 
can be reached by different sentences since the subsumption ordering is a lattice, 
not a tree). The space of all reduced sentences is much smaller than the space of 
all sentences in a first order logic. Therefore, considering reduced sentences only 
is more efficient than considering all sentences. 

Some of the results of a working report [12] are included in this article. 

The article is divided in the following sections. In Sect. 2 we concentrate 
on some properties of subsumption which are important  in proving the (in- 
)correctness of refinement operators. In Sect. 3 we introduce some terminology 
adopted from Shapiro and we show the incompleteness of p0 with examples. 
Also, we discuss the complexity measure rsize and its shortcomings when related 
to subsumption. In Sect. 4 we define a new refinement operator and a new 
complexity measure. In Sect. 5 we compare our new refinement operator with 
another refinement operator [2] that is complete for first order sentences. In Sect. 
6 we look at refinements in a wider framework. We relate refinement operators 
to their duals, generalization operators, and these generalization operators to 
inverse resolution and model inference. These relations will also be a subject for 
future research. 

2 S u b s u m p t i o n ,  R e d u c t i o n  a n d  I n v e r s e  R e d u c t i o n  

Let /: be a language of first order logic. In this language we use P,  Q, R , . . .  
for predicate symbols, f ,  g, h,. . .  for function symbols, a, b, c , . . .  for constants, 
and x, y, z , . . .  for variables. Throughout  this article, constants are treated as 
functions with arity zero. Atoms are denoted by A, B, . . . ,  A literal is an atom 
or the negation of an atom, and is denoted by L, M, . . . .  Every sentence i n / :  is 
a set of literals: 

{A1, . . . ,  Am, -~B1,..., -~B~} 

where -~Bj is the negation of the atom Bj. A sentence represents the disjunction 
of its literals, where all variables in it are universally quantified over the whole 
sentence. Sentences can also be written in the following form: 
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{A1, . . . ,A,~}  +-- { B 1 , . . . , B ~ }  

Sentences are denoted by p, q, . . . ,  and substitutions by 0, o', 7-. All these symbols 
may have subscripts. A Horn sentence requires m _< 1. The results in this article 
are described for the set of first order sentences but hold for the set of Horn 
sentences as well. 

2.1 Subsumpt ion  and Reduct ion 

The notions of subsumption and reduction originate from Plotkin [8], and are 
defined as follows: 

D e f i n i t i o n  l .  A sentence p subsumes a sentence q (p _ q) if[ there exists a 
substitution 0 such that  pO C q. 

A sentence p properly subsumes a sentence q (p >-- q) iff p subsumes q but  q does 
not subsume p. 

Two sentences p and q are called (subsume) equivalent (p ~ q) iff p subsumes 
q and q subsumes p. This is an equivalence relation which defines a parti t ion 
on sentences. Every set of equivalent sentences is called a (subsume) equivalence 
class. 

A sentence p is called reduced if p~ q p together with p ~ p~ implies p = pl. 

Example 1. The reduced sentence {P(x,  y)) is equivalent to {P(x,  y), P(x ,  z)} 
which is (therefore) not reduced. 

If q is not reduced, we can reduce q to a sentence p C q (p C q and p r q) 
such that  p is reduced and p ~ q. An algorithm to reduce sentences to their 
smallest equivalent subset is presented by Plotkin [8]. 

Subsumption is weaker than logicM implication [6]. If a sentence p subsu- 
mes a sentence q then p logically implies q but  not the other way around. 
p = {P( f (x ) ) )  +-- {P(x)} logically implies q = {P( f ( f (y) ) )}  +-- {P(y)},  but  
p does not subsume q. In the rest of this article, we investigate the ordering 
induced by subsumption. We will define an operator that ,  given a reduced re- 
presentative of an equivalence class under subsumption, yields reduced repesen- 
tatives that  are subsumed by it. However, sentences that  are logically implied 
but  not subsumed will not be found. 

It is proved by Plotkin [8] that if two equivalent sentences both are reduced 
then they are equal up to renaming variables, i.e., they are alphabetical variants. 

Throughout  this paper alphabetical variants are considered identical. We can 
therefore speak of one reduced representative of every equivalence class. 

Subsumption has some unexpected properties. For example, substitutions do 
not always preserve equivalence, and subsets of reduced sentences need not be 
reduced. 
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Let p = { P ( x , y ) } ,  q = { P ( x , y ) , P ( x , z ) } ,  r = { P ( x , y ) , P ( x , z ) , P ( y , z ) } ,  and 
= { x / z } .  Then p C q C r, p ~ q, p0 = {P(z ,  y)} and qO = {P(z ,  y), P ( z ,  z)}. 

{P(z,  z)} is the reduced equivalent of q0, and p0 is not equivalent to q0. Also, 
q C r, where r is reduced and q is not. 

The ordering induced by subsumption is a quasi ordering because x ~ x 
(reflexivity), and if x _ y and y ~ z then x ~ z (transitivity). The empty 
sentence (D) is the maximal element in this ordering. 

In a (learning) system that uses a search space of logic formulae, it often is a 
waste of time and memory to examine more than one sentence of an equivalence 
class. Since for any two sentences p and q if p --~ q then p ~- r i f f  q f- r, using 
reduced sentences as a representative of an equivalence class might lead to more 
efficient (learning) systems. 

However, operations such as substitutions on equivalent sentences can lead 
to non-equivalent sentences. To overcome this problem we want to build a simple 
algorithm to reverse the process of reduction. We need the following lemma and 
theorem for this algorithm. 

L e m m a 2 .  Let  p be a sentence. I f  pO = p, then for some natural number k, 
LO k = L, for all literals L in p. 

Proof. 0 must be injective: if L10 = L20 for different L1, L2 E p then t~ would 
decrease the number of literals in p, i.e., Ip0] < ]Pl. For every l i t e ra lL  in p 
consider the following sequence 

L, L8, LO S , Lt~ s, . . .  

