
Chapter 3:

Position Papers

P r e d i c a t e I n v e n t i o n i n I L P - a n O v e r v i e w

Irene Stahl*

Fakultgt Infozmatik, Universitgt Stuttgart, Breitwiesenstr. 20-22,
D-7000 Stuttgart S0

Abstract. Inductive Logic Programming (ILP) is a subfidd of machine
learning dealing with inductive inference in a first order Horn clanse
fxamework. A problem in ILP is how to extend the hypotheses language
in the case that the vocabulary given initially is insufficient. One way to
adapt the vocabulary is to introduce new predicates.
In this paper, we give an overview of different approaches to predicate in-
vention in ILP. We discuss theoretical results concerning the introduction
of new predicates, and ILP-systems capable of inventing predicates.

1 I n t r o d u c t i o n

Inductive inference aims to construct a theory covering given facts. More for-
mally, given a set of positive examples E ~, a set of negative examples E O and
a theory T, the system is to find a theory T ~ such that T ~ F- E ~ and T t ~/E O.
That is, T ~ has to be consistent with the examples.

Inductive Logic Programming (ILP) [Mug92] is inductive inference in a re-
stricted first order logic framework: both the given theory T and the target the-
ory T ~ are restricted to Horn clause theories. Using that framework as opposed
to propositional calculi, ILP belongs to the most powerful inductive inference
paradigms.

In order to restrict the generally infinite search space for T ~, ILP systems
impose a bias on the hypotheses. This bias includes the vocabulary for the hy-
potheses, i.e. the available predicate, function and constant symbols. If the search
space does not include a hypothesis that is consistent with the examples, an ILP
system should shift its bias. This can be done by introducing new predicates in
the hypotheses language such that the extended vocabulary is sufficient for the
induction task.

This operation is referred to as Predicate Invention. The paper aims to discuss
theoretical and practical aspects of predicate invention in ILP.

2 T w o T h e o r e t i c a l R e s u l t s

Inductive inference is based on examples true or false in an intended model. The
system is expected to produce a finite set of formulas in a language s explaining
the positive and excluding the negative examples.

* This work has been supported by the European Community ESPRIT project ILP
(Inductive Logic Programming).

314

More formally, let A4 be the intended model and s the language of ground
facts over the predicate, function and constant symbols in .A4. A complete pre-
sentation of A4 consists of

E~ = { ~ E s [./14 ~ r } and E ~ = { ~ E s t r ~ E~}.
For the following proofs, we assume E ~ to be recursively enumerable.

The positive and negative example sets inductive inference systems are sup-
plied with are - in practice finite - subsets of E ~ and E O. However, for finite
example sets there is no need to invent new predicates, as the positive example
set can always be used as correct result of inductive inference. Therefore, we
consider the limit case that a complete, possibly infinite presentation of .~4 is
given.

The goal of inductive inference in this setting is to find a finite set of formulas
T in s _D s such that

T}- E ~ A T ~ / E ~
- v r E , - . T ^ (r r E * - . T

The last formula with finite T is exactly the definition of T being a finite
axiomatization of E ~. Therefore, the problem of inductive inference is in the limit
the problem of finding a finite axiomatization for a given model. If the intended
model is not finitely axiomatizable within a language s inductive inference can
not succeed. Furthermore, it is not even decidable whether the set E~ of ground
facts valid in A4 is finitely axiomatizable within the language s

Theorem 1. Given a recursively enumerable set of ground facts E e in a lan-
guage s it is undecidahle whether E ~ is finitely aziomatizable in s _D s

Proof. We omitt the application of Rice's Theorem on the undecidability of non-
trivial index sets [Rie53].

Thus an inductive inference system can not decide whether its vocabulary is
sufficient for axiomatizing the intended model. Only finite, decidable hypotheses
languages s as e.g. CLINT's language series [Rae92] or RDT's rule schemata
[KW91] allow a decision by enumerating all possible hypotheses. If none of them
is consistent with the examples, the intended model is not finitely axiomatizable
within s For infinite or undecidahle languages s as e.g. first order Horn logic, the
insufficiency for axiomatizing the intended model has to be assumed heuristically.

If the hypotheses language s is not sufficient, the inductive inference system
may try to extend s by a new predicate. The introduction of a new predicate is
useful for finding a finite axiomatization, as Kleene proved [Kle52]:

Theorem 2. Any recnrsively enumerable set C of formulas in a first order lan-
guage s is finitely aziomatizable in a first order language s using additional
predicate symbols except from those in s

For our purpose, the set C is the presentation E ~ of the intended model.
Kleene's theorem assures that inductive inference will always succeed provided
the system invents the appropriate new predicates.

