
An Iterative and B o t t o m - u p Procedure
for Proving-by-Example

Masami Hagiya

Department of Information Science, University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo 113, JAPAN

hagiya@is, s .u-tokyo. ac. jp

A b s t r a c t . We give a procedure for generalizing a proof of a concrete
instance of a theorem by recovering inductions that have been expanded
in the concrete proof. It consists of three operations introduction, exten-
sion and propagation, and by iterating these operations in a bottom-up
fashion, it can reconstruct nested inductions. We discuss how to use EBG
for identifying the induction formula, and how EBG must be modified
so that nested inductions can be reconstructed.

1 I n t r o d u c t i o n

When a teacher explains a theorem in mathemat ics to a student, he often picks
up an appropriate instance of the theorem and explains why the theorem is true
using that instance. In other words, he gives a proof of an instance of a theorem
instead of proving its general case. A proof of a concrete instance often contains
enough information to reconstruct a proof of the general case.

Explanation-based generalization (EBG for short), which has been formulated
in the field of deductive learning or explanation-based learning, is a method for
generalizing a proof as discussed above [2], though pure EBG generalizes a proof
by simply replacing a term in a proof with a variable.

The problem we study in this paper, on the other hand, is that of gener-
alizing a proof of an instance of a theorem and obtaining an inductive proof
of the general case of the theorem by automatically recovering inductions that
have been expanded in a proof of an instance. Some researchers in the field of
explanation-based learning have also studied this problem under the name of
generalizing number [?, 5], but there can be found very few foundational studies
on the method that are based on formal logic except those by the author [3, 4].

Assume that we are given a concrete proof, i.e., a proof of a concrete instance
of a theorem, as depicted in the left-hand side of Figure 1. In the figure, P(i)
denotes a proposition on natural number i, /7 a proof of P(0) , qs0 a proof of
P(1) from P(0), and 41 a proof of P(2) from P(1).

If one can generalize proofs ~50 and 41 to a single general p r o o f ~ of Vi(P(i) --*
P(S(i))), then one can obtain an inductive proof as depicted in the r ight-hand
side of Figure 1. Note that S denotes the successor function and numerals 1, 2,
etc. are considered as abbreviations of terms S(0), S(S(O)), etc. The conclusion

E
P(O)
~o

P(1)

P(2)

337

P(O) u --* P(S(i)))
P(2)

Fig. 1. A Concrete Proof and an Inductive Proof

P(2) is considered to be derived from the universal formula ViP(i). In proof r
P(i) is called the induction formula and i the induction variable.

The procedure for generalizing a concrete proof as explained above must
consist of those steps of finding the parts / / , r and r fixing the induction
formula P(i) and generalizing r and r to ~.

The purpose of this paper is to formulate a generalization procedure that can
iterate the above steps and reconstruct inductions that are nested within one
another. We discuss how to use EBG for identifying the induction formula, and
how EBG must be modified so that nested inductions can be reconstructed.

In this paper, we do not care whether a concrete proof is written by hand or
automatically generated by a theorem prover. An SLD-trace of a logic program
is a typical example of the latter case. As is explained in the next section, our
procedure can reconstruct inductions whose induction formula P(i) is of form
3zQ(i, z). By applying it to an SLD-trace of a logic program, one can obtain a
proof that guarantees the existence of z for any i such that Q(i, z) holds, i.e.,
the termination of the logic program with respect to the input-output relation
Q(i, x), where i is an input and z is an output.

In the deductive approach for program synthesis, the relation Q(i, ~) is given
in advance and then the formula Vi3xQ(i, x) is proved. The generalization proce-
dure of this paper, on the other hand, is given an SLD-trace of a logic program,
and generalizes the trace to an inductive proof. The relation Q(i, z) is not given
in advance but is identified during generalization.

Bruynooghe, De Raedt and De Schreye in [1] use a concrete proof to guide
unfold/fold program transformation, but a concrete proof is not directly gener-
alized to an inductive proof.

In the next section, we introduce the recursion operator and formulate the
induction schema. We then describe the operations of the generalization proce-
dure. The extension of EBG is finally discussed.

2 G e n e r a l i z a t i o n P r o c e d u r e

The generalization procedure of this paper reconstructs inductions whose induc-
tion formula P(i) is of form 3xQ(i, x), where Q(i, x) is an atomic formula. In
general, x is a vector of variables, but for simplicity we assume that x is a single
variable in this paper.

338

Formulas of form Vi3xQ(i,x) are called V3-specifications, and" (construc-
tively) proving a formula of this kind corresponds to synthesizing a program
satisfying the input-output relation Q(i, x), where i is considered as an input
and x an output .