Since p = p~ = p02 = . . .  and since p is finite, not all L~ i can be different. Then 
for some i, j ,  i < j, we have L~? ~ = L # .  Because 0 is injective, this implies 
LO j - i  : L. 

For every L, let n(L) be the smallest number such that LO n(L) = L. Then 
Lt9 i = L if i is a multiple of n(L).  Let k be the least common multiple of all 
n(L).  Then L~ k = L for all L E p. [] 

L e m m a  3. Let p be a reduced sentence, and p C q such that p ..~ q. Then there 
exists a substitution ~ such that q~ = p and LO = L for all literals L E p. 

Proof. Since q subsumes p, for some r qr _C p, this implies pa  C p. If  q~ C p, 
then also pc~ C p and p would not be reduced, and we conclude that per = p. By 
Lemma 2, we know that for some k, Lc ~k = L for all L E p. Define/~ = cr k. [] 

2.2 I n v e r s e  R e d u c t i o n  

Given a reduced sentence, an inverse reduction algorithm finds equivalent sen- 
tences. An inverse reduction algorithm is needed in Sect. 4 to define a complete 
refinement operator, Pr. Also, it shows the kind of sentences that are in the same 
equivalence class under subsumption. 
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Let p be a reduced sentence and m a given positive integer. We want to 
find all sentences that  are equivalent to p and contain less than  or exactly m 
literals. For every sentence q~ such tha t  p ~ q~, an alphabetic variant q of q~ 
exists such that  q = p U r. For example p = {P(x ,  x)} is equivalent to q' = 
{P(u,  u), P(u,  v)} which is an alphabetic variant of q = {P(x ,  x), P(x ,  y)} that  
contains p. Therefore we only have to find equivalent sentences that  contain p. 
By L e m m a  3 we know tha t  for every such sentence q a substi tution 0 exists, such 
that  q0 = p and L0 = L for all literals L E p. This implies that  q can be reduced 
to p via 0, where 0 is defined only on variables not occuring in p. The following 
example gives an idea which sentences are to be found. 

Example 2. Let p - {P(x ,  x)}, and let m = 3. All possible q's such that  q ~ p 
and Iql = 2 are of the form {P(x ,  x), M1} where M1 could be P(y, z), P(x,  y), 
P(y, x) or P(y, y). 
For Iql = 3, we get q = {P(x ,  x), M1, M2} where some of the possible M1, M2 
and corresponding 0 are 

M1 M2 0 
P(y,z) P(x,y) {y/x,z/x} 
P(y,z) P(y,x) {y/x,z/x} 
e(y,z) p(y,w) {y/x,z/x,w/x} 
P(x,y) e(y,x) {y/x} 
p(y,y) p(z,z) {y/x,z/x} 

To find all sentences that  are equivalent to a sentence p, literals have to 
be added to p. Since for a certain substitution 0, all added literals have to be 
mapped  onto a literal in p, only literals that  are more general than literals in p 
have to be added. 

A l g o r i t h m  1 (Inverse Reduction) Let p be a reduced sentence and let m > 0 
be given. The following algorithm finds all sentences equivalent to p with ~ m 
literals. 

Let I = O, if  IPl <- m then output p 
While l < (m -IPl)  do 

l : = l + l  
For every sequence { L 1 , . . . ,  Lt}, 
where every Li E p, but the Li 's are not necessarily distinct. 

Find all sets r =  { Mi , . . . , Mr } such that MiO = Li for all i, 
where every Mi contains at least one variable not occuring p 
and 0 = {x l / t l , . . . ,  x~pm}, x~ ~ var(p) for all j; 
For every such r output p U r 

3 I n c o r r e c t n e s s  o f  t h e  R e f i n e m e n t  O p e r a t o r  po 

3.1 R e f i n e m e n t  

The ideas we present in this article are based on the refinement operators used in 
Shapiro 's  Model Inference System [10], for which he has defined three concrete 
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refinement operators p0, Pl, and P2. We therefore first give a brief description 
of model inference. Let a first order language 12, an observational language 12o, 
and a hypotheses language 12h, such that  12o C_12h Gs be given. Let M be an 
unknown model defined on s and let s  = {c~ E12o]~ is true in M}. Suppose 
that  we can enumerate all the sentences in s by a l ,  o~, . . . ,  and that  we can 
tell the truth value ld of every ai.  From these facts (ai,  V/}, we want to find a 
finite set of sentences T expressed in 12h such that  12o M = {o~ E12olT F- a}.  Such a 
theory T is called a 12o-complete axiomatization and it can be used to represent 
the model M.  

Example 3. As an example, given a first order language s  Shapiro's  refinement 
operator p~ uses 12o = the set of ground atoms in 12 and  12h = the set of a toms 
and context free t ransformations in 12, where context free t ransformations are 
sentences in the form {p(t l , . . . ,  t~)} +-- {p (xa , . . . ,  Xn)} where all xi's a r e  distinct 
and occur in ti. 

I f  the language 12 contains the constant 0 (zero) and a function s (which can 
be interpreted as the successor function), then given some positive and negative 
examples like 

@lus(s(s(O)), s(O), s(s(s(O)))), true) and 
(plus(s(O), O, 0), false>, 

the Model Inference System will find the hypotheses 

{plus(x, 0, x)} ~-, and 
{plus(~, s(y), s(z))} ~- {plus(x, y, z)) .  

Following Shapiro, we assume some structural complexity measure size, which 
is a function from sentences of s to natural  numbers, with the property that  for 
every n > 0 the set of sentences of size n is finite. The following definitions are 
also his. 

D e f i n i t i o n 4 .  [10] A sentence q is a refinement of p if p (logically) implies q 
and size(p) < size(q). 

A refinement operator p is a mapping  from sentences of s to subsets of their 
refinements, such that  for any p E s and any n > 0 the set of p(p)(n), that  is, 
the set p(p) restricted to sentences of size< n, is computable.  

