
A note on refinement operators

Tim Nible t t (tim@turing.com)
The Tur ing Ins t i tu te

36 Nor th H a n o v e r Street

G l a s g o w G1 2AD, Sco t l and

Abstract
The top down induction of logic programs is faced with the problem of ensuring
that the search space includes all the desired hypotheses. The conventional way of
of organizing the search space is via refinement of clauses. Within this context the
existence of a well behaved refinement operator complete for Horn clause logic is
desirable.

We show that there is no natural way in which a complete refinement operator
can be defined which avoids the production of non-reduced clauses. Consideration
is given to subsets of full Horn clause logic for which more efficient refinement
operators can be constructed.

Category: Short Paper

1 Introduction

The Model Inference System (MIS) was developed by Shapiro ([61, [7]) drawing from
theoretical studies by (among others) Gold ([1]), and Plotldn ([3], [5], [4]).

Plotldn studied the basis of generalization mechanisms within first order logic and
characterized the notion of generalization as 0-subsumption. It is difficult to ensure
that an inductive learning system based on subsumption is complete since subsumption
is not well behaved. The contribution of MIS is that it provides a framework for a
complete learning system, capable of learning any finitely axiomatizable clausal theory
up to a given level of complexity. The search space is organized as a refinement
graph, which is generated by a refinement operator. Shapiro claims in [7] that there
is a most general refinement operator, complete for clausal logic. The purpose of this
note is to demonstrate that the most general refinement operator described by Shapiro
is not complete. In addition it is shown that there there is no "natural" refinement
operator which does not introduce non-reduced refinements. This raises doubts about
the efficiency of top down methods of inferring logic programs.

1.1 Organization of this n o t e

The central result is straightforward to prove and is found in Section 5. The material
before that is a review of supporting concepts. In Section 2 we review the concept of

330

subsumption and explain why a naive approach to top-down learning does not work. In
Section 3 we outline the model inference problem in the framework created by Shapiro,
and explain the role of refinement operators. Refinement operators and their properties
are described in Section 4. The most general refinement operator is explained and
the central result proven in Section 5. In Section 6 a complete refinement operator
which introduces redundant clauses is described. Finally, in Section 7 we discuss the
implications of the negative result we have uncovered.

Throughout this note we restrict attention to Horn clause logic, rather than the full
clausal logic considered by Shapiro. It does not affect the principal result which holds a
fortiori for full clausal logic, simplifies the presentation, and is consistent with practical
uses of the MIS architecture.

2 Subsumption

A Horn clause B0 ~- B1, . . . , B,~ is equivalent to the set {B0, 1~1, . . . , J~n}, where the
B~ and/~i are atoms and negated atoms respectively, in what follows.

A substitution ~r of terms for variables, is written { t l /X l , . . . , t , / z ~ } . I f C is a
clause, then Co" is the result of substituting the t~ in ~r for the corresponding xi.

We say that clause C 0-subsumes clause D if Ccr ___ D for some substitution ~r. We
write this as C < D. In what follows 0,subsumption is simply called subsumption.

The size of a clause C is the number of symbol occurrences in C (excluding
punctuation) minus the number of distinct variables occurring in C. If every model of a
set of sentences Z is also a model of clause C we say that Z ~ C We assume a complete
derivation procedure for Horn clause logic and write Z F C to show that C is derivable
from Z.

Given two clauses C and D we write C -~ D when C subsumes D and D subsumes
C. This is an equivalence relation. Two properties of subsumption are of interest to us.
If C _< D then C F D, although the reverse is not true. If C _< D then it is not true that
size(C) < size(D), hence subsumption ~nnot itself function as a refinement operator.
Plotkin ([3]) gives examples of i~finite strictly descending chains under subsumption.
Plotkin also defines the notion of reduction. A clause C is reduced if there is no clause
D such that D C C and D ~ C. If two clauses are reduced then they are equivalent up
to renaming of variables. We say that a substitution 0 decreases clause C if ICOl < ICI,
where tC[is the number of elements in C interpreted as a set.

3 The model inference problem

The language s is the set of Horn clause sentences constructed from a finite number of
function and predicate symbols. We consider two clauses C and D to be equivalent if
they are alphabetic variants, that is if there exists a substitution 7 = { y l /x 1, �9 �9 �9 y,~/x,~ }
where the yi are distinct and C 7 = D.