The practical application of Kleene's result faces some problems. Though
Kleene's proof of the theorem is constructive, it gives no practicable method
for constructing a finite axiomatization. In the course of his proof Kleene intro-
duces new predicates regardless of whether they are really necessary for finite

315

axiomatizahility. In contrast, inductive inference systems should introduce new
predicates only if they are needed.
This capability involves dealing with the following problems:
1. when to introduce a new predicate. It is undecidable whether a new predicate

is necessary for finitely axiomatizing the intended model.
2. how to induce a definition for the new predicate and what to use as base for

that induction process. The intended model provides no direct information
about the new predicate.

3. how to determine the arity and the argument terms of the new predicate.
In the following, we are going to discuss the two main approaches to predicate
invention, reformulation and demand driven approaches.

3 Reformulation Approaches and Inverse Resolution
Reformulation approaches introduce new intermediate predicates as a reformu-
lation of an already existing theory in order to express it more compact and
concise. This is done without direct reference to the goal of learning a specific
concept.

The introduction of intermediate predicates is a kind of reversal of explana-
tion based learning which deductively replaces intermediate predicates by their
definition. Inverse resolution systems directly explore the idea of inverting deduc-
tive resolution steps. Scheme-driven approaches define new intermediate predi-
cates as combinations of known predicate literals that match one of the schemes
for useful literal combinations given initially.

3.1 I n v e r s e R e s o l u t i o n S y s t e m s
The inverse resolution operator that introduces a new predicate is often called
W-operator or intraconstruction. Given a set of clauses {B1, ..., Bn} it constructs
a set of clauses {CI, ..., C,} and a clause A such that Bi results from resolving
A with Ci on a fixed literal L E A. Since L is resolved away in Bi and nothing
is known about its predicate symbol, a new predicate is invented.

C. A

"q/o,.
B i

The intraconstruction operator we are going to use throughout the following
discussion is the G2-operator [Wir88]. It sets A to lgg({B1,..., B , })U {L}, where
Igg is the least general generalisation [Plo70] of the input clauses and L is a new
predicate. L is negative only if lgg(_~B1, ..., B,}) already contains a positive head
literal. The clauses Ci are set to {L}OA, U (Bi - lgg({Bx,..., Bn})0.4~).

The crucial problems are the arguments of the new predicate literal and the
application criteria for the operator.

C I G O L [MB88] uses a restricted form of G~. The new predicate literal in A
must be negative, i.e. all clauses Bi must have the same head predicate. The
clauses Us are restricted to unit clauses such that the equation simplifies to
c, = {TIOA, .

316

For determining the arguments of the new predicate, the substitutions eA~
are considered. If a substitution for a variable in eA, has no vaffables in common
with substitutions for other variables in eA, it is irrelevant and must not appear
as argument of the new predicate.

The operator is applied whenever it results in a reduction of the size of the
knowledge base.

LF P2 [Wir88] employs the unrestricted G2-operator described above. In con-
trast to CIGOL, argument terms are considered to be relevant for the new pred-
icate if they occur in the remaining as well as in the omitted parts of the Bi.
The arguments of the new predicate L are set to

{ t E args(lgg({B1,.., B~,}))I Vi E {1, .', n}
tOA, E args(Bi - lgg({B1,.., Bn})•A,) }

where args(C) are the argument terms of the literals in clause C. As in CmOL
the operator is triggered by the minimum size of the knowledge base.

I T O U The intraconstruction operator of ITOU [Rou91] applies only to flat-
tened, i.e. function free, Horn clauses. It is a slight modification of G2.

First, the new predicate literM L in A must be negative. Secondly, the op-
erator is applied only to two clauses B1 and B2 such that the new predicate
describes the variation of B1 and B2 relatively to their common generalisation.
The last modification concerns the definition of Ci:

C, = {L'} U (BiOA~ Igg({Bl , . . . ,Bn})) .
Because of the lack of structured terms, the inverse substitution 8 ~ is a variable
renaming and can be simply determined from B~ and A. Similar as in LFP2, the
variables of the new predicate L are defined to

{ z E var(igg({B1, B2})) [zOA, E var(Bl - lgg({B1, B2})OA,) V
ZOA, E var(B~ - lgg(IB1, B~})OA,) }

Intraconstruction in ITOU is triggered by a user request.

