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Abstract.  Inductive Logic Programming (ILP) is a subfidd of machine 
learning dealing with inductive inference in a first order Horn clanse 
fxamework. A problem in ILP is how to extend the hypotheses language 
in the case that the vocabulary given initially is insufficient. One way to 
adapt the vocabulary is to introduce new predicates. 
In this paper, we give an overview of different approaches to predicate in- 
vention in ILP. We discuss theoretical results concerning the introduction 
of new predicates, and ILP-systems capable of inventing predicates. 

1 I n t r o d u c t i o n  

Inductive inference aims to construct a theory covering given facts. More for- 
mally, given a set of positive examples E ~, a set of negative examples E O and 
a theory T, the system is to find a theory T ~ such that T ~ F- E ~ and T t ~/E O. 
That is, T ~ has to be consistent with the examples. 

Inductive Logic Programming (ILP) [Mug92] is inductive inference in a re- 
stricted first order logic framework: both the given theory T and the target the- 
ory T ~ are restricted to Horn clause theories. Using that framework as opposed 
to propositional calculi, ILP belongs to the most powerful inductive inference 
paradigms. 

In order to restrict the generally infinite search space for T ~, ILP systems 
impose a bias on the hypotheses. This bias includes the vocabulary for the hy- 
potheses, i.e. the available predicate, function and constant symbols. If the search 
space does not include a hypothesis that is consistent with the examples, an ILP 
system should shift its bias. This can be done by introducing new predicates in 
the hypotheses language such that the extended vocabulary is sufficient for the 
induction task. 

This operation is referred to as Predicate Invention.  The paper aims to discuss 
theoretical and practical aspects of predicate invention in ILP. 

2 T w o  T h e o r e t i c a l  R e s u l t s  

Inductive inference is based on examples true or false in an intended model. The 
system is expected to produce a finite set of formulas in a language s explaining 
the positive and excluding the negative examples. 

* This work has been supported by the European Community ESPRIT project ILP 
(Inductive Logic Programming). 
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More formally, let A4 be the intended model and s the language of ground 
facts over the predicate, function and constant symbols in .A4. A complete pre- 
sentation of A4 consists of 

E~ = { ~ E s [ ./14 ~ r } and E ~  = { ~ E s t r ~ E~}.  
For the following proofs, we assume E ~ to be recursively enumerable. 

The positive and negative example sets inductive inference systems are sup- 
plied with are - in practice finite - subsets of E ~ and E O. However, for finite 
example sets there is no need to invent new predicates, as the positive example 
set can always be used as correct result of inductive inference. Therefore, we 
consider the limit case that a complete, possibly infinite presentation of .~4 is 
given. 

The goal of inductive inference in this setting is to find a finite set of formulas 
T in s _D s such that 

T}- E ~ A T ~ /  E ~ 
- v r  E ,  - .  T ^ (r r E *  - .  T 

The last formula with finite T is exactly the definition of T being a finite 
axiomatization of E ~. Therefore, the problem of inductive inference is in the limit 
the problem of finding a finite axiomatization for a given model. If the intended 
model is not finitely axiomatizable within a language s inductive inference can 
not succeed. Furthermore, it is not even decidable whether the set E~ of ground 
facts valid in A4 is finitely axiomatizable within the language s 

Theorem 1. Given a recursively enumerable set of ground facts E e in a lan- 
guage s it is undecidahle whether E ~ is finitely aziomatizable in s _D s 

Proof. We omitt the application of Rice's Theorem on the undecidability of non- 
trivial index sets [Rie53]. 

Thus an inductive inference system can not decide whether its vocabulary is 
sufficient for axiomatizing the intended model. Only finite, decidable hypotheses 
languages s as e.g. CLINT's language series [Rae92] or RDT's  rule schemata 
[KW91] allow a decision by enumerating all possible hypotheses. If none of them 
is consistent with the examples, the intended model is not finitely axiomatizable 
within s For infinite or undecidahle languages s as e.g. first order Horn logic, the 
insufficiency for axiomatizing the intended model has to be assumed heuristically. 

