
Functional Inductive Logic
Programming with Queries to the User

F. B e r g a d a n o I a n d D. G u n e t t i 2

1 U n i v e r s i t y of C a t a n i a , v i a A. D o r i a 6 / A ,

95100 C a t a n i a , I t a ly , b e r g a d a n @ m a t h c t . c i n e c a . i t

2 U n i v e r s i t y of T o r i n o , co r so S v i z z e r a 185,

10149 T o r i n o , I t a ly , g u n e t t i @ d i . u n i t o . i t

Abs t rac t

The FILP learning system induces functional logic programs from pos-
itive examples. For every predicate P, the user is asked to provide a mode
(input or output) for each of its argument, and the system assumes that
the mode corresponds to a total function, i.e., for a given input there is one
and only one corresponding output that makes the predicate true. Func-
tionality serves two goals: it restricts the hypothesis space and it allows the
system to ask existential queries to the user. By means of these queries,
missing examples can be added to the ones given initially, and this makes
the learned programs complete and consistent and the system adequate
for learning multiple predicates and recursive clauses in a reliable manner.

1 I n t r o d u c t i o n

Recently there has been a growing interest, within the Machine Learning com-
munity, in the problem of learning logic programs from positive and negative
examples in the form of ground literals. The obtained results should naturally
be communicated and proposed as important tools for Logic Programming and
even for Software Engineering at large. However, this has not yet happened.
The reason is, we think, twofold.

First, learning logic programs is difficult, and systems tend to be slow and
do not always terminate successfully, even when a solution program exists. A
common way to handle this problem consists ill restricting the hypothesis space
by means of strong constraints of various kinds. In this paper we follow the
same idea, and restrict the inductive hypotheses to logic programs that are
functional, i.e. such that each n-ary predicate can be associated to a total
function as follows: m of its arguments are labeled as input, while the remaining
n-m are labeled as output, and for every given sequence of input values, there

I I

Acknowledgement: This work was partially supported by ESPRIT project BRA 6020
on Inductive Logic Programming.

324

is one and only one sequence of output values that makes the predicate true.
Functionality constraints have been used before [9, 7, 6, 3]; in the present paper
we employ them to query the user for missing examples and explicitly address
the problem of consistency and completeness.

Second, the kinds of programs that are learned are usually very simple and
often limited to clauses defining just one predicate. Few systems [8, 2, 5] are
able to learn programs for multiple predicates, while even beginning Prolog
programmers write programs with different clause consequents. This is due,
in part, to the need of learning clauses one at a time and independently of
each other. If we want to learn a program for predicates P and Q, and we
try to construct a clause antecedent for P where Q occurs, then Q must have
been defined by the user, or determined extensionally, by means of all of its
relevant examples. Something similar occurs with recursion, i.e. for the case
when Q=P. We will show in this paper that, as a consequence of the extensional
interpretation of recursion and sub-predicates, systems may be unable to learn
a program, even when an allowed inductive hypothesis that is consistent with
the examples exists. Even worse, it may happen that a program is learned that
computes wrong outputs even for the given examples.

The FILP system, presented here, solves this problem by querying the user
for any example that may be missing, depending on the hypothesis space that
has been defined. The queries that are asked to the user are of the type of
the existential queries of CLINT [5] and MIS [8], because they contain unbound
variables. However, in FILP learning is one-step and example completion is done
in a preprocessing phase.

2 The FILP System

Since FILP learns functional relations, it reallY only needs positive examples.
Negative examples are implicitly assumed to be all the ones having the same
input values as the positive examples but different output values. In the sequel,
by ezample we usually mean positive example, while a and 7 represent generic
conjunctions of literals.

It is well known that in logic programming variables have not a fixed role:
they can act as input or output variables as desired. For example, the predicate
append(X,Y,Z) can be used with mode append(in,in,out) to append two lists, or
with mode append(out,out,in) to split a list in two sublists.
On the other hand, if we want to learn functional logic programs (logic programs
whose input-output behavior is functional) we need to specify a (functional)
mode for every variable of every literal used in the learning task, in order to
employ and learn only functional relations. For example append(in,in,out) would
be a legal way to use append, but append(out,out,in) would not, because it does
not represent a function. On this ground, in our system we ask the user to
provide a functional mode for all predicates, and then we use it for constraining
the allowed clauses as follows:
1) Suppose Q and P have mode Q(in,out) and P(in,out); the literal Q(W,Z) can

325

occur in an intermediate clause P(X,Y) :- ~, Q(W,Z), 7 iff either (a) W = X (i.e.,
the input is bound because it is passed as input in the head of the clause) or (b)
W occurs in a (i.e., it is computed before Q is called) [10];
2) A clause is in an acceptable final form only if the output variables of its h e m
occur in the body, i.e., only if the output is not left unbound.