The sentences of s are of the form

bo ~-- bl A . . . A b,~(n > O)

331

T={}
repeat

read the next fact
repeat

while T is too strong do
apply the contradiction backtracing algorithm,
and remove from T the refuted clanse.

while T is too weak do
add to T refinements of previously refuted hypotheses.

until T is neither too strong nor too weak with respect
to the facts read so far

forever

Figure 1: The MIS framework

where the bi are atoms.
Two subsets of s are distinguished. s the observational language, and s the

hypothesis language. We assume s C s C_ L. Both sublanguages are decidable.
The domain of enquiry is a model M of s and we assume an oracle for M which

given a E s returns true iff a is true in M. The set of observational sentences true in
M is s M.

A set of sentences E C s is an s axiomafization for M iffE is true in M
and E F s M The Model Inference problem is to find a finite s o-complete axiomatization
for M.

3.1 Admissibility requirements

s should contain enough information to refute any false theory. (s s is admissible
if for every model M o f s and every Z C s the set {~ E s t Z t- a} = s M implies
that E is true in M.

Shapiro ([6]) shows that the observational language of ground literals of s with
hypothesis language s itself is complete.

3.2 The incremental algorithm

The MIS framework is shown in Figure 1. It is intended to identify finitely axiomatizable
theories in the limit. To ensure termination, it is important to note that all proof attempts
are done modulo a total recursive function h which provides a limit on the complexity
of the proof for any literal. In general the value of h should depend on the syntactic
complexity of the goal to be proved.

The efficiency of this algorithm depends on two things, the contradiction backtracing
algorithm (see [8]), and the structure of refinements. For complet~ess it is essential
that the refinement generation process be complete. We now turn our attention to this.

332

4 Refinement operators

We first consider refinement operators. From a technical point of view a refinement
operator is a specialization of subsumption, introduced to ensure that there are no infinite
descending chains. In general we assume that there is a measure (size) of the structural
complexity of clauses which maps to the natural numbers. We insist that for any natural
number n(> 0), the set of clauses of size n (modulo alphabetic variants) is finite.

Definition 1 Clause D is a refinement of clause C if C F D and size(C) < size(D).

Definition 2 A refinement operator p is a mapping from clauses to subsets of their
refinements, such that for any C C s and any n > 0 the set p(C)(n) (the set p(C)
restricted to clauses of size <_ n) is recursively enumerable.

A refinement operator p induces a partial order <p with the empty clause [] as
(unique) minimal clement. We say that C <p D if there is a chain C = Co C,~ = D
such that Ci+1 E p(Ci), 0 < i < n. We write C <p D i f C _<p D and -~(D.<p C).

For any clanse C the set {D E s I C <p D} is written as p*(C).

Definition 3 A refinement operator p is comp!ete for s if p*(D) = s

We now turn to a consideration of Shapiro's most general refinement operator po
which was claimed in [6] to be complete for s A most general refinement operator is
simply a refinement operator which is comPlete for s

5 Shapiro's most general operator

If X and Y are atoms and C a clause we say that X is more general than Y with respect
to C if there is a substitution 0 such that XO = Y and CO = C. If H +-- B is a reduced
clause then X is a most general atom such that H +--- B A X is reduced if for any atom
Y such that Y is more general than X with respect to H +- B, the clause H +-- B A Y
is not reduced.

Definition 4 Let C = H ~ B be a reduced Horn clause. Then D E po(C) if exactly
one of the following holds:

1. D = CO, where 0 = { V / W } does not decrease C and both V and W occur in
C.

2. D = CO, where 0 = { f (X l , . . . , X ~) / W } does not decrease C, f is an n-ary
(n >_ O) function symbol, W occurs in C and each Xi, 1 < i < n, is a distinct
variable not occurring in C.

3. D : H ~ B A P, where P is a most general atom with respect to C for which
H +-- B A P is reduced.

333

Note that for any clause C there are at most a finite number of applications of (1) and
(2), but an infinite number of applications of (3) since in general there are infinitely
many atoms most general with respect to C. Shapiro [7] shows that these refinements
can be enumerated by size.

Theorem 1 po is not complete for s

Proof Weexhibit acounterexample. ConsiderthereducedclanseC = a ~ p(A, B, C)A
p(D, E, C) A p(F, G, E) A p(F, 13, H). Assume that C E p*(n). There must
exist a reduced clause D such that C E po(D), obtained by an application of (1),
(2) or (3) in the definition of p0. Assume that C was obtained by (3). Removing
any of the goals in the body produces a clause that is not reduced, counter to
assumption. Clause C cannot have been obtained by (2) since it contains no
function symbols. It cannot have been obtained by (1), since the replacement
of a single occurrence of B, C, E or F leads to a reduced clause, counter to
assumption. Since C cannot have been obtained by an application of (1), (2) or
(3) it has no predecessor in p0. �9

6 A most general refinement operator

The above proof shows that if a refinement operator adds at most one literal at a time to
a reduced clause, then it is impossible to construct a most general refinement operator,
none of whose refinements will be reducible. This is a potentially serious problem
for top down inductive systems since the introduction of non-reduced clauses into a
refinement operator will lead to greatly reduced efficiency.