If the hypotheses language s is not sufficient, the inductive inference system 
may try to extend s by a new predicate. The introduction of a new predicate is 
useful for finding a finite axiomatization, as Kleene proved [Kle52]: 

Theorem 2. Any recnrsively enumerable set C of formulas in a first order lan- 
guage s is finitely aziomatizable in a first order language s using additional 
predicate symbols except from those in s 

For our purpose, the set C is the presentation E ~ of the intended model. 
Kleene's theorem assures that inductive inference will always succeed provided 
the system invents the appropriate new predicates. 

The practical application of Kleene's result faces some problems. Though 
Kleene's proof of the theorem is constructive, it gives no practicable method 
for constructing a finite axiomatization. In the course of his proof Kleene intro- 
duces new predicates regardless of whether they are really necessary for finite 
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axiomatizahility. In contrast, inductive inference systems should introduce new 
predicates only if they are needed. 
This capability involves dealing with the following problems: 
1. when to introduce a new predicate. It is undecidable whether a new predicate 

is necessary for finitely axiomatizing the intended model. 
2. how to induce a definition for the new predicate and what to use as base for 

that induction process. The intended model provides no direct information 
about the new predicate. 

3. how to determine the arity and the argument terms of the new predicate. 
In the following, we are going to discuss the two main approaches to predicate 
invention, reformulation and demand driven approaches. 

3 Reformulation Approaches and Inverse Resolution 
Reformulation approaches introduce new intermediate predicates as a reformu- 
lation of an already existing theory in order to express it more compact and 
concise. This is done without direct reference to the goal of learning a specific 
concept. 

The introduction of intermediate predicates is a kind of reversal of explana- 
tion based learning which deductively replaces intermediate predicates by their 
definition. Inverse resolution systems directly explore the idea of inverting deduc- 
tive resolution steps. Scheme-driven approaches define new intermediate predi- 
cates as combinations of known predicate literals that match one of the schemes 
for useful literal combinations given initially. 

3.1 I n v e r s e  R e s o l u t i o n  S y s t e m s  
The inverse resolution operator that introduces a new predicate is often called 
W-operator or intraconstruction. Given a set of clauses {B1, ..., Bn} it constructs 
a set of clauses {CI, ..., C,} and a clause A such that Bi results from resolving 
A with Ci on a fixed literal L E A. Since L is resolved away in Bi and nothing 
is known about its predicate symbol, a new predicate is invented. 

C. A 

"q/o,. 
B i 

The intraconstruction operator we are going to use throughout the following 
discussion is the G2-operator [Wir88]. It sets A to lgg({B1,..., B ,  })U {L}, where 
Igg is the least general generalisation [Plo70] of the input clauses and L is a new 
predicate. L is negative only if lgg(_~B1, ..., B,})  already contains a positive head 
literal. The clauses Ci are set to {L}OA, U (Bi - lgg({Bx,..., Bn})0.4~). 

The crucial problems are the arguments of the new predicate literal and the 
application criteria for the operator. 

C I G O L  [MB88] uses a restricted form of G~. The new predicate literal in A 
must be negative, i.e. all clauses Bi must have the same head predicate. The 
clauses Us are restricted to unit clauses such that the equation simplifies to 
c, = {TIOA, .  
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For determining the arguments of the new predicate, the substitutions eA~ 
are considered. If a substitution for a variable in eA, has no vaffables in common 
with substitutions for other variables in eA, it is irrelevant and must not appear 
as argument of the new predicate. 

The operator is applied whenever it results in a reduction of the size of the 
knowledge base. 

LF P2  [Wir88] employs the unrestricted G2-operator described above. In con- 
trast to CIGOL, argument terms are considered to be relevant for the new pred- 
icate if they occur in the remaining as well as in the omitted parts of the Bi. 
The arguments of the new predicate L are set to 

{ t E args(lgg({B1,.., B~,}))I Vi E {1, .', n} 
tOA, E args(Bi - lgg({B1,.., Bn})•A,) } 

where args(C) are the argument terms of the literals in clause C. As in CmOL 
the operator is triggered by the minimum size of the knowledge base. 