I f  there is a chain p = P 0 , P l , . . . , P .  = q such that  pi E P(Pi-1), then we call it a 
finite total p-chain. We use p*(p) to denote the set of all sentences that  can be 
reached by a finite total  p-chain from p. 

We change Shapiro's  definition of completeness to weakly completeness because 
we want to use the notion of completeness for a stronger concept. 

D e f i n i t i o n 5 .  Let S be a subset of 12 which includes the empty  sentence rn. A 
refinement operator p over/2 is called weakly complete for S if p* (D) = S. 

A refinement operator  p is called (strongly) complete for S if for any two sentences 
p, q E S such that  q is a refinement of p, q E p* (p). 
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3 .2  D e f i n i t i o n  o f  po 

In the section where Shapiro presents the refinement operator P0, he claims 
tha t  P0 is weakly complete for any first order language s  On the other hand, 
he redefines 'a  sentence' to mean 'a  reduced representative of the equivalence 
class of this sentence' [10, p27]. We assume tha t  his intention was to define a 
refinement operator  which is weakly complete for the set of reduced sentences. 
Even in this situation, however, it is not. 

D e f i n i t i o n 6 .  [10] If  pO = q and Ipl = lqL then 0 does not decrease p, i.e., by 
choosing the right indices, we have p = { L 1 , . . . , L m } ,  q = { M 1 , . . . , M ~ }  and 
LiO = Mi for all i. 

A literal L is more general than M with respect to p if there is a substi tution 0 
such tha t  LO = M and pO = p. 

If  L is any literal that  contains as arguments only distinct variables that  do 
not occur i n p ,  then we call L most general with respect to p. 

Let M be a literal that  is not most  general w.r.t, a sentence p. Then we can 
always find a literal L that  is more general than M w.r.t, p and that  is most  
general w. r . t .p .  In fact, we just  need to replace all arguments  of M by distinct 
variables that  are not in p. 

D e f i n i t i o n T .  [10] A literal L is most general with respect top such that pU{ L } 
is reduced if for any M such that  M is properly more general than L w.r.t, p, 
p U {M} is not reduced. 

Example4. Let p = {P(x ,  y)}, and let L1 = Q(u), L2 = -,P(u, v), L3 = P(u,  v) 
and L4 = P(u , x ) .  

Then L1, L~ and L3 are most  general literals with respect to p, since they 
contain only distinct variables as arguments  that  do not occur in p. As can be 
verified, L4 is a most  general literal with respect to p such that  p U {L4} is 
reduced. 

D e f i n i t i o n 8 .  [10] Let p be a reduced sentence of/2.  Then q E Po(P) when 
exactly one of the following holds: 

pl: q = pO, where 0 = { x / y }  does not decrease p and both variables x 
and y occur in p. 

p02: q = p0, where 0 = { x / f ( y l , . . . , y ~ ) }  does not decrease p, f is an 
n-place function symbol,  x occurs in p and all y~'s are distinct variables 
not in p. 

p0a: q = p U {L}, where L is a most  general literal with respect to p for 
which p U {L} is reduced. 
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Although the definition of the refinement operator uses the concept of size, 
these p01, p0 2 and p3 are concretely defined without it. Hence, we can begin our 
discussion of the completeness of P0 without worrying about size. In Sect. 3.4 
we will relate refinement operators with size. 

3.3 I n c o m p l e t e n e s s  o f  Po 

In this subsection we will show that  Shapiro's Lemma 5.15 and 5.16 [10] are 
not correct, and hence that  P0 is not (strongly) complete. Shapiro never uses 
the terminology of strong completeness of p0, Lemma 5.15 and 5.16 together, 
however, would imply it. We will also show that his Theorem 5.14 is not correct, 
and hence that  P0 is not even weakly complete. 

L e m m a  5.15 o f  S h a p i r o  [10]. Let p and q be two reduced sentences such that 
pO = q for some substitution 0 that does not decrease p. Then there is a finite 
total po-chain from p to q. 

Proof. [10] This lemma is a generalization of Theorem 4 in Reynolds' paper 
[9]. Examination of the proof of this Theorem shows that it can be applied to p 
and pO to obtain a finite total chain. [] 

Reynolds has proved this theorem for atoms. Indeed if we do not restrict 
ourselves to reduced sentences and consider only non-decreasing substitutions, 
then we can consider a sentence as a generalized atom. 

Example 5. Consider the following chains of sentences p = P0, Pl, P2, P3, P4 = q 
! ! ! 

and p = Po,Pl,P2,P3,P4 = q. Since p0 = q, and p and q are reduced, Shapiro 
claims that  there is a finite totM po-chain from p to q. 

P = Po - {P(a,  w), P(x,  b), P(e, y), P(z ,  d)}, Po is reduced 
Pl = {P(a,  b), P(x,  b), P(c, y), P(z ,  d)} ,~ Pl = {P(a,  b), P(c, y), P(z ,  d)} 
P2 = {P(a,  b), P(c, b), P(c, y), P(z ,  d)} ~ p~ = {P(a,  b), P(c, b), P(z,  d)} 
P3 = {P(a,  b), P(c, b), P(c, d), P(z ,  d)} ,~ p~ = {P(a,  b), P(c, b), P(c, d)} 
q = P4 = {P(a,  b), P(c, b), P(c, d), P(a, d)}, P4 is reduced 

Here we are facing a dilemma, either we allow non-reduced sentences (pl, P2, P3) 
or we reduce after substitution and hence allow decreasing substitutions (e.g., 
pl e po(po)). 

L e m m a 9 .  For some reduced sentences p and q such that pO = q, there is no 
finite total po-chain from p to q. 

