
C a n  C o m p l e x i t y  T h e o r y  B e n e f i t  f r o m  L e a r n i n g  T h e o r y ?  

Tibor Hegedfis 
Department of Computer Science 

Comenius University, 84215 Bratislava, Slovakia 
hegedus@mff, uniba, cs 

We show that the results achieved within the framework of Computational 
Learning Theory are relevant enough to have non-trivial applications in other ar- 
eas of Computer Science, namely in Complexity Theory. Using known results on 
efficient query-learnability of some Boolean concept classes, we prove several (co- 
NP-completeness) results on the complexity of certain decision problems concerning 
representability of general Boolean functions in special forms. 

1. In t roduc t ion  

The seminal paper of Valiant [11] initiated a considerable amount of research in Compu- 
tational Learning Theory. The goal of the field is to "give a rigorous, computationally 
detailed and plausible account of how learning can be done" [2]. This characterization 
indicates a close relationship to Complexity Theory. In fact, the considered models 
and criteria of successful learning are all in the spirit of traditional Complexity Theory. 
In addition to this methodological contribution, it turned out to be the case [10] that 
complexity-theoretic results can be applied directly to show non-learnability results in 
the standard PAC model. More precisely, if the CONSISTENCY problem for a class of 
Boolean functions (deciding whether there is a function in the class consistent with given 
data) is NP-hard, then that class is not PAC -learnable in a representation-dependent 
sense (if RP~NP),  i.e., Learning Theory also benefits from some particular results of 
Complexity Theory. 

Howevcr, in this paper we show that the cooperation between the two fields is not 
necessarily destined to be a one-way traffic. To do this, we use a recent result of [5] which 
says that if a class of Boolean functions is learnable using equivalence and membership 
queries (again in a representation-dependent sense), then the MEMBERSHIP problem 
for that class (deciding whether a function given, say, in DNF, belongs to that class), 
is in co-NP. MEMBERSHIP is essentially the problem of deciding whether a general 
Boolean function is representable in a special form. Because a number of dasses have 
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been shown to be query-learnable, we obtain several non-trivial inclusions in co-NP for 
decision problems which are intuitively only in ~ .  In fact, in most cases we prove that the 
considered problems are co-NP-complete. This is the case of linearly separable functions 
(functions computable by a single neuron - the basic component of neural networks), 
threshold functions of order at most k (for any fixed k > 0), n-dimensional balls, k-DNF 
and k-CNF functions (for any fixed k E 1), read-once and read-twice DNF formulas, and 
k-term DNF (k-clanse CNF) formulas for any fixed k > 1 (using the last result, some 
progress on the complexity of the MINIMAL DNF EXPRESSION problem [4] is also 
achieved). As far as the corresponding search problems (find a special representation of 
a function given in DNF if one exists) are concerned, using query-learnability they can 
be solved in time 2 ~ (n is the number of variables and m the number of terms in the 
input). 

All these results suggest that Computational Learning Theory is a mature field and 
its results are relevant enough to have non-trivial applications in other areas of Computer 
Science. 

2. Def in i t ions  and  mode l s  

We denote (for n E 1) X ,  = {0,1}", F ,  = { f  I f : X ,  ~ {0,1}}, For a function 
(concept) f e e. ,  p o s ( f )  = { = I �9 e x .  and f ( = )  = 1 }. A concept d o . s  is a sequence 
6' = {On]a_>,, C,~ C_ F~ for all n >_ I. 

Informally, learning a concept is equivalent to identifying it from a given class of 
possibilities (concept class). The formal models of concept learning arc further speci- 
fied by determining what is a learning algorithm and what are the criteria of succesful 
identification. 

A concept class C is PAt-learnable if there is a polynomial algorithm A and a poly- 
nomial p such that  for every n >_ 1, every target concept f 6 C. ,  evcry probability 
distribution D .  on X, ,  and every e,~ (0 < e,6 < 1) the following holds: if A is given 

t n 1 1~  a sample of pt , 7, ~) pairs (m, f(a:)) selected from X~ according to D~, then it outputs 
a representation of a hypothesis h E C.  such that with probability at least 1 - &, the 
error of h (the probability that a randomly selected point z 6 Xn is classified differently 
by the target function and the final hypothesis) is at most e (this is the original model 
introduced by Valiant [11]; see [2, 3] for more details). 

If exact, on-line learning is considered, we will say that C is query-learnable if for 
every n > 1 each concept f 6 C.  is exactly identifiable by a polynomial time (in n) 
algorithm using equivalence queries from C,~ and membership queries. An equivalence 
query is a question of the type "Does the concept f 6 C~ equal to the target concept?" 
(if not, we are given a counterexamplc); a membcrship query is a question like "Does the 
value of the target concept on z 6 X~ equal to 1?" (see [2] for details). 
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3. R e s u l t s  

The basic idea of [10] in using complexity-theoretic results within the framework of 
Learning Theory is based on a correspondence between PAC-learnability of a concept 
class C and the complexity of the decision problem CONSISTENCY for C. 

CONSISTENCY for C 
Instance: POS, NEG C {0,1}" (for some n > 1). 
Question: Is there a function f E C,, such that f ( z )  = 1 for all x E POS and 

f (~)  = 0 for all z E NEG?. 