I T O U  The intraconstruction operator of ITOU [Rou91] applies only to flat- 
tened, i.e. function free, Horn clauses. It is a slight modification of G2. 

First, the new predicate literM L in A must be negative. Secondly, the op- 
erator is applied only to two clauses B1 and B2 such that the new predicate 
describes the variation of B1 and B2 relatively to their common generalisation. 
The last modification concerns the definition of Ci: 

C, = {L'}  U (BiOA~ Igg({Bl , . . . ,Bn})) .  
Because of the lack of structured terms, the inverse substitution 8 ~  is a variable 
renaming and can be simply determined from B~ and A. Similar as in LFP2, the 
variables of the new predicate L are defined to 

{ z E var(igg({B1, B2})) [ zOA, E var(Bl - lgg({B1, B2})OA,) V 
ZOA, E var(B~ - lgg(IB1, B~})OA,) } 

Intraconstruction in ITOU is triggered by a user request. 

R I N C O N  [WL89] tries to improve the efficiency of its theory by introducing 
intermediate predicates. It restricts G2 to two input clauses Bz and B2. As the 
definition of the new predicate is to be conjunctive, it must be the positive head 
literal in A. As arguments of the new predicate all variables within Igg({Bz, B2 }) 
are used. 

The process is triggered by an example clause the theory does not explain yet. 
RINCON tries intraconstruction with each clause in the background theory and 
chases the one that can be used for rewriting the most rules if several possible 
reformulations exist. 

Baner j i ' s  S y s t e m  The peculiarity of the intraconstruction operator DREAM 
is that the two input clauses B1 and B2 must have an identical head P and a 
nonempty set C of common identical body literals. Then, without use of Igg A 
is set to (P ~-- C, L) where L is a new predicate literal. As arguments of L, the 
most complex terms common to the remaining parts of B1 and B2 are taken. If 
L is D(tt ,  ..., tn) , DREAM produces as definition of D the sentences 

D(zz, ..., z , )  * -  P /where  Pl[xz/t l , . . . ,  zn/tn] = B, - (P  * -  C}  
Banerji's system revises incrementally a theory based on examples. After 

each revision, it tries to apply DREAM on every pair of clauses within the revised 
theory. 
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3.2 Scheme-d r iven  Systems 
Scheme-driven systems define new predicates as combinations of known predicate 
literals. In order to restrict the space of possible combinations, they use schemes 
describing useful literal combinations at an abstract level. If an instantiation of 
a scheme with known predicate literals proved useful during learning, an oracle 
is asked to approve it as definition of a new predicate. 

C IA  [Rae92] is used together with the example driven learner CLINT [Rae92]. 
It uses higher order schemes for predicate invention. 

A higher order scheme S is a Horn clause with existentially quantified pred- 
icate variables. A Horn clause c matches S if there exists a substitution ~ for 
the predicate variables in S and a substitution p for the variables in S such that 
head(S)ep = head(e) and body(S)ep c_ body(c). It matches S partially if only 
the second condition holds, i.e. if the head predicate in S remains variable. 

Given a positive example, CLINT generates a starting clause. CIA matches 
this clause against all schemes available in the data base. If it matches a scheme, 
the resulting clause is proposed to the oracle. If it matches only partially a scheme 
the oracle is requested to approve or reject the partial clause as a new predicate 
definition. In the former case, the oracle names the variable head predicate. 

The same method is applied on the generalised starting clause produced by 
CLINT. In a last step, all new rules are transformed into schemes to be used 
in subsequent learning steps. Thus, the space of new predicate definitions CIA 
considers depends on the theory induced so far. 