R I N C O N [WL89] tries to improve the efficiency of its theory by introducing
intermediate predicates. It restricts G2 to two input clauses Bz and B2. As the
definition of the new predicate is to be conjunctive, it must be the positive head
literal in A. As arguments of the new predicate all variables within Igg({Bz, B2 })
are used.

The process is triggered by an example clause the theory does not explain yet.
RINCON tries intraconstruction with each clause in the background theory and
chases the one that can be used for rewriting the most rules if several possible
reformulations exist.

Baner j i ' s S y s t e m The peculiarity of the intraconstruction operator DREAM
is that the two input clauses B1 and B2 must have an identical head P and a
nonempty set C of common identical body literals. Then, without use of Igg A
is set to (P ~-- C, L) where L is a new predicate literal. As arguments of L, the
most complex terms common to the remaining parts of B1 and B2 are taken. If
L is D(tt , ..., tn) , DREAM produces as definition of D the sentences

D(zz, ..., z ,) * - P /where Pl[xz/t l , . . . , zn/tn] = B, - (P * - C}
Banerji's system revises incrementally a theory based on examples. After

each revision, it tries to apply DREAM on every pair of clauses within the revised
theory.

317

3.2 Scheme-d r iven Systems
Scheme-driven systems define new predicates as combinations of known predicate
literals. In order to restrict the space of possible combinations, they use schemes
describing useful literal combinations at an abstract level. If an instantiation of
a scheme with known predicate literals proved useful during learning, an oracle
is asked to approve it as definition of a new predicate.

C IA [Rae92] is used together with the example driven learner CLINT [Rae92].
It uses higher order schemes for predicate invention.

A higher order scheme S is a Horn clause with existentially quantified pred-
icate variables. A Horn clause c matches S if there exists a substitution ~ for
the predicate variables in S and a substitution p for the variables in S such that
head(S)ep = head(e) and body(S)ep c_ body(c). It matches S partially if only
the second condition holds, i.e. if the head predicate in S remains variable.

Given a positive example, CLINT generates a starting clause. CIA matches
this clause against all schemes available in the data base. If it matches a scheme,
the resulting clause is proposed to the oracle. If it matches only partially a scheme
the oracle is requested to approve or reject the partial clause as a new predicate
definition. In the former case, the oracle names the variable head predicate.

The same method is applied on the generalised starting clause produced by
CLINT. In a last step, all new rules are transformed into schemes to be used
in subsequent learning steps. Thus, the space of new predicate definitions CIA
considers depends on the theory induced so far.

F O C L [SPgl] is an extenstion of Quinlan's FOIL [Quig0]. Both systems induce
Horn clauses from general to specific by successively adding body literals to the
target clauses according to the maximum information gain.

As FOIL adds literals one at a time, it overlooks the possibility that a com-
bination of literals may have a large information gain whereas the single literals
have zero or less gain. To overcome this limitation, FOCL considers combina-
tions of literals restricted by relational cliches. Relational cliches are schemes
that restrict the number of literals in a combination, the predicates used to fill
the single literal positions and the variables the literals should share.

If no literals with positive gain exist to be added to the clause, the instan-
tiation of the relational cliches with maximum gain is added and cached for
later reuse. After the system completed its learning, the cached instantiations
of relational cliches are proposed to the user to be named and adapted in the
background theory.

As in CIA, the new predicates FOCL induces depend strongly on the available
cliches. Directly recursive defined new predicates can not be found.

4 D e m a n d - d r i v e n A p p r o a c h e s

As opposed to reformulation approaches, demand-driven systems try to discover
situations where the given vocabulary is not sufficient for finitely axiomatizing
the intended model. Then, a new predicate is invented. The decision about in-
troducing a new predicate is done heuristically, as an exact decision can not be
done in general.

318

M E N D E L [Lin91] is an inverse resolution system that differs from the refor-
mulating systems mainly in the control of intraconstruetion. Only if the theory
grows beyond a fixed bound, the intraconstruetion operator EXTRACT is applied.
In that ease MENDEL assumes that the current theory is not finitely axiomatiz-
able within the given vocabulary, and introduces ~ new predicate.
EXTRACT is a nondeterministic G2-operator as it sets A instead of the unique

lgg({Bx,..., Bn}) U {L} to g({B1,..., Bn}) U {L}
where g may be may common generalisation of {B1,...,Bn}. Thus, MENDEL
has to cope with an additional nondeterministie choice apart from which clauses
{B1,..., Bn } to use. The arguments of the new predicate literal L are the variables
in Oa~.