Proof. Let p = {P(a,  w), P(x ,  b), P(c, y), P(z ,  d)}, and let 
q = {P(a,  b), P(c, b), P(c, d), P(a, d)} as above. We prove that none of p01, p~ and 
p] is a candidate to generate the successor of p in a p0-chain from p to q. 
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pl: All variables of p have to be substituted by constants to achieve q and 
all constants a, b, c, d are to be substituted only once. Unification of va- 
riables causes that a variable occurs at least twice. Therefore unification 
of variables is no t  applicable to get the next element in the chain. 

p20: All substitutions by constants in the intended place lead to non- 
reduced sentences. Every other introduction of a function-symbol can 
not be removed and does not lead to q. 

p03: Increasing the number of literals is not applicable, since 0nly non- 
decreasing substitutions are allowed. Once increased, this number can 
never be reduced again. 

[] 

L e m m a  5.16 of  S h a p i r o  [10]. Let p and q be two reduced sentences such that 
p C_ q. Then there is a finite total po-chain from p to q. 

Proof (Outline of [10]). The proof is by induction on the number of literals in 
the difference set q - p. If some of the literals in this difference set are removed 
from q, it is assumed that  the resulting sentence still is reduced. [] 

This assumption, i fp  and q are reduced sentences such that p C q then every 
sentence r such that p C_ r _C q is also reduced, is falsified by the following 
example: 

Example 6. Consider the reduced sentences 

p = { P ( x ) , ~ Q ( x , a ) } ,  
q = {P(x),-~Q(x, a),-~Q(y, z),-~Q(z, y)}. 

Then 

r = {P(x),-~Q(x, a), ~Q(y, z)} 

fulfills p c_ r C_ q and r is not reduced. 

L e m m a  10. For some reduced sentences p and q such that p C_ q, there is no 
finite total po-chain from p to q. 

Proof (Outline). Consider the sentences p and q from the last example. The 
problem is to find a successor of p in a p0-ch~in from p to q. Clearly, literals have 
to be added by p0 3. Both literals in q - p are most general with respect to p, but 
adding to p a literal of q - p results in a non-reduced sentence. Formally, it can 
be proved that there is no candidate for a successor of p in a p0-chain from p to 
q by the same technique as at Lemma 9. [] 

The problems of incompleteness are illustrated in Fig. 1. Non-reduced sen- 
tences are represented by filled circles~ reduced sentences by open circles. Ovals 
represent equivalence classes under subsumption, and arrows represent a single 
p0-application. 
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Fig. 1. Equivalence classes and refinements, a reduced sentence that can only be 
reached from non-reduced sentences 

Shapiro's intention was that for every pair of reduced sentences p and q, 
satisfying p _C q or pO = q where 0 is non-decreasing, there is a chain of arrows 
from p to q where only reduced sentences are visited. Problems with p0 arise 
when a reduced sentence (open circle) like q is only reachable from non-reduced 
sentences (filled circles) like Pl and r l .  

Consider the following sentences: 

p : {P(x,  y), P(y,  z), P(z ,  x)} 
pl= {P(u, w), P(w, v), P(x, y), P(y, z), P(z, x)} 

= { p ( v ,  v)} 
rl~--- {P(v, w), P(w, v), P(x, y), P(y, z)} 
q = v), y), P(y, z), P(z, 

Both p and r properly subsume q, P1 "~ P and r l  ~ r. If we apply the substitution 
{u/v} to Pl we get q. q can also be obtained from rl by adding P(z, x), a most 
general literal w.r.t, rl  such that  r l  U {P(z,  x)} is reduced. 

It is proved in the working report [12] that  there is no reduced sentence (open 
circle) such that  q can be derived from it by p0. Therefore, this sentence q is a 
counterexample of Shapiro's Theorem 5.14 which states that  there is a p0-chain 
from the empty sentence [] to every reduced sentence. 

3.4 T h e  I n c o r r e c t n e s s  o f  Us ing  rsize 

Shapiro has defined a refinement as follows: 'We say that  q is a refinement of 
p if p implies q and size(q) > size(p)'. Although any complexity measure size 
that satisfies the requirement that  for any fixed value k there are finitely many 
sentences of size _< k is allowed, in his concrete refinement operators Reynolds' [9] 
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complexity measure (that we denote by rsize) for atoms is used. This complexity 
measure can be generalized to sentences by defining 

rsize(p) = the number of symbol occurrences in p minus the number of dis- 
tinct variables in p. 

A nice property of Reynolds'  rsize is that  if an atomic sentence p subsumes an 
atomic sentence q (q = p0 for some substitution 0), then p properly subsumes q 
iff rsize(q) > rsize(p). The idea behind Shapiro's refinement operators is also to 
find properly subsumed sentences. If a sentence p properly subsumes a sentence 
q, he intends q to be reachable from p by a chain of refinements found by a 
refinement operator. Since size can only return integer values and refinements 
are required to be of strictly larger size, if size(q) - size(p) = 1 then the chain of 
refinements from p to q is guaranteed not to exceed length I. As we know, for 
any sentence p, for example {P(x)},  we can find an infinite chain of refinements, 
{P( f (x ) ) } ,  { P ( f ( f ( x ) ) ) } , . . . .  If, however, only sentences of size < k are allowed, 
no chain can exceed length k. 

Shapiro's refinement operator Pl is defined for atomic sentences by p01 and p0 2. 
In the atomic case, increasing rsize coincides with proper specialization and vice 
versa. Also, there are only finitely many atoms of rsize < k. Therefore, restricting 
the Search of refinements to atomic sentences of rsize < k and restricting to 
refinements of increasing rsize, all atomic sentences of rsize < k can be found by 
pl. 

When we study Shapiro's refinement operator p0, some problems arise with 
the use of Reynolds'  rsize and subsumption as ordering. 