F O C L  [SPgl] is an extenstion of Quinlan's FOIL [Quig0]. Both systems induce 
Horn clauses from general to specific by successively adding body literals to the 
target clauses according to the maximum information gain. 

As FOIL adds literals one at a time, it overlooks the possibility that a com- 
bination of literals may have a large information gain whereas the single literals 
have zero or less gain. To overcome this limitation, FOCL considers combina- 
tions of literals restricted by relational cliches. Relational cliches are schemes 
that restrict the number of literals in a combination, the predicates used to fill 
the single literal positions and the variables the literals should share. 

If no literals with positive gain exist to be added to the clause, the instan- 
tiation of the relational cliches with maximum gain is added and cached for 
later reuse. After the system completed its learning, the cached instantiations 
of relational cliches are proposed to the user to be named and adapted in the 
background theory. 

As in CIA, the new predicates FOCL induces depend strongly on the available 
cliches. Directly recursive defined new predicates can not be found. 

4 D e m a n d - d r i v e n  A p p r o a c h e s  

As opposed to reformulation approaches, demand-driven systems try to discover 
situations where the given vocabulary is not sufficient for finitely axiomatizing 
the intended model. Then, a new predicate is invented. The decision about in- 
troducing a new predicate is done heuristically, as an exact decision can not be 
done in general. 
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M E N D E L  [Lin91] is an inverse resolution system that differs from the refor- 
mulating systems mainly in the control of intraconstruetion. Only if the theory 
grows beyond a fixed bound, the intraconstruetion operator EXTRACT is applied. 
In that ease MENDEL assumes that the current theory is not finitely axiomatiz- 
able within the given vocabulary, and introduces ~ new predicate. 
EXTRACT is a nondeterministic G2-operator as it sets A instead of the unique 

lgg({Bx,..., Bn}) U {L} to g({B1,..., Bn}) U {L} 
where g may be may common generalisation of {B1,...,Bn}. Thus, MENDEL 
has to cope with an additional nondeterministie choice apart from which clauses 
{B1,..., Bn } to use. The arguments of the new predicate literal L are the variables 
in Oa~. 

The clauses generated for the new predicate L are subject to further gener- 
alisation steps. Only if they result in a directly reeursive clause for L, the new 
predicate is accepted. 

S I E R E S  [WO91] starts with the least general generalisation of the examples as 
clause head and specialises this clause by successively adding literals to its body 
until the output of each example is computed correctly by the clause. 

The space of Horn clauses SIERES searches is constrained by argument de- 
pendency graphs specifying the number of literals within a clause and the argu- 
ment dependencies between them. The arguments of possible body literals are 
restricted further by the preference for critical terms, i.e. unused input- or un- 
bound output terms. Only if not enough of them exist, uncritical terms or new 
variables are used as arguments. 

If none of the existing predicates yields a correct extension of the clause, 
a new predicate is invented. A minimal selection of critical terms is taken as 
arguments such that the resulting clause contains no more critical terms. A 
definition of the new predicate is determined by a recursive call of SIERES on 
the example set defined by the bindings of the chosen argument terms for all 
examples. The criterion for inventing a new predicate is applicable only because 
SIERES searches a finite subset of Horn logic as hypotheses space. 

There are some restrictions and difficulties with this approach. First, a new 
predicate can only be invented at the end of a clause. A second problem is that 
sparse examples for the new predicate may cause the induction process to fail. A 
more complex problem is that the recursive call of the system on the examples 
of the new predicate may not terminate, but lead to an infinite chain of new 
predicates. 

D B C  (Discrimination-Based Constructive Induction) [KNS92b] proceeds simi- 
lar to SIERES. An overgeneral clause is completed with a new predicate such that 
all negative examples are excluded from being covered. Instead of using critical 
terms for determining the arguments of the new predicate, DBC searches for a 
minimal relevant variable set that discriminates between positive and negative 
examples. 

