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A b s t r a c t .  We give a procedure for generalizing a proof of a concrete 
instance of a theorem by recovering inductions that have been expanded 
in the concrete proof. It consists of three operations introduction, exten- 
sion and propagation, and by iterating these operations in a bottom-up 
fashion, it can reconstruct nested inductions. We discuss how to use EBG 
for identifying the induction formula, and how EBG must be modified 
so that nested inductions can be reconstructed. 

1 I n t r o d u c t i o n  

When a teacher explains a theorem in mathemat ics  to a student,  he often picks 
up an appropriate  instance of the theorem and explains why the theorem is true 
using that  instance. In other words, he gives a proof  of an instance of a theorem 
instead of proving its general case. A proof  of a concrete instance often contains 
enough information to reconstruct a proof of the general case. 

Explanation-based generalization (EBG for short),  which has been formulated 
in the field of deductive learning or explanation-based learning, is a method for 
generalizing a proof as discussed above [2], though pure EBG generalizes a proof  
by simply replacing a term in a proof  with a variable. 

The problem we study in this paper, on the other hand, is that  of gener- 
alizing a proof  of an instance of a theorem and obtaining an inductive proof  
of the general case of the theorem by automatically recovering inductions that  
have been expanded in a proof of an instance. Some researchers in the field of 
explanation-based learning have also studied this problem under the name of 
generalizing number [?, 5], but there can be found very few foundational studies 
on the method that  are based on  formal logic except those by the author  [3, 4]. 

Assume that  we are given a concrete proof, i.e., a proof  of a concrete instance 
of a theorem, as depicted in the left-hand side of Figure 1. In the figure, P(i) 
denotes a proposition on natural  number i, /7 a proof of P(0) ,  qs0 a proof  of 
P(1)  from P(0),  and 41 a proof of P(2)  from P(1).  

If  one can generalize proofs ~50 and 41 to a single general p r o o f ~  of Vi(P(i) --* 
P(S(i))), then one can obtain an inductive proof as depicted in the r ight-hand 
side of Figure 1. Note that  S denotes the successor function and numerals 1, 2, 
etc. are considered as abbreviations of terms S(0), S(S(O)), etc. The conclusion 



E 
P(O) 
~o 

P(1) 

P(2) 

337 
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Fig. 1. A Concrete Proof and an Inductive Proof 

P(2)  is considered to be derived from the universal formula ViP(i). In proof r  
P(i) is called the induction formula and i the induction variable. 

The procedure for generalizing a concrete proof as explained above must 
consist of those steps of finding the parts / / ,  r and r fixing the induction 
formula P(i) and generalizing r and r to ~. 

The purpose of this paper is to formulate a generalization procedure that  can 
iterate the above steps and reconstruct inductions that  are nested within one 
another. We discuss how to use EBG for identifying the induction formula, and 
how EBG must be modified so that  nested inductions can be reconstructed. 

In this paper, we do not care whether a concrete proof is written by hand or 
automatically generated by a theorem prover. An SLD-trace of a logic program 
is a typical example of the latter case. As is explained in the next section, our 
procedure can reconstruct inductions whose induction formula P(i) is of form 
3zQ(i, z). By applying it to an SLD-trace of a logic program, one can obtain a 
proof that  guarantees the existence of z for any i such that  Q(i, z) holds, i.e., 
the termination of the logic program with respect to the input-output  relation 
Q(i, x), where i is an input and z is an output.  

In the deductive approach for program synthesis, the relation Q(i, ~) is given 
in advance and then the formula Vi3xQ(i, x) is proved. The generalization proce- 
dure of this paper, on the other hand, is given an SLD-trace of a logic program, 
and generalizes the trace to an inductive proof. The relation Q(i, z) is not given 
in advance but is identified during generalization. 

Bruynooghe, De Raedt and De Schreye in [1] use a concrete proof to guide 
unfold/fold program transformation, but a concrete proof is not directly gener- 
alized to an inductive proof. 

In the next section, we introduce the recursion operator  and formulate the 
induction schema. We then describe the operations of the generalization proce- 
dure. The extension of EBG is finally discussed. 

2 G e n e r a l i z a t i o n  P r o c e d u r e  

The generalization procedure of this paper reconstructs inductions whose induc- 
tion formula P(i) is of form 3xQ(i, x), where Q(i, x) is an atomic formula. In 
general, x is a vector of variables, but for simplicity we assume that  x is a single 
variable in this paper. 
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Formulas of form Vi3xQ(i,x) are called V3-specifications, and" (construc- 
tively) proving a formula of this kind corresponds to synthesizing a program 
satisfying the input-output  relation Q(i, x), where i is considered as an input 
and x an output .  