For the sake of completeness we produce a most general refinement operator (pl),
based on Shapiro's, which is complete for l:.

Definition 5 Let C = H +- B be a Horn clause. Then D E P] (C) if exactly one of the
following holds:

1. D = CO, where 0 = { V / W) does not decrease C and both V and W occur in
C.

. D = CO, where 0 = { f (X1 , . . . , X,~) /W} does not decrease C, f is an n-ary
(n > O) function symbol, W occurs in C and each Xi, 1 < i < n, is a distinct
variable not occurring in C.

3. D = H ~ B A P(X1 , X~), where P is a predicate symbol of arity n, and
w~re the Xi are new variables not occurring in H or B.

The proof that this refinement operator is complete is straightforward. Given a non-null
clause C = H +-- B with B possibly empty we can show that C has a predecessor C'
such that C' E pl (C). If any literal t E B is of the form p(X1 Xn) where the Xi
are distinct variables not occurring elsewhere in C then C' = C - {t} is a predecessor,
Similarly if there is a term t = f (X l , . . . , X~)(n _> 0) occurring one or more times
in any place in any of the iiterals of C, and the Xi are distinct variables not occurring

334

elsewhere in C then C' = C0 where 0 = {f(X1, . . . , X,~)/W} and W does not oczaxr
in C is a predecessor. Otherwise if X is any variable occurring more than once in C,
then replacing a single occurrence of X by W, where W is a variable not occurring
in C provides a predecessor C'. Finally, if C = p(X1,. . . , X,~) ~ where the Xi are
distinct variables, then the predecessor is n. As each application of of pl increases size
by 1 and since there a finite number of clauses of any given size n it follows that pl is a
most general refinement operator for Z~.

7 Conclusion

It seems that any top-down structuring of the Hypothesis space for Horn clause programs
will suffer from the problem of redundant hypotheses. This leaves us in the position of
having to make a tradeoff between efficiency and completeness, or of having to focus
on restrictions of full Horn clause logic if we want to learn top down.

It is an open questions as to which restrictions on full first order logic are compatible
with complete non-redundant refinement operators. Shapiro ([7]) illustrates a non-
redundant refinement operator for the class of context-flee transformations. We mention
one additional subset here.

An interesting semantic restriction is to/j-determinate danses [2], With the restric-
tion to i j-determinate clauses it is possible to show given a non-reduced clause correct
with respect to the intended interpretation that any extension of this clause is equiva-
lent with respect to the intended interpretation to a non-reduced clause. This means
that redundant (ie. non-reduced) clauses need never be generated, and hence there is a
most general refinement operator for/j-determinate clauses which does not generate
redundant clauses.

The result suggests that it may be possible to learn i j-determinate programs effi-
ciently within the MIS framework.

Acknowledgements

My thanks to Wray Btmtiae who pointed out a flaw in the proof that p0 is a most general
refinement operator. This work was partially supported by the European Community
Esprit Programme under contract P2154, MLT.

References

[1] E.M. Gold. Language identification in the limit. Information and Control, 10:447-
474, 1967.

[2] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281-298. Academic Press, London,
1992.

335

[3] G.D. Hotkin. A note on inductive generalisation. In B. Meltzer and D. Michie,
editors, Machine Intelligence 5, pages 153-163. Elsevier North-Holland, New York,
1970.

[4] G.D. Plotkin. Automatic Methods of Inductive Inference. Phi) thesis, Edinburgh
University, August 1971.

[5] G.D. Plotldn. A further note on inductive generalisafion. In B. Meltzer and
D. Mickie, editors, Machine Intelligence 6, pages 101-124. Elsevier North-Holland,
New York, 1971.

[6] E. Y. Shapiro. An algorithm that infers theories from facts. In Proceedings of
IJCAI-81, pages 446-451. Kanfmann, Los Altos, CA, 1981.

[7] E.Y. Shapiro. Inductive inference of theories from facts. TR 192, Dept. Comp. Sc.,
Yale University, Connecticut, 1981.

[8] E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