Moreover, all clauses are required to be function-free. This can be achieved
by means of a flattening procedure [7]. A basic version of FILP without queries
(BFILP) follows the algorithmic scheme of FOIL [4]:

Basic FILP:
For all inductive predicates P do
while examples(P) r 0 do

Generate one clause "P(.Y) :- & '

examples(P) *- examples(P) - covered(.)

Generate one clause:
a ,---- true
while covered(a) r 0 do

if consistent(a) then return(P()~) :- a)
else choose a predicate Q and its arguments Args

such that the functionality constraint .is satisfied
if no such Q is found then backtrack
a ~ a A Q(Args)

Where every predicate Q can be defined by the user (intensionally) by means of
logical rules or (extensionally) simply giving some examples of its input-output
behavior. In particular, clauses can be recursive and, in this case, Q = P, and
its t ruth value can only be determined by the available examples.

Def in i t i on 1: We say that the clause P(X,Y) :- . (X ,Y) extensionally covers
P(a,b) iff a(a,Y) extensionally computes Y = b, where extensional computation
is defined as follows:

�9 a = Q(a,Y) with functional mode Q(in,out). Then Q(a,Y) extensionally
computes Y = b iff Q(a,b) is derivable from the definition of Q or is a
given example of Q.

�9 a = 7(X,T), Q(T,Y) with functional mode 7(in,out) and Q(in,out). Then
7(a,W), Q(T,Y) extensionally computes Y = b iff 7(a,T) extensionally
computes T = e and Q(e,b) is derivable from the definition of Q or is a
given example of Q.

In the algorithm, an example P(a,b) belongs to covered(a) iff a(a,Y) extension-
ally computes Y=b , and consistent(a) is true iff, for no such example, c~(a,Y)
extensionally computes Y = c and ccb . The choice of the literal Q(Args) to be
added to the partial antecedent a of the clause being generated is guided by
heuristic information. It might nevertheless be a wrong choice in some cases,
in the sense that it causes the procedure "Generate one clause" to fail by exit-
ing the while loop without returning any clause. This problem is remedied by
making the choice of Q(Args) a backtracking point.

326

In the worst case, all possible literals will be tried every time, and the com-
plexity is exponential in the number of these literals. We view this problem as
intrinsic of induction and unavoidable - the only thing we can do is reduce the
number of possible clauses by means of strong constraints given a priori by the
user. An advantage of extensional methods is that clauses are generated inde-
pendently of each other. As a consequence we must search the space of possible
clauses (exponential in the number of possible literals), not the space of possible
logic programs (= sets of possible clauses). This independence of the clauses
is made possible by the extensional interpretation of recursion and of the other
inductive relations: when a predicate Q corresponding to an inductive relation
occurs in a clause antecedent a, it is evaluated as true when the arguments match
one of the positive examples. The method leads to a fundamental property of
extensional methods (proofs are found in [1]).

Def in i t ion 2: A program P is complete w.r.t, the examples E iff (V Q(i,o) E
E) P t- Q(i,o). A program P is consistent w.r.t, the examples E iff (~ Q(i,o) E
E) P t- Q(i,o') and o#o' .

L e m m a 1: Suppose BFILP successfully exits its main loop and outputs a logic
program P, that always terminates (w.r.t. SLD-resolution) for the given exam-
pies. Let Q(X,Y) :- a(X,Y) be any clause of P, then
(VQ(a,b)Enxamples(Q)) er(a,Y) ext. computes Y=b ~ P t- Q(a,b).

T h e o r e m 1: If BFILP terminates successfully, then it outputs a complete pro-
gram P.

The above proof is also valid for systems such as FOIL, and is a partial
justification of the extensional evaluation of the generated clauses. However,
extensionality forces us to include many examples, which would otherwise be
unnecessary. In fact other desirable properties, similar to the one given by The-
orem 1, are not true:

1) For a complete and consistent logic program P, it may happen that P t-
Q(a,D), but none of its clauses extensionally cover Q(a,b). As a consequence
BFILP would be unable to generate P, and would not terminate successfully.
Consider this program P:

reverse(X,Y) :- null(Y), null(X).
reverse(X,Y) :- head(X,H), tail(X,T), reverse(T,W), append(W,[H],Y).

Let reverse([a,b],~,a]) be the only given example. This example follows from P
(P t- reverse([a,b],~,a])) but is not extensionally covered: the first clause does
not cover it because null([a,b]) is false, and the second clause does not cover it ex-
tensionally because head([a,b],a) and tail([a,b],[b]) are true, but reverse(~],~])
is not in examples(reverse).