Consider the following sentences: 

p = {P(x ,  y), P(y,  x)}, rsize(p) = 4 
ql -= {P(a, y), P(y,  a)}, r s i ze (q l ) :  5 
q2= {P(x ,  x)}, rsize(q~)= 2 

Then 
rsize(p) < rsize(ql) and p subsumes ql (pO = ql for 0 = {x/a})  
rsize(p) > rsize(q2) and p subsumes q2 (pO = q2 for 0 = {y/x})  

Clearly, there is no direct relationship between subsumption and rsize. 
To solve this problem, Shapiro restricts to so-called non-decreasing substi- 

tutions (the number of literals is not allowed to decrease). By this constraint, 
every sentence q found by applying the refinement operator P0 to p satisfies 
rsize(p) < rsize(q). However, although p properly subsumes q2, in this approach 
it is no longer possible to construct a chain of refinements from p to q2 because 
rsize(p) > rsize(q). This also leads to incompleteness. 

In Sect. 4.2 we will introduce a new complexity measure called newsize that  
avoids these problems. 

4 A N e w  Ref inement  Operator 

When we define an equivalence relation on a set, it is usually required that 
the equivalence relation is compatible with the important  operations on this 
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set, i.e., operations on different members  of the same equivalence class yield 
equivalent results. Unfortunately, this is not true for the equivalence relation 
defined by subsumption.  Two subsumption equivalent sentences may  not be 
equivalent after substitution. Therefore, if substi tution is one of the operations, 
it is not enough to consider only the reduced representative of an equivalence 
class. This is an impor tan t  reason why p0 is not complete. Also, subsumption 
is not compatible with rsize, equivalent sentences may  have a different rsize. 
Allowing non-decreasing subst i tu t ions  only, guarantees tha t  resulting sentences 
have a strictly larger rsize. However, if such a sentence is not reduced it will not 
be accepted. Even if reduction after a non-decresing substi tut ion is allowed, its 
reduced equivalent can have a strictly smaller rsize and will not be regarded as 
a refinement. 

In this section we will define a new refinement operator p~ which is complete 
for the set of all reduced sentences in L:. Although we will define a new complexity 
measure in Sect. 4.2, we are not going to use it explicitly in Sect. 4.1 when we 
define Pr. 

4.1 A N e w  Ref inement  Operator  for R e d u c e d  Sentences  

Before defining pr, we revisit the problems and difficulties of Shapiro's  P0. For 
every two reduced sentences p and q such that  p properly subsumes q, there 
should be pr-chain from p to q. 

o Consider the following two reduced sentences: 

p = {P(x),   Q(x, a)} 
q = {P(x) , -~Q(x,  a), -,Q(y, z), ~Q(z, y)} 

Here, p properly subsumes q since p C q. In L e m m a  10 we have shown that  there 
is no sentence r such that  r E p0 (P) and r ~- q. Adding to p one of the literals 
in q - p results in a non-reduced sentence equivalent to p. Since q should be 
derivable f rom p, this suggests that  sometimes more than one literal has to be 
added in one refinement step. 

o Next, consider the following two reduced sentences: 

p = {P(~,  Y), P(Y, x)} 
q -= {P(x ,x ) )  

Now, p properly subsumes q since pO = q for 0 = {y/x}. Since ]Pl > lq], we must  
allow decreasing substitutions. 

In Sect. 2.2 we have presented an algorithm that  generates all sentences pl 
with less than or equal to m literals that  are equivalent to a given (reduced) 
sentence p. In the definition ofpr  (p~ and pr 2) we will use eq(p) to denote the set 
of all such p ' s .  Note that  every sentence p~ # p in this set satisfies p'  = p U r for 
some set of literals r. Since Ir] can be larger than 1, we can use pt to solve the 
first problem presented above. 

In one of the refinement steps of our new refinement operator (p3), only one 
literal is added. For example, i f p  = {P(x, y)}, then ~P(u, v), Q(u) and ~Q(u) 
can be added to p. We first give a l emma  to illustrate its use. 
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L e m m a  11. Let p be a sentence, and let L be a most general literal with respect 
to p, i.e., L has only distinct variables as arguments that do not occur in p. Then 
the following two conditions are equivalent: 

1. p properly subsumes q = p U {L} 
2. For any literal M in p, L differs from M in either predicate name or sign. 

Proof. 1 ~ 2: Assume tha t  2 does not  hold. Then  there is an M in p such tha t  
M and L have the same predicate  n a m e  and sign. Let 0 be defined on variables 
of  L only, such tha t  LO = M.  Then  qO = (p U {L})0 = p. This means  tha t  q also 
subsumes p. Therefore,  p ~ q. 

2 : a  1: p C q, so clearly p subsumes q. Assume tha t  also q subsumes p, then 
for some O, qO C_ p. But  then also LO E p, and LO and L must  have the same 
predicate name  and sign. [] 

It  is easy to verify tha t ,  if p is reduced and L satisfies the condit ions of  
L e m m a  11, then q = p U  {L} is also reduced. 

D e f i n i t i o n l 2 .  Let p be a reduced sentence. Then  q E Pr(P) if q is reduced and 
one of  the following condit ions holds: 

prl: p ~ q and there are p'  E eq(p) and q' E eq(q) such tha t  q' = p'O, 
where 0 = i x~y}  and bo th  z and y occur in p~. 

pr2: p ~- q and there are p '  E eq(p) and q' E eq(q) such tha t  q' = p'O, 
where 0 = { x / f ( y l , . . . ,  y,~)}, f is an n-place funct ion symbol ,  z occurs 
in p~, and all yi 's  are dist inct  variables not  occurr ing in pC 

pr3: q = p U {L}, where L is a mos t  general literal such tha t  for every 
literal M E p, L differs f rom M in either predicate name  or sign. 

T h e o r e m  13. Let p and q be reduced sentences. I f  p ~- q, then there is a pr-chain 
from p to q. 

L e m m a  14. Let p, q E s be two reduced sentences such that p properly subsumes 
q and let p' E eq(p), q' E eq(q) satisfy p'O = q'. Then there is a r E fir(P) such 
that r subsumes q. 