Since it is not easy to directly handle the existential quantifier 3, we introduce 
the recursion operator, denoted by r, and express the output  explicitly in term 
of the input and r. If n is a term denoting a natural number, f(i, x) is a function 
whose first argument i is a natural number, and t is a term, then r(n,  f ,  t) is also 
a term. The operator r satisfies the following reduction rules. 

r (O, f , t )  = t  

r (S(n) ,  f, t) = f(n, r(n,  f , t)) 

After introducing r, we can formulate the following inference rule, which we 
call Sx-induction. 

P(O, t) ViVx(P(i, x) --+ P(S(i), f(i, x))) 
P(n,r(n,f , t))  

This rule says that  i f / 1  is a proof of P(0,  t) and r is a proof of ViVx(P(i, x) --* 
P(S(i), f(i, x))), then one can conclude P(n, r(n, f, t)) for any integer n. We also 
write the above inductive proof as R(n, f, ~, t, II), i.e., R(n, f, r t, II) is a proof 
of P(n, r(n, f, t)). In ~, i is called the induction variable, P(i, x) the induction 
formula and f(i, x) the induction term. 

The generalization procedure consists of the following three operations. 

- Introducing an induction - -  If a proof of P(1,  u) from P(0, t) can be gener- 
alized to an induction, replace it with an inductive proof. 

- Extending an induction - -  If P(S(n), v)is derived from P(n, u) whose proof 
is inductive, extend the induction to P(S(n), v). 

- Propagating an induction - -  If there has been obtained an inductive proof 
of P(n, u) and there exists a proof of P(O,t) elsewhere, replace the latter 
with the inductive proof. 

The procedure iteratively applies these operations from the inner subproofs to 
the outer ones, i.e., it applies the operations in a bot tom-up fashion. 

2 . 1  I n t r o d u c i n g  I n d u c t i o n s  

In order to obtain a ~l- induct ion by generalization, we first search in the given 
concrete proof for a subproof of the following form. 

/ /  

A0 
~0 
A1 



339 

A0 and A1 are atomic formulas sharing the same predicate s y m b o l . / / i s  a proof 
of A0, and ~0 is a proof of A1 from A0, where the assumption A0 is used exactly 
once in r 

The identification of the induction formula P(i, z) and the induction term 
f ( i ,  z) is the most difficult step of this operation. Here is one of the possible 
methods. 

We first apply the following EBG procedure on ~50, where A0 is considered 
as the only operational atom. 

1. For each maximal term appearing in ~5 0 (except those appearing in the ax- 
ioms), introduce a new variable and replace the term with the new variable. 

~'2. Do unification in each inference step of 450 so that  the inference step becomes 
valid. 

By the second step, we obtain the most general substitution for the newly intro- 
duced variables such that  the result is a valid proof. 

Assume that  by EBG, we have obtained a proof 4i~ of A~ from A~. Since ~0 is 
an instance of 4~, there exists a substitution 0 for the newly introduced variables 
such that  8(4~) = 4~0. Let A~ be of form P ( z l , . . . , z n ) ,  where z l , . . . , z n  are 
newly introduced variables that  were not instantiated during EBG. We then 
check the following condition: A'~ is an instance of P ( x l , . . . , x n ) ,  i.e., there 
exist terms U l , " . , u n  such that A' 1 = P ( u l , " ' , u n ) .  

If the above condition is satisfied, we divide the variables X l , . . . ,  zn into the 
following three sets: 

1. the set of xj such that  uj = S(xj )  and 8(xj) = 0. 
2. the set of xj such that  uj = x j,  and 
3. the set of others. 

We then introduce a new variable i, which is intended to become the induction 
variable, and replace each variable zj in Set 1 with i. Each variable zj  in Set 2 
is instantiated simply with O(xj). Each variable z that  is not among z l , . . . ,  zn 
is also instantiated with 8(z). 

In the following explanation, we assume that  Set 3 consists of a single variable 
x and u is the corresponding term. We then define the function f by f ( i ,  z) = u. 
As a result, we obtain a proof 4~ of P(S(i) ,  f ( i ,  z)) from P(i, x). Since i and x 
are arbitrary, it can be considered as a proof of ViVz(P(i,  z) --+ P(S(i) ,  f ( i ,  z))). 

We can finally obtain the inductive proof/~(1, f , r  t , / / )  of P(1, f(O,t)), be- 
cause A0 = P(O,t) for some term t. The original proof of A1 is then replaced 
with R(1 , f ,~ , t , 11 ) .  