Since it is not easy to directly handle the existential quantifier 3, we introduce
the recursion operator, denoted by r, and express the output explicitly in term
of the input and r. If n is a term denoting a natural number, f(i, x) is a function
whose first argument i is a natural number, and t is a term, then r(n, f , t) is also
a term. The operator r satisfies the following reduction rules.

r (O, f , t) = t

r (S(n) , f, t) = f(n, r(n, f , t))

After introducing r, we can formulate the following inference rule, which we
call Sx-induction.

P(O, t) ViVx(P(i, x) --+ P(S(i), f(i, x)))
P(n,r(n,f , t))

This rule says that i f / 1 is a proof of P(0, t) and r is a proof of ViVx(P(i, x) --*
P(S(i), f(i, x))), then one can conclude P(n, r(n, f, t)) for any integer n. We also
write the above inductive proof as R(n, f, ~, t, II), i.e., R(n, f, r t, II) is a proof
of P(n, r(n, f, t)). In ~, i is called the induction variable, P(i, x) the induction
formula and f(i, x) the induction term.

The generalization procedure consists of the following three operations.

- Introducing an induction - - If a proof of P(1, u) from P(0, t) can be gener-
alized to an induction, replace it with an inductive proof.

- Extending an induction - - If P(S(n), v)is derived from P(n, u) whose proof
is inductive, extend the induction to P(S(n), v).

- Propagating an induction - - If there has been obtained an inductive proof
of P(n, u) and there exists a proof of P(O,t) elsewhere, replace the latter
with the inductive proof.

The procedure iteratively applies these operations from the inner subproofs to
the outer ones, i.e., it applies the operations in a bot tom-up fashion.

2 . 1 I n t r o d u c i n g I n d u c t i o n s

In order to obtain a ~l- induct ion by generalization, we first search in the given
concrete proof for a subproof of the following form.

/ /

A0
~0
A1

339

A0 and A1 are atomic formulas sharing the same predicate s y m b o l . / / i s a proof
of A0, and ~0 is a proof of A1 from A0, where the assumption A0 is used exactly
once in r

The identification of the induction formula P(i, z) and the induction term
f (i , z) is the most difficult step of this operation. Here is one of the possible
methods.

We first apply the following EBG procedure on ~50, where A0 is considered
as the only operational atom.

1. For each maximal term appearing in ~5 0 (except those appearing in the ax-
ioms), introduce a new variable and replace the term with the new variable.

~'2. Do unification in each inference step of 450 so that the inference step becomes
valid.

By the second step, we obtain the most general substitution for the newly intro-
duced variables such that the result is a valid proof.

Assume that by EBG, we have obtained a proof 4i~ of A~ from A~. Since ~0 is
an instance of 4~, there exists a substitution 0 for the newly introduced variables
such that 8(4~) = 4~0. Let A~ be of form P (z l , . . . , z n) , where z l , . . . , z n are
newly introduced variables that were not instantiated during EBG. We then
check the following condition: A'~ is an instance of P (x l , . . . , x n) , i.e., there
exist terms U l , " . , u n such that A' 1 = P (u l , " ' , u n) .

If the above condition is satisfied, we divide the variables X l , . . . , zn into the
following three sets:

1. the set of xj such that uj = S(xj) and 8(xj) = 0.
2. the set of xj such that uj = x j, and
3. the set of others.

We then introduce a new variable i, which is intended to become the induction
variable, and replace each variable zj in Set 1 with i. Each variable zj in Set 2
is instantiated simply with O(xj). Each variable z that is not among z l , . . . , zn
is also instantiated with 8(z).

In the following explanation, we assume that Set 3 consists of a single variable
x and u is the corresponding term. We then define the function f by f (i , z) = u.
As a result, we obtain a proof 4~ of P(S(i) , f (i , z)) from P(i, x). Since i and x
are arbitrary, it can be considered as a proof of ViVz(P(i, z) --+ P(S(i) , f (i , z))).

We can finally obtain the inductive proof/~(1, f , r t , / /) of P(1, f(O,t)), be-
cause A0 = P(O,t) for some term t. The original proof of A1 is then replaced
with R(1 , f ,~ , t , 11) .

Let us give a simple example. Assume that we have the following axioms for
the predicates add and mul. These axioms are exactly the definite clauses of the
logic program defining add and raul.