Proof. Let p~ = P 0 , P l , . . . , P ,  = q~ be a chain of  sentences such tha t  Pi = 
p i -10 i -1 ,  0 < i < n, where every 0i is a subst i tu t ion as defined in pl or p~. 
Reynolds  [9, p roof  of  Theorem 4] has shown how such a chain of  subst i tu t ions  
can be constructed.  Let Pk be the first Pi tha t  is not  equivalent to p. Since p ~ q 
such a Pk exists. I f  we let r be the reduced equivalent o fpk ,  then Pk-1 E eq(p), 
Pk : Pk-lOk-1 and r E fir(P). Also, since r subsumes pk, PkOk �9 "" On-1 -~ Pn = ql, 
and qt ~ q, r subsumes q. [] 

The  following example  illustrates the p roof  of L e m m a  14. 
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Example 7. Let p = {P(a,  w), P(x ,  b), P(c, y), P(z,  d)} and 
q = {P(a,  b), P(c, b), P(c, d), P(a, d)} as in the first example  of  Sect. 3.3. If  p '  = 
p and q' = q then p'O = q' for 0 = { w / b , x / c , y / d , z / a } .  0 can be split in 

O0 --" {w/b} ,O1 -~- { x / c ) } , 0 2  .:- { y / d }  and 03 = {z /a} .  

po = pl = p 
pl = poOo = {P(a ,  b), P(x ,  b), P(c, y), P(Z, d)} 

Pl is not  equivalent to p. The  reduced equivalent r of  Pl is 

r = {P(a,  b), P(c, y), P(z ,  d)}, 

and r is a member  of  Pr(P) tha t  subsumes q. 

L e m m a  15. Let p, q E s be two reduced sentences such that p properly subsumes 
q and p C q. Then there is a refinement r E Pr(P) such that r subsumes q. 

Proof. Let s be a max ima l  subset of q - p such tha t  p U s N p. T h a t  means,  for 
every literal M in (q - p )  - s ,  p proper ly  subsumes p U s U {M}.  Let L be a mos t  
general literal with respect to p U s such tha t  LO = M for one of those literals. 

I f p U s U  {L} is not  equivalent to p u s ,  then, by L e m m a  11, L differs f rom all 
literals in p U s in either predicate name  or sign. L also has this p roper ty  with 
respect to p. Let r = p U {n}.  Then  r E p3(p), and clearly r subsumes q. 

Otherwise, p '  = p U s U {L} and  q' = p U s U {M} satisfies p'O = q'. Using 
L e m m a  14 a sentence r can be found such tha t  r E Pr(P) and r subsumes ql. 
Since q~ C q, r also subsumes q. [] 

The  following examples i l lustrate the p roof  of  L e m m a  15. 

Example 8. Let p = {P(x )}  and q = {P(x) , -~Q(a ,  x)}. 

The  only subset s o f q - p  such tha t  pUs  ,.~ p is {}, the empty  set. M = -~Q(a, x) 
is the only literal in ( q - p ) - s .  L = -~Q(y, z) is mos t  general w.r.t,  p and LO = M 
for 0 = {y/a,  z / x } .  p U {L} is reduced and 

= {p(x) ,   Q(y, z)} 

satisfies r E Pr(P) and r subsumes q. 

Example 9. Let p = { P ( x ) , - , Q ( x ,  a)} and 
q = {P(x),   Q(x, a),  Q(u, z),- ,Q(z, y)}. 
s = {-~Q(y, z)} is a max imal  subset of  q - p such tha t  p U s ,-, p. Taking M = 
-~Q(z, y) we get L = -,Q(u, v) as a mos t  general literal with respect to p U s. 
p '  = p U s U {L} is equivalent to p and p '  properly subsumes q' = p U s U {M}.  
By L e m m a  14 we can find a refinement r o f p  tha t  subsumes q. 

In L e m m a  14 we have p '  = {P(x) , -~Q(x ,  a),-,Q(y, z ) , - ,Q(u ,  v)}, 
q' = {P(x) , - - ,Q(x,  a), -,Q(y, z),--,Q(z, y)} and O = {u /z ,  v /y} .  0 can be split in 
Oo = {u / z }  and 01 = {v/y} .  p'Oo is not  equivalent to p '  so 

r = {P(x) , -~Q(x ,  a ) , - ,Q(y ,  z) , - ,Q(z,  v)} 

satisfies r E pl (p) and r subsumes q. 
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Proof of Theorem 13. For every pair of reduced sentences p and q such that  p 
properly subsumes q, pO C q for some 0, let s be the reduced equivalent of pO. 

If  p properly subsumes s then p and s satisfy the conditions of L e m m a  14. 
Otherwise, s E eq(p), and s and q satisfy the conditions of L e m m a  15. 

In both  cases the first element r of a pr-chain f rom p to q can be found. We 
can complete a pr-chain f rom p to q by repeatedly finding the first element in a 
chain f rom r to q. In L e m m a  18 in the next subsection we prove that  this chain 
is of finite length. [] 

4.2 A N e w  C o m p l e x i t y  M e a s u r e  

Shapiro has defined tha t  q is a refinement o f p  i fp  implies q and size(p) < size(q). 
If  we consider a toms and rsize, then q is a refinement of p is equivalent to p 
properly subsumes q. Suppose that  rsize can indeed be generalized to sentences 
or that  there is another kind of size which satisfies this property, then the use 
of size has the following advantages: it can restrict the search space of sentences 
by discarding sentences of size> k; it prohibits infinite chains of refinements, 
by demanding size to increase no cycles will occur; also, it can be used to ease 
proofs of completeness and finiteness. 