First, all variables of the clause are used as arguments of the new predicate. 
Its instantiations according to the examples for the clause constitute its prelim- 
inary definition. This definition corrects the overgeneral clause but may contain 
irrelevant terms. DBC tests greedily for each variable whether the variable and 
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its instantiations can be omitted from the new predicate and its definition with- 
out sacrificing correctness. The resulting reduced new predicate is added to the 
overgeneral clause, and its instantiations for the positive and negative examples 
of the clause are used as positive and negative examples for the new predicate 
in the subsequent induction process. 

DBC is used with the top-down heuristically guided learner CHAM [KNS92a]. 
A new predicate is constructed whenever there are no correct clauses fullfilling 
the encoding length restriction [Quig0]. The clauses to be specialized by new 
predicates are chosen heuristically among the overgeneral clauses. 

The system stops predicate invention when the whole theory violates the 
encoding length restriction, or when the instances of the new predicate are the 
same as the examples of the clause except for the name of the predicate. Thus, 
it avoids heuristically the looping problem of SIgggS. 

M O B A L / C L T  [Mor91, Wro92] is a knowledge acquisition system that helps 
creating a model for an application domain. The domain model of MOBAL con- 
sists of function free Horn clauses, where each rule has an attached support set 
listing exceptions and examples for the applicability of that rule. An exception 
is an instantiation of the rule it must not be applied with, whereas an example 
is a successful instantiation. 

If a new fact contradicts the latest theory, the knowledge revision module 
KRT selects in a first step the rule to be specialised among those responsible for 
the inconsistency. In the second step the selected rule is minimally specialised by 
adding the wrong instantiation to its exception set. Then reformulation operators 
are tried that aim to replace the extensional exception list with an intensional 
description. 

If a known predicate discriminates the positive examples of the rule from 
its exceptions, it is added to the rule definition. Otherwise the concept learning 
tool CLT [Wro92] invents a new predicate c for that purpose. As arguments 
of the new predicate c a subset of the rule variables is taken. The values of 
those variables in the support set yield the positive and negative examples of c. 
Based on them, the learning module RDT [KW91] tries to induce an intensional 
definition of the new concept c. If RDT succeeds, c is added to the body of 
the incorrect rule. Else the search for a definition is postponed until further 
exceptions occur. As the grouping of exceptions resembles concept formation, 
this approach to predicate invention is called a concept formation approach. 

RDT is capable of inducing rules both with c as head and c within the body. 
This is important for the evaluation criterion of CLT. A new concept is accepted 
if at least two sufficient conditions were found about c, i.e. rules with c as head, 
and at least two necessary conditions, i.e. rules with c as only body literal, or 
at least one rule that uses c in its body among other literals. The acceptance 
criterion demands that the new predicate can he used for rewriting a minimum 
number of rules in the knowledge base. 

N o n - M o n o t o n i c  Learn ing  A special case of predicate invention is closed world 
specialisation [BM92]. Given a clause covering negative examples, it is specialised 
by the negation of a new exception predicate, i.e. negative examples are treated 
as exceptions of the rule applicability. As negation by failure is used, all previ- 
ously covered examples are still covered. 
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5 C o m p a r i s o n  a n d  E v a l u a t i o n  

5.1 Decis ion  Cr i te r ia  for  I n t roduc ing  a N e w  P r e d i c a t e  

The decision criteria for introducing a new predicate can be classified in demand- 
driven and goal-free methods. 

Demand-driven approaches decide heuristically on their vocabulary being 
insufficient for finitely axiomatizing the intended model. That is, new predicate 
invention is triggered whenever the system fails in expressing the target theory 
within the given vocabulary. Using a finite hypotheses language as in SIERES, this 
may be decided by checking all hypotheses on consistency. For infinite hypotheses 
languages, the decision about the fail of the system has to be done heuristically. 
MENDEL assumes the vocabulary being insufficient whenever the hypotheses 
grows too large. Similarly, DBC uses the encoding length restriction. MOBAL 
introduces a new predicate if none of the existing predicates characterizes a rule's 
exception set. 