The clauses generated for the new predicate L are subject to further gener-
alisation steps. Only if they result in a directly reeursive clause for L, the new
predicate is accepted.

S I E R E S [WO91] starts with the least general generalisation of the examples as
clause head and specialises this clause by successively adding literals to its body
until the output of each example is computed correctly by the clause.

The space of Horn clauses SIERES searches is constrained by argument de-
pendency graphs specifying the number of literals within a clause and the argu-
ment dependencies between them. The arguments of possible body literals are
restricted further by the preference for critical terms, i.e. unused input- or un-
bound output terms. Only if not enough of them exist, uncritical terms or new
variables are used as arguments.

If none of the existing predicates yields a correct extension of the clause,
a new predicate is invented. A minimal selection of critical terms is taken as
arguments such that the resulting clause contains no more critical terms. A
definition of the new predicate is determined by a recursive call of SIERES on
the example set defined by the bindings of the chosen argument terms for all
examples. The criterion for inventing a new predicate is applicable only because
SIERES searches a finite subset of Horn logic as hypotheses space.

There are some restrictions and difficulties with this approach. First, a new
predicate can only be invented at the end of a clause. A second problem is that
sparse examples for the new predicate may cause the induction process to fail. A
more complex problem is that the recursive call of the system on the examples
of the new predicate may not terminate, but lead to an infinite chain of new
predicates.

D B C (Discrimination-Based Constructive Induction) [KNS92b] proceeds simi-
lar to SIERES. An overgeneral clause is completed with a new predicate such that
all negative examples are excluded from being covered. Instead of using critical
terms for determining the arguments of the new predicate, DBC searches for a
minimal relevant variable set that discriminates between positive and negative
examples.

First, all variables of the clause are used as arguments of the new predicate.
Its instantiations according to the examples for the clause constitute its prelim-
inary definition. This definition corrects the overgeneral clause but may contain
irrelevant terms. DBC tests greedily for each variable whether the variable and

319

its instantiations can be omitted from the new predicate and its definition with-
out sacrificing correctness. The resulting reduced new predicate is added to the
overgeneral clause, and its instantiations for the positive and negative examples
of the clause are used as positive and negative examples for the new predicate
in the subsequent induction process.

DBC is used with the top-down heuristically guided learner CHAM [KNS92a].
A new predicate is constructed whenever there are no correct clauses fullfilling
the encoding length restriction [Quig0]. The clauses to be specialized by new
predicates are chosen heuristically among the overgeneral clauses.

The system stops predicate invention when the whole theory violates the
encoding length restriction, or when the instances of the new predicate are the
same as the examples of the clause except for the name of the predicate. Thus,
it avoids heuristically the looping problem of SIgggS.

M O B A L / C L T [Mor91, Wro92] is a knowledge acquisition system that helps
creating a model for an application domain. The domain model of MOBAL con-
sists of function free Horn clauses, where each rule has an attached support set
listing exceptions and examples for the applicability of that rule. An exception
is an instantiation of the rule it must not be applied with, whereas an example
is a successful instantiation.

If a new fact contradicts the latest theory, the knowledge revision module
KRT selects in a first step the rule to be specialised among those responsible for
the inconsistency. In the second step the selected rule is minimally specialised by
adding the wrong instantiation to its exception set. Then reformulation operators
are tried that aim to replace the extensional exception list with an intensional
description.

If a known predicate discriminates the positive examples of the rule from
its exceptions, it is added to the rule definition. Otherwise the concept learning
tool CLT [Wro92] invents a new predicate c for that purpose. As arguments
of the new predicate c a subset of the rule variables is taken. The values of
those variables in the support set yield the positive and negative examples of c.
Based on them, the learning module RDT [KW91] tries to induce an intensional
definition of the new concept c. If RDT succeeds, c is added to the body of
the incorrect rule. Else the search for a definition is postponed until further
exceptions occur. As the grouping of exceptions resembles concept formation,
this approach to predicate invention is called a concept formation approach.

RDT is capable of inducing rules both with c as head and c within the body.
This is important for the evaluation criterion of CLT. A new concept is accepted
if at least two sufficient conditions were found about c, i.e. rules with c as head,
and at least two necessary conditions, i.e. rules with c as only body literal, or
at least one rule that uses c in its body among other literals. The acceptance
criterion demands that the new predicate can he used for rewriting a minimum
number of rules in the knowledge base.