However, in concrete examples, Shapiro uses rsize. In Sect. 3, we have shown 
that  i f p  subsumes q, then rsize(p) can be smaller as well as larger than rsize(q). 
In the latter situation, q is not even regarded as a refinement of p, so there surely 
is no chain f rom p to q. Shapiro uses non-decreasing substitutions to prevent rsize 
to decrease. An argument  in favor of this approach is that  if pO = q then there is 
always a subset p~ ofp  such tha t  p~O = q and 0 is non-decreasing w.r.t, p~. Since p~ 
also subsumes q, and assuming that  p~ can be derived f rom the empty  sentence, 
q can still be derivable via p~. This gives two problems. Firstly, as we have shown 
before, non-decreasing substi tutions are not compatible  with reduced sentences. 
Secondly, suppose that  we already have some background information about  the 
theory to be inferred, say that  we know that  a given sentence p subsumes a 
sentence q that  has to be found. Then it is much more efficient to search for a 
chain f rom p to q than f rom the empty  sentence to q. Wha t  we want is strong 
completeness, and non-decreasing substitutions do not fit in this approach. 

All complications seem to be caused by adapt ing the refinement operator 
to the definition of size. If  we know that  we are looking for properly subsumed 
sentences, why don ' t  we define refinement concretely by proper subsumption? 
This prevents cycles to occur. Size is then only needed to restrict the search 
space to a finite number  of sentences. 

D e f i n i t i o n  16. Given a sentence p E ~2: 
newsize(p) = (maxsize(p), IPl), where 
maxsize(p) = max{rsize(L)[L E p} and IPl is the number  of literals in p. 

It  is easy to prove that  if p subsumes q then maxsize(p) < maxsize(q), f rom 
this it follows tha t  if p ~ q then maxsize(p) = maxsize(q). Also, if maxsize(p) > 
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maxsize(q) then p cannot subsume q. Contrary to rsize, maxsize has a natural 
relationship with subsumption. 

Since the number of literals of rsize < k is finite, the number of sentences 
satisfying newsize(p) < (k, m) (maxsize(p)- < k and Ipl < m ) i s  also finite. 

We now redefine the notions of refinement and refinement operator in the 
context of subsumption. 

D e f i n i t i o n  17. A sentence q is called a refinement of a sentence p iff p properly 
subsumes q. A refinement operator is a mapping from sentences to a subset of 
their refinements, such that  for any p E L: and any k, m > 0 the set of all 
p(p)(k, m), that  is the set p(p) restricted to sentences q such that  newsize(q) < 
(k, m), is computable. 

In this definition 'computabil i ty '  is guaranteed if every sentence that is in- 
volved to compute p(p) satisfies newsize < (k, m). We should add this condition 
to the definition of/9r (i.e., p, q, p' and q' have a newsize < (k, m)). This also 
restricts the sentences to be generated by the inverse reduction algorithm to sen- 
tences with less than or equal to rn literals. Notice that  if p properly subsumes 
q and both p and q satisfy newsize < (k, m), then every related sentence to find 
r in Lemma 14 and 15 satisfies newsize < (k, m). 

Since every element in a chain of refinements properly subsumes its successor 
and subsumption is transitive, a chain cannot contain cycles. 

These observations together with the following lemma imply that p~ is a 
refinement operator, complete for reduced sentences. 

L e m m a  18. Let po, pl , P2 . . . be a pr-chain, where newsize(pi) <_ ( k, m) for every 
Pi. Then this chain is of finite length. 

Proof. There are finitely many sentences such that newsize(p ) < (k, m), so there 
are finitely many different sentences in every pr-chain. Since for every two redu- 
ced sentences p, q E ~ such that  q E Pr(P), P ~- q, no sentence can occur more 
than once in a pr-chain. [] 

The properties of newsize and its strong relation with subsumption as descri- 
bed above, are a motivation for adopting it as a complexity measure to restrict 
the search space of refinements. 

Using these new definitions, Pr is a refinement operator and it behaves like 
Shapiro thought P0 would do, it is complete for reduced sentences. 

5 C o m p a r i s o n  w i t h  L a i r d s '  tOL 

Laird [2] has also defined a refinement operator, pL- He uses a different notation 
to define his refinement operator. Instead of sentences C +-- D where C and 
D are sets of atoms, Laird considers clauses of a language/ :L where repetition 
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of literals is allowed, substi tutions are never decreasing, and also non-reduced 
clauses are allowed. The price we have to pay for this is the presence of many  
equivalent hypotheses in the search space. 

D e f i n i t i o n 1 9 .  [2] Let p = C +-- D be a clause in the language s Then 
q E PL(P) when exactly one of the following holds: 

1. q = pO, where 0 = {x/y} and bo th  variables x and y occur in p. 
2. q = pO, where 0 = {x/ t}  and t is a most  general term, i.e., all variables in t 

are distinct and do not occur in p. 
3. q = C V L +-- D, where L is a most  general a tom.  
4. q = C e- D A L, where L is a most  general a tom. 

In [11], Shapiro has included the Prolog-source of another general refinement 
operator that  is similar to Laird 's  PL. Like Laird's,  this operator does not restrict 
the search space of hypotheses to reduced sentences (clauses). 

Laird does not give a proof of completeness of his version of P0, instead he 
refers to the proof of Shapiro's  Theorem 5.14. Moreover, Laird does not mention 
the difference between his and Shapiro's  operator.  In the working report  [12] a 
proof of the completeness of PL can be found. 

Let ~L be a language that  contains one constant a, one 1-place function f ,  
and one 2-place predicate P.  Suppose at some moment ,  P(a, a) +- is a clause tha t  
has to be refined. The set of one-step refinements will contain P(a, a)VP(x, y) +-, 
equivalent to P(a, a) +--. All one-step refinements of this clause are P(a, a) V 
P(x, x) +-, P(a~ a)V P(a, y) ~--, P(a, a)V P(x, a) 4-, P(a, a)V P(x, y)V P(v, w) +-, 
P(a, a) V P( f (z) ,  y) t--, P(a, a) V P(x, f(z) ) +-- and P(a, a) V P(x, y) +-- P(v, w). 
The first four of these seven refinements are all equivalent to P(a, a) +-. In 
the next refinement steps this number  will increase even faster. In fact we have 
a gigantic search space which contains a lot of equivalent clauses. All these 
(equivalent) clauses are regarded as different, all are kept in memory,  and are 
subjected to refinement separately. 