Vi add(0, i, i)

ViVjVk(add(i, j, k) --+ add(S(/), j, S(k)))
Vi mul(0, i, 0)

ViVjVkVl(mul(i, j, k) A add(k, j , l) ---+ mul(S(i), j, l))

340

The proof ofraul(2, 2, 4), which uses these axioms, takes the form of the tree in
the following figure.

add(0,2,2)
I

mul(0,2,0) add(0,2,2) add(I ,2 ,3)
\ / I
mul(1,2,2) add(2,2,4)

\ /
mu1(2,2,4)

The proof can be considered as an SLD-trace of the logic program.
The operation explained so far can be applied on the subproof whose conclu-

sion is add(l, 2, 3). Applying EBG on the proof of add(l, 2, 3) from add(0, 2, 2),
we obtain a proof of add(S(i), y, S(z)) from add(i, y, z). By the above method, y
is instantiated with 2, and we obtain the induction formula add(i;2, x), add the
induction term S(z). Function f is defined by f(i, x) = S(x). We finally obtain
the proof R(1, f, ~, 2, H) of add(l, 2, 3), where H is the proof of add(0, 2, 2) and

is the proof of ViVz(add(i, 2, z) ~ add(S(i), 2, S(z)).

2.2 Ex tend ing Induct ions

If n is a numeral and P(S(n), f(n, u)) is proved from P(n, u), whose proof is of
form R(n, f, qb, t, II), then one can extend the inductive proof R(n, f, ~, t, 1I) to
R(S(n), f, ~, t , / /) , because u = r(n, f, t).

In the previous example, this operation can be applied on the subproof of
add(2, 2, 4). As a result, we obtain the proof R(2, f, ~5, 2,11) of add(2, 2, 4) from
the inductive proof R(1, f,~b, 2, / /) of add(l, 2, 3).

2.3 P ropaga t ing Induct ions

Assume that there exists a proof R(n, f, aS; t, 1I) of P(n, u), where ~ is a proof
of P(S(i), f(i, x)) from P(i, z). Assume also that there exists a proof of P(0, t')
somewhere else. Then one can replace the proof of P(0, t') with R(0, f, ~, t ' , / /) .
We call this operation propagation of an induction.

This operation can be applied on add(0, 2, 2) above mul(1, 2, 2). As a result,
the proof of add(0, 2, 2) is replaced with the inductive proof R(0, f, ~, 2, H).

One may generalize R(n, f, ~, t, 11) before applying propagation. This makes
the generalization procedure more complete.

2.4 EBG on Induct ions

Since the procedure is iterated to reconstruct nested inductions, EBG may be
applied on an inductive proof of form R(n, f, ~, t, 11). Special care must be taken
when applying EBG on ~ because �9 is a proof of P(S(i), f(i, x))) from P(i, x).
Since i and x are universal variables, terms containing i or x must not be replaced

341

with a new variable during EBG. This means that terms that are maximal among
those that do not contain i or x are replaced with new variables.

If the result of generalizing r is a proof O' of P'(S(i), if(i, x)) from P'(i , x)
and that of genera l iz ing/ / i s a proof//~ of pn, then one must introduce another
new variable y and unify P'(O, y) and P " to make the induction valid.

In the previous example, EBG is applied on an inductive proof while the
following subproof is being generMized.

mu l (0 ,2 ,0) add (0 ,2 ,2)
\ /
mul(1 ,2 ,2)

The proof R(0, f , O, 2, H) of add(0, 2, 2), which was obtained by propagation, is
generalized to the proof R(y, f , ~', z, II'), whose conclusion is add(y, z, r(y, f , z)).
Therefore we obtain a proof of mul(S(i), 2, r(x, f , 2)) from mul(i, 2, x). Thus we
can introduce an induction by the introduction operation and reconstruct a
nested induction. Note that the induction term of the outer induction is r(x, f , 2).

Since the conclusion of an induction contains the recursion operator r, one
must in general do unification between terms containing r during EBG. The
details are not discussed here due to the space limitation.

References

1. Bruynooghe,M., De Raedt,L., De Schreye,D.: Explanation based program trans-
formation, Proceedings of IJCAI 89, 1989, pp.407-412.

2. Ellman,T.: Explanation-based learning: A survey of programs and perspectives,
A CM Computing Surveys , Vol.21, No.2 (1989), pp.163-221.

3. Hagiya, M.: Programming by example and proving by example using higher-order
unification, lOth International Conference on Automated Deduction (Stickel,M.,
ed.), Lecture Notes in Artificial Intelligence, Vol.449 (1990), pp.588-602.

4. Hagiya,M.: From programming-by-example to proving-by-example, Theoretical As-
pects of Computer Software (Ito, T., Meyer,A.R. , eds.), Lecture Notes in Computer
Science, Vol.526 (1991), pp.387-419.

5. Sh~vlik,J.W., DeJong,G.F.: An explanation-based approach to generalizing num-
ber, Proceedings of IJCAI 87, 1987, pp.236-238.

6. Shavlik,J.W., DeJong,G.F.: Acquiring general iterative concepts by reformulating
explanations of observed examples, Machine Learning Volume III (Kodratoff, Y.,
Michalski,R., eds.), 1990, pp.302-350.