Let us give a simple example. Assume that  we have the following axioms for 
the predicates add and mul. These axioms are exactly the definite clauses of the 
logic program defining add and raul. 

Vi add(0, i, i) 

ViVjVk(add(i, j, k) --+ add(S(/), j, S(k))) 
Vi mul(0, i, 0) 

ViVjVkVl(mul(i, j, k) A add(k, j ,  l) ---+ mul(S(i), j, l)) 
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The proof ofraul(2, 2, 4), which uses these axioms, takes the form of the tree in 
the following figure. 

add(0,2,2)  
I 

mul(0,2,0)  add(0,2,2)  add( I ,2 ,3 )  
\ / I 
mul(1,2,2) add(2,2,4)  

\ / 
mu1(2,2,4) 

The proof can be considered as an SLD-trace of the logic program. 
The operation explained so far can be applied on the subproof whose conclu- 

sion is add(l, 2, 3). Applying EBG on the proof of add(l, 2, 3) from add(0, 2, 2), 
we obtain a proof of add(S(i), y, S(z)) from add(i, y, z). By the above method, y 
is instantiated with 2, and we obtain the induction formula add(i;2, x), add the 
induction term S(z). Function f is defined by f(i, x) = S(x). We finally obtain 
the proof R(1, f, ~, 2, H) of add(l, 2, 3), where H is the proof of add(0, 2, 2) and 

is the proof of ViVz(add(i, 2, z) ~ add(S(i), 2, S(z)). 

2.2 Ex tend ing  Induct ions  

If n is a numeral and P(S(n), f(n, u)) is proved from P(n, u), whose proof is of 
form R(n, f,  qb, t, II), then one can extend the inductive proof R(n, f, ~, t, 1I) to 
R(S(n), f, ~, t , / / ) ,  because u = r(n, f, t). 

In the previous example, this operation can be applied on the subproof of 
add(2, 2, 4). As a result, we obtain the proof R(2, f, ~5, 2,11) of add(2, 2, 4) from 
the inductive proof R(1, f,~b, 2, / / )  of add(l, 2, 3). 

2.3 P ropaga t ing  Induct ions  

Assume that there exists a proof R(n, f, aS; t, 1I) of P(n, u), where ~ is a proof 
of P(S(i), f(i, x)) from P(i, z). Assume also that there exists a proof of P(0, t') 
somewhere else. Then one can replace the proof of P(0, t') with R(0, f, ~, t ' , / / ) .  
We call this operation propagation of an induction. 

This operation can be applied on add(0, 2, 2) above mul(1, 2, 2). As a result, 
the proof of add(0, 2, 2) is replaced with the inductive proof R(0, f, ~, 2, H). 

One may generalize R(n, f, ~, t, 11) before applying propagation. This makes 
the generalization procedure more complete. 

2.4 EBG on Induct ions  

Since the procedure is iterated to reconstruct nested inductions, EBG may be 
applied on an inductive proof of form R(n, f, ~, t, 11). Special care must be taken 
when applying EBG on ~ because �9 is a proof of P(S(i), f(i, x))) from P(i, x). 
Since i and x are universal variables, terms containing i or x must not be replaced 
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with a new variable during EBG. This means that  terms that  are maximal among 
those that  do not contain i or x are replaced with new variables. 

If the result of generalizing r is a proof O' of P'(S(i),  if(i,  x)) from P'( i ,  x) 
and that  of genera l iz ing/ / i s  a proof//~ of pn,  then one must introduce another 
new variable y and unify P'(O, y) and P "  to make the induction valid. 

In the previous example, EBG is applied on an inductive proof while the 
following subproof is being generMized. 

mu l (0 ,2 ,0 )  add (0 ,2 ,2 )  
\ / 
mul(1 ,2 ,2 )  

The proof R(0, f ,  O, 2, H) of add(0, 2, 2), which was obtained by propagation, is 
generalized to the proof R(y, f ,  ~', z, II'), whose conclusion is add(y, z, r(y, f ,  z)). 
Therefore we obtain a proof of mul(S(i), 2, r(x, f ,  2)) from mul(i, 2, x). Thus we 
can introduce an induction by the introduction operation and reconstruct a 
nested induction. Note that  the induction term of the outer induction is r(x, f ,  2). 

Since the conclusion of an induction contains the recursion operator r, one 
must in general do unification between terms containing r during EBG. The 
details are not discussed here due to the space limitation. 
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