N o n - M o n o t o n i c Learn ing A special case of predicate invention is closed world
specialisation [BM92]. Given a clause covering negative examples, it is specialised
by the negation of a new exception predicate, i.e. negative examples are treated
as exceptions of the rule applicability. As negation by failure is used, all previ-
ously covered examples are still covered.

320

5 C o m p a r i s o n a n d E v a l u a t i o n

5.1 Decis ion Cr i te r ia for I n t roduc ing a N e w P r e d i c a t e

The decision criteria for introducing a new predicate can be classified in demand-
driven and goal-free methods.

Demand-driven approaches decide heuristically on their vocabulary being
insufficient for finitely axiomatizing the intended model. That is, new predicate
invention is triggered whenever the system fails in expressing the target theory
within the given vocabulary. Using a finite hypotheses language as in SIERES, this
may be decided by checking all hypotheses on consistency. For infinite hypotheses
languages, the decision about the fail of the system has to be done heuristically.
MENDEL assumes the vocabulary being insufficient whenever the hypotheses
grows too large. Similarly, DBC uses the encoding length restriction. MOBAL
introduces a new predicate if none of the existing predicates characterizes a rule's
exception set.

Goal-free approaches introduce new predicates without a direct reference to
the goal of learning a specific concept. Nevertheless, due to the constraints sys-
tems impose on new predicates, they are very likely to beuseful for finitely
axiomatizing the intended model either. One constraint used by CIGOL, LFP2
and RINCON is knowledge base compression. Among the possible reformulations
of the knowledge base the one that reduces the size of the theory most is cho-
sen. This is closely connected to MENDEL'S decision criterion and to MOBAL'S
acceptance criterion.

Another goal-free constraint on new predicates is imposed by schemes. If
scheme-driven systems observe a literal combination they assume to be useful
and interesting according to their schemes, they propose it as new predicate
definition to the oracle.

5.2 Eva lua t ion o f the Different Approaches
The evaluation of the different approaches to predicate invention is difficult.
There are only sparse theoretical and empirical results concerning the quality of
the new predicates introduced by the systems. Wrobel [Wro92] and Ling [Lin91]
propose a set of quality dimensions along which the new predicates could be
measured.

Though we were not able to do any experimental tests on the systems we
discussed, in table 1 we try to give an assessment of the systems according to
Wrobels and LinEs quality dimensions:

1. Is the learnability of the desired target concepts improved by means of
predicate invention? For most systems this is - at least possibly - the case. Only
in RINCON it is not improved as it uses new predicates as a mere reformulation
of the theory.

2. Is the system capable of inducing directly recursive defined new predicates?
Only those could be necessary for finite axiomatizability, but need not necessar-
ily be. Non-recursively defined new predicates are eliminable by unfolding and
therefore not necessary. Most systems except RINCON and FOCL allow for induc-
ing recursive new predicates. However, this may require further learning steps.

3. Is the classification accuracy of the resulting axiomatization improved by
the use of new predicates? For inverse resolution and scheme-driven systems it is

321

learn- recursive accuracy! efficiency structure
ability definitions

CIGOL possibly yes ? decreases
LFP2 mssibly yes ? decreases more
ITOU 7ossibly yes ? decreases compact

RINCON ! no no same better theory
Baaerji yes yes ? decreases

CIA possibly yes ? decreases theory size
FOCL yes no same decreases increases

MENDEL yes yes ? decreases
at more compact

SIEP.ES yes yes [east not decreases theory
w o r s e

at
DBC yes yes least not decreases

worse
at

MOBAL possibly yes least not decreases
worse

Table 1. Evaluation

unclear how new predicates affect classification accuracy. The operators them-
selves as pure reformulations have of course no effect. But if the new predicate
definitions are subject to further learning steps, there is the danger of overgen-
eralisation or -specialisation and therefore less accuracy.

4. Does the e~iciency of the resulting axiomatization improve or decrease?
Usually, emciency should decrease as additional resolution steps are necessary
to apply the new predicates. 0n ly RINCON produces a more efficient theory.
However, this is mostly due to the fact that RINCON'S rules are organized in a
kind of Rete-net.

5. Does structure and understandability of the resulting knowledge base im-
prove? The problem is how to measure structure or understandability. Most
systems mm to produce smaller, more compact theories. Only for CIA and FOCL
new predicates increase the theory size as they are not used to rewrite the theory.