Laird has pointed out that  in an implementa t ion of pL, variants of clauses can 
be treated as identical, and one can avoid generating variants of the same clause 
in comput ing PL(P). In this way repeated literals and sentences that  are equal 
up to renaming variables are prohibited. None of the sentences in our example 
would be avoided in this way. 

In our approach, only properly subsumed reduced sentences are refinements. 
Of every equivalence class at most  one representative is refined. When we refine 
a reduced sentence, inverse reduction is used. The t ime-complexi ty of inverse re- 
duction, to generate equivalent sentences that  are refined, is not very attractive.  
These sentences, however, can be thrown away immediate ly  after refinement. In 
Lairds '  approach these non-reduced equivalent sentences will also be generated 
when application of PL results in non-reduced sentences. They will be kept in 
memory  seperately until they are refined. Since only one sentence is refined at 
a time, our memory  requirements are much smaller Lairds' .  We therefore think, 
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that with 'interesting problems', i.e., theories with a high complexity (measure)! 
the extra time needed to compute refinements can be compensated for by the 
much smaller memory requirements since every equivalence class under sub- 
sumption has only one representative. This is subject of future research. 

6 R e f i n e m e n t  i n  a W i d e r  F r a m e w o r k  

In this section we will briefly introduce the connections between Shapiro's mo- 
del inference and inverse resolution. It is said that  model inference and inverse 
resolution reach the same destination from opposite directions: The first uses 
specialization, the second generalization. First we will invert the specialization 
operator defined in this paper to obtain a generalization operator, then we will 
relate it to inverse resolution and model inference using generalization. 

6.1 G e n e r a l i z a t i o n  O p e r a t o r s  

Our refinement operator Pr can easily be inverted to a generalization operator 
5r. Given a reduced sentence q, a reduced sentence p E 5r(q) if q E pr(p). 

In [3] Ling has described so-called abstraction operators for atoms and Horn 
clauses. These operators are similar to the inverted versions of Shapiro's pl and 
p2. They are used in a system called SIM which is roughly a system that  works 
like Shapiro's MIS the other way around. Starting with some positive examples 
as hypotheses, generalizations are found by applying an abstraction operator 
to hypotheses if the hypotheses are too weak. An advantage of this specific to 
general approach over Shapiro's general to specific approach is that  in SIM the 
positive examples play a more important  role in determining the target theory. 

5~ can be viewed as a theoretically interesting generalization operator for the 
domain of reduced first order sentences, for example in a system like MIS. 

6.2 I n v e r s e  R e s o l u t i o n  

Given a logic program, we can use it to derive its logical consequences by using 
resolution. To reverse this process, we ask ourselves the following question: Given 
some positive examples that  cannot be derived from the given program, how can 
we extend this program so that  the new examples can be derived from it? 

One possible answer is using Ling's sytem SIM, as described in the last sub- 
section. Another approach is inverse resolution. In inverse resolution operators 
are used that  invert one or more resolution steps. One of these operators is the 
so-called V-operator [5]: given two sentences p and r, a V-operator finds different 
sentences q such that  r is a resolvent (or instance of a resolvent) of p and q. 

For example, let s be a language that  contains the predicate even, a constant 
symbol 0, and a function s (successor). Given the sentences 

p = {even(O)} ~ ,  and 
= 4--, 
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a V-operator should be able to derive 

q = { e v e n ( s ( s ( x ) ) ) }  +-- { e v e n ( x ) } .  

In general there are many solutions for q. These depend on many choices. Some 
of the choices are: which literal L1 in p is resolved with a literal L2 in q; and what 
are the substitutions 01 and 0~ 1 such that  L2 = L1010~ 1. However, Muggleton 
[4] has shown that  for every choice of L1 and 01 there  is a unique least general 
solution q*. He notes that  every solution q subsumes q*. In order to determine 
(all or some) solutions q when q* is found, 5r, the inverse of Pr, might prove 
useful. In the example above, 5~ could be used to derive q from the most specific 
solution 

q* = {even(s (s (O)) )}  +- {even(0)}. 

For more detail on most specific V-operators we refer to [4]. 

6.3 Mode l  Inference and General izat ion 

Shapiro's Model Inference System is concerned with finding a theory that  is 
consistent with the given examples. Starting from the most general theory, a 
refinement operator is used to replace too strong hypotheses by logically weaker 
ones. This process can also be reversed. We do not know any learning system 
that uses generalization operators and restricts the search space to reduced sen- 
tences. We are thinking of a MIS- (or SIM-)like system that  works with reduced 
sentences only. Starting with positive examples as hypothese, a generalization 
operator like 5r is used to generalize too weak hypotheses like in Ling's MIS [3]. 

When the target theory contains recursive predicates or when auxiliary pre- 
dicates occur in it, literals have to be added to hypotheses. We think that  a 
V-operator is very useful for this part  of the system. Guided by the positive 
examples and the predicates in the background theory, only the least general 
solutions of this V-operator will be accepted as new hypotheses. Too weak solu- 
tions can be generalized by applying 5F" The formulation of an inductive inference 
algorithm that  operates in this way is a subject of future research. 

7 C o n c l u s i o n s  

In this article we showed by concrete examples that  P0 is not complete for reduced 
sentences. The reasons behind this incompleteness were given by analyzing the 
special properties of subsumption and a complexity measure size. We noticed 
that  it is most important  that  refinements of a sentence are properly subsumed 
by it. Size is used only to limit the number of refinements. Therefore, we redefined 
the notion of a refinement operator. Also, we defined a new refinement operator 
p~, complete for reduced sentences, and a new complexity measure to limit the 
search space of refinements. In the end, we related our new refinement operator to 
generalization operators such as ~r and the V-operator used in inverse resolution. 
In the future, we hope to use these operators to solve the model inference problem 
by generalization. 
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