327

2) Let P be a program to compute a function Q and Q(i,o) E examples(Q). Even
if, for all clauses Q :- a in P, consistent(a) is true, it may still happen that P
t- Q(i,o') with o ~ o'. In other words BFILP might generate a program that
is not consistent even for the given examples. Consider the following program P:

reverse(X,Y) :- head(X,tt), tail(X,T1), head(Y,H), tail(Y,T2), reverse(T1,T2).
reverse(X,V) :- null(X), null(Y).
reverse([X,Y,Z],[Z,Y,X]).

which can be learned by BFILP with this set of examples:
reverse(D,O), reverse([1],[1]), reverse([3,2,1],[1,2,3]).
Then P t- reverse([3,2,1],[3,2,1]). Nevertheless, reverse(J3,2,1],[3,2,1]) is not
extensionally covered by the first clause. In fact, reverse([2,1],[2,1]) is not given
as an example. In order to prevent BFILP from generating that inconsistent
program, in this case we must tell the system that reverse([2,1],[2,1]) is wrong.
This is done by adding a positive example, namely reverse(J2,1],[1,2]).

To overcome the above problems, FILP queries the user for some of the miss-
ing examples. Every legal clause (= perrrfitted by the constraints) of the type
"P(X,Y) :- A(X,W), q (x , w , z) , a." where Q is an inductive predicate with
mode Q(in,in,out), is processed with the following procedure:

for every example P(a,b) do
extensionally compute A(a,W), obtaining a value W = c
ask the user for the value Z computed by Q(a,c,Z)
add this example to examples(Q)

This procedure must be repeated for every clause, again and again, until no more
examples are added for the inductive predicates. Both for making the above
procedure terminate and for guaranteeing the termination of learned programs,
we require that any recursive call within a generated clause matches the following
pattern: "P(X1, ..., Xi, ..., Xn) :- ..., Q(Xi,Y), ..., P(X1, ..., Y, ..., X,~),"
where Q(X,Y) is known to define a well ordering between Y and Z (Y<X).
A similar technique is found in [4], but does not guarantee termination on new
examples. It is possible to show that, if every recursive clause in P satisfies the
above constraint, then the example completion procedure terminates.

As an instance, suppose that we want to learn reverse. Consider the clause
reverse(X,Y) :- tail(X,W), reverse(T,W). It satisfies the constraint on recursive
calls because, when taii(X,T) is true, then T is a shorter list than X and this is a
well order relation. Consider the example reverse([a,b,c],[c,b,a]). By using the
clause, the user is queried for the value of reverse([b,c],W), and this is added
to examples(reverse). This new example causes the repetition of the procedure,
and the user is queried for reverse([c],W), and at the next step for reverse(D,W).

L e m m a 2: Suppose the examples given to an extensional learning system are
completed with the above completion procedure. Suppose also that some pro-

328

gram P belongs to the hypothesis space and Q(a,b)Eexamples(Q) after the com-
pletion.
If P }- Q(a,b) then the first clause in P resolved against Q(a,b) extensionally
covers Q(a,b).

T h e o r e m 2: If a complete and consistent program P exists, then FILP will
terminate successfully.

T h e o r e m 3: If FILP terminates successfully, then it outputs a consistent pro-
gram P.

By virtue of Theorem 1, this program will also be complete.

R e f e r e n c e s

[1] F. Bergadano and D. Gunetti. Sufficient and Correct Induction of Func-
tional Logic Programs. Tech. Rep. 92.9.2, CS Dept., Univ. of Torino, 1992.

[2] J. U. Kietz and S. Wrobel. Controlling the Complexity of Learning in
Logic through Syntactic and Task-Oriented Models. In Proc. Workshop on
Inductive Logic Programming, pages 107-126, 1991.

[3] N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning nonrecursive defini-
tions of relations with linus. In Y. Kodratoff, editor, Proc. of the Machine
Learning-EWSL 91, pages 265-281, Porto, Portugal, 1991. Springer-Verlag.

[4] R. Quinlan. Knowledge Acquisition from Structured Data. IEEE Expert,
6(6):32-37, 1991.

[5] L. De Raedt and M. Bruynooghe. CLINT: a Multistrategy Interactive
Concept-Learner and Theory Revision System. In Proc. Workshop on Muk
tistrategy Learning, pages 175-190, 1991.

[6] L. De Raedt and Maurice Bruynooghe. Belief Updating from Integrity
Constraints and Queries. Artificial Intelligence, 53:291-307, 1992.

[7] C. Rouveirol. Flattening: a Representation Change for Generalization. Ma-
chine Learning, 1993. Special issue on Evaluating and Changing Represen-
tation, K. Morik, F. Bergadano and W. Buntine (Eds.).

[8] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[9] I. Stahl, B. Tausend, and R. Wirth. General-to-specific learning of horn
clauses from positive examples. In P. Dewilde and J. Vanderwalle, editors,
Proc. of the CompEuro, 1992, pages 436-441, The Hague, Netherlands,
1992. IEEE Comp. Soc. Press.

[10] R. Wirth and P. O'Rorke. Constraints on predicate invention. In L. A.
Birnbaum and G. C. Collins, editors, Proc. of the 81h Inf. Workshop on
ML, pages 457-461, Evanston, Illinois, 1991. Morgan Kaufmann.