Table 1 shows only weak results about the properties of predicate invention
operators. This may be due to the fact that. some properties, e.g. learnability, are
undecidable, whereas others, e.g. knowledge base understandability, can not be
properly quantified. Additionally, the experimental evaluation of systems per-
forming predicate invention in ILP is almost lacking.

6 Conclusions

In this paper, we have discussed different approaches to predicate invention in
ILP. There are only few systems able to invent new predicates and only weak or
no results about the properties of their operators. The crucial problems concern-
ing the introduction of new predicates, have not yet been solved satisfactorily.
Nevertheless, the need for predicate invention is undoubted.

322

References

[BM92] Bain, M., Muggleton, S. (1992): Non-Monotonic Learingin S. Muggieton (ed):
Inductive Logic Programming, Academic Press

[Bma92] Bmaerji, R. B. (1992): Learning Theoretical Terms in S. Muggieton (ed): In-
ductive Logic Programming, Academic Press

[KW91] Kietz, J., Wrobel, S. (1991): Controlling the Complexity of Learning in Logic
through Syntactic and Task.Oriented Models in S. Muggleton (ed): Inductive
Logic Programming, Academic Press

[KNS92a] Kijsirikul, B., Numao, M., Shimura, M. (1992): Efficient Learning of Logic
Programs with Non-determinate, Non-dlcriminating Literals in S. Muggleton
(ed): Inductive Logic Programming, Academic Press

[KNS92b] Kijsirikul, B., Numao, M., Shimura, M. (1992): Discrimination.Based Con-
structive Induction of Logic Programs, Proc. of the 10th Nat. Conf. on AI,
San Jose, CA

[Kle52] Kleene, S. C. (1952): Finite Axiomatizability of Theories in the Predicate
Calculus Using Additional Predicate Symbols in S. C. Kleene: Two Papers on
the Predicate Calculus, Memoirs of the American Mathematical Society No.
10, Providence, RI

[Lin91] Ling, C. X. (1991): Inventing Necessary Theoretical Terms in Scientific Dis.
covery and Inductive Logic Programming, Report No. 302, Dept. of Computer
Science, University of Western Ontario, London, Ontario

[Mor91] Morik, K. (1991): Balanced Cooperative Modeling, in R. S. Michalsky, G.
Tecuci (eds): Proc. First Int. Workshop on Multistrategy Learning, 65 - 80

[MB88] Muggleton, S., Buntine, W. (1988): Machine Invention of First-Order Pred-
icates by Inverting Resolution, Proc. of the 5th Int. ML Workshop, Morgan
Kanfman
Muggleton, S. (1992): Inductive Logic Programming, in S. Muggleton (ed):
Inductive Logic Programming, Academic Press
Plotkin, G. D. (1970): A Note on Inductive Generalisation in: B. Meltzer, D.
Mitchie (eds): Machine Intelligence 5, Edinburgh University Press
Quinlan, J. R. (1990): Learning Logical Definitions from Relations, Machine
Learning 5, 239 - 266
De Raedt, L., Bruynooghe, M. (1992): Interactive Concept.Learnlng and Con-
structive Induction by Analogy, Machine Learning 8(2), 107-150
Rice, H. G. (1953): Classes of Recursively Enumerable Sets and their Decision
problems, Trans. AMS 89
Rouveirol, C. (1991): Extensions of Inversion of Resolution Applied to Theory
Completion in S. Muggieton (ed): Inductive Logic Programming, Academic
Press
Silverstein, G., Pazzani, M. J. (1991): Relational Cliches: Constraining Con-
structive Induction During Relational Learning, Proc. MLW 91
Wirth, R. (1988): Learning by Failure to Prove, Proceeding of EWSL 88,
Pitman, 237 - 251
Wirth, R., O'Rorke, P. (1991): Constraints on Predicate Invention in Proc. of
the 8th Int. Workshop on ML, Morgan Kaufmann
Wogulis, J., Langley, P. (1989): Improving Efficiency by Learning Intermediate
Concepts, Proc. of the llth IJCAI, Detroit
Wrobe], S. (1992): Exploiting a Problem.Solving Context to Focus Concept
Formation, to appear in Machine Learning journal

[Mug92]

[Vlo70]

[qui90]

[RAP92]

[Ric53]

[Rou91]

[SP91]

[w~88]

[WO91]

[WVL89]

[Wro92]