Goal-free approaches introduce new predicates without a direct reference to 
the goal of learning a specific concept. Nevertheless, due to the constraints sys- 
tems impose on new predicates, they are very likely to beuseful  for finitely 
axiomatizing the intended model either. One constraint used by CIGOL, LFP2 
and RINCON is knowledge base compression. Among the possible reformulations 
of the knowledge base the one that reduces the size of the theory most is cho- 
sen. This is closely connected to MENDEL'S decision criterion and to MOBAL'S 
acceptance criterion. 

Another goal-free constraint on new predicates is imposed by schemes. If 
scheme-driven systems observe a literal combination they assume to be useful 
and interesting according to their schemes, they propose it as new predicate 
definition to the oracle. 

5.2 Eva lua t ion  o f  the  Different  Approaches  
The evaluation of the different approaches to predicate invention is difficult. 
There are only sparse theoretical and empirical results concerning the quality of 
the new predicates introduced by the systems. Wrobel [Wro92] and Ling [Lin91] 
propose a set of quality dimensions along which the new predicates could be 
measured. 

Though we were not able to do any experimental tests on the systems we 
discussed, in table 1 we try to give an assessment of the systems according to 
Wrobels and LinEs quality dimensions: 

1. Is the learnability of the desired target concepts improved by means of 
predicate invention? For most systems this is - at least possibly - the case. Only 
in RINCON it is not improved as it uses new predicates as a mere reformulation 
of the theory. 

2. Is the system capable of inducing directly recursive defined new predicates? 
Only those could be necessary for finite axiomatizability, but need not necessar- 
ily be. Non-recursively defined new predicates are eliminable by unfolding and 
therefore not necessary. Most systems except RINCON and FOCL allow for induc- 
ing recursive new predicates. However, this may require further learning steps. 

3. Is the classification accuracy of the resulting axiomatization improved by 
the use of new predicates? For inverse resolution and scheme-driven systems it is 
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learn- recursive accuracy! efficiency structure 
ability definitions 

CIGOL possibly yes ? decreases 
LFP2 mssibly yes ? decreases more 
ITOU 7ossibly yes ? decreases compact  

RINCON ! no no same better theory 
Baaerji yes yes ? decreases 

CIA possibly yes ? decreases theory size 
FOCL yes no same decreases increases 

MENDEL yes yes ? decreases 
at more compact 

SIEP.ES yes yes [east not decreases theory 
w o r s e  

at 
DBC yes yes least not decreases 

worse 
at 

MOBAL possibly yes least not decreases 
worse 

Table 1. Evaluation 

unclear how new predicates affect classification accuracy. The operators them- 
selves as pure reformulations have of course no effect. But if the new predicate 
definitions are subject to further learning steps, there is the danger of overgen- 
eralisation or -specialisation and therefore less accuracy. 

4. Does the e~iciency of the resulting axiomatization improve or decrease? 
Usually, emciency should decrease as additional resolution steps are necessary 
to apply the new predicates. 0n ly  RINCON produces a more efficient theory. 
However, this is mostly due to the fact that  RINCON'S rules are organized in a 
kind of Rete-net. 

5. Does structure and understandability of the resulting knowledge base im- 
prove? The problem is how to measure structure or understandability. Most 
systems mm to produce smaller, more compact theories. Only for CIA and FOCL 
new predicates increase the theory size as they are not used to rewrite the theory. 

Table 1 shows only weak results about the properties of predicate invention 
operators. This may be due to the fact that. some properties, e.g. learnability, are 
undecidable, whereas others, e.g. knowledge base understandability, can not be 
properly quantified. Additionally, the experimental evaluation of systems per- 
forming predicate invention in ILP is almost lacking. 

6 Conclusions 

In this paper, we have discussed different approaches to predicate invention in 
ILP. There are only few systems able to invent new predicates and only weak or 
no results about the properties of their operators. The crucial problems concern- 
ing the introduction of new predicates, have not yet been solved satisfactorily. 
Nevertheless, the need for predicate invention is undoubted. 
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