Pitt and Valiant [10] showed that if a class C is PAC-learnable then CONSISTENCY 
for C is in RP (see [4] for details on RP and other notions of Complexity Theory used 
in the paper). It follows that to obtain a non-learnability result for a class C (~ssuming 
RP~NP),  it suffices to show that CONSISTENCY for C is NP-hard (results of this 
type are given in [10]; see also [5]). That is, one can make use of pure complexity- 
theoretic results within the framework of Learning Theory. Unfortunately, the only 
currently known way to prove that a class C is PAC-learnable is using the inclusion of 
CONSISTENCY for C in P (or at least in RP), hence one cannot expect that Learning 
Theory could contribute to Complexity Theory in proving new inclusion results in RP. 
That is, the approach of [10] establishes a quite one-sided cooperation between the two 
fields. 

However, it is not the dase that this cooperation is destined to be a one-way traffic. To 
see this, we use a recent result of [5] which relates another decision problem to learning 
tasks. 

MEMBERSHIP for C 
Instance: A Boolean function f given in DNF. 
Question: Is f E C? 

The basic argument, due to [5], is the following. 

T h e o r e m  3.1. l f  a class C is query-learnable, then MEMBERSHIP for C is in co-NP. 

Once again, NP-hardness of MEMBERSHIP for a class C establishes that C is not query- 
learnable (if NP~co-NP). Results along this line are given in [5] for unions (intersections) 
of k halfspaces (for any fixed k >_ 2), corresponding to simple 2-layer neural network 
architectures (see [5] for details). 

Conversely, for classes which are known to be query-learnable, we have that the 
corresponding MEMBERSHIP problems belong to co-NP. Usually these inclusion results 
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are not obvious; for "reasonable" classes MEMBERSHIP is - intuitively - in ~ ,  but 
its inclusion in NP or co-NP is much less trivial. Of course, we do not claim that  our 
inclusion proofs based on query-learnability are "nice" or "instructive", but once you 
know that some result holds true, you can try to find a more instructive proof. 

To sum up, now it suffices to list the known positive results on query-learnability to 
obtain interesting contributions to Complexity Theory. 

First, consider some geometrically defined classes of functions corresponding to natu- 
ral learning systems like neural networks. A Boolean function f E F,, is linearly separable 
if there exist real weights w~, . . . ,  w, and a real threshold t such that  POS( f )  = { z I 

E X= and Ei~t  wixi > ~ }. Threshold functions of order at most k (for any fixed 
k > 0) mean a generalization of linear separability: weights are assigned to all mono- 
mials x;lx;2. . ,  xi~ of the input attributes, 0 < l < k; n-dimensional balls are defined 
analogously. All the described concept classes are query-learnable (even without mem- 
bership queries) [7, 8, 9], hence the following results can be obtained. 

T h e o r e m  3.2. It is co-NP-complete to decide whether a Boolean function given in DNF 
is 

(1) linearly sepa~ble; 
(2) of threshold order at most k; 
(3) an n-dimensional ball. 

Proof: The inclusions in co-NP follow from the query-learnability of the listed classes; 
the co-NP-hardness results are proved by reduction from the DNF-TAUTOLOGY prob- 
lem (given a Boolean function f in DNF, does f equal t o t h e  constant one function?). 
See [6] for details, where direct proofs of inclusions in co-NP are given using a result 
from combinatorial geometry (Helly's theorem) and a linear programming approach 
(parts (1) and (2) correct some mistakes in the literature, where the considered deci- 
sion problems were claimed to be NP-complete). t 

A further class which is query-learnable without membership queries is k-DNF (k- 
CNF) for any fixed k > 1 [11]. These are Boolean functions representable as DNF (CNF) 
expressions with at most k literals in each term (clause). 

T h e o r e m  3.3. For any fixed k >_ 1, it is co-NP-complete to decide whether a Boolean 
function given in DNF (CNF) belong8 to k-DNF (k-CNF). 

Proof: We only have to prove co-NP-hardness. Let k be fixed, k >_ 1, and consider the 
following reduction from DNF-TAUTOLOGY: given f E F~ in DNF, construct a DNF 
for the function g(z ,  y~, . . . ,  y~+~) = f ( z )  V y~. . .  Yk+t. One can show that f = 1 if and 
only if g is in k-DNF; the result for k-CNF follows. ! 
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Some concept classes are known to be not query-learnable without membership queries 
(if RP#NP) ,  but they become learnable if membership queries are allowed. However, we 
can make use of these learnability results in exactly the same way as above. 

The class k-term DNF (k-clause CNF) - for any fixed k > 1 - is the dass of Boolean 
functions representable by DNF (CNF) expressions with at most k terms (clauses). It  is 
known that for any fixed k _> 1 k-term DNF (k-dause CNF) is query-learnable [1], hence 
we easily obtain the following. 

T h e o r e m  3.4. For any fixed k > 1, it is co-NP-eomplete to decide whether 
(1) a Boolean function (given in DNF) has a DNF with at most k terms; 
(2) a Boolean function (given in CNF) has a CNF with at most k clauses. 

Proof: To prove co-NP-hardness for (1), use the following reduction from DNF- 
TAUTOLOGY: for f E F ,  in DNF, construct a DNF representation for the function 
g(z ,  y l , . . . ,  Yk+l) = f ( z )  Vyl V. . .  Vyk+l; clearly, f = 1 if and only if g can be expressed 
as a DNF with at most k terms; part (2) follows from part (1). t 

As a by-product, some progress on the complexity of the famous MINIMAL DNF 
EXPRESSION [4] problem is achieved. 

MINIMAL DNF EXPRESSION 
Instance: A Boolean function f in DNF and an integer K _> 1. 
Question: Has f a DNF representation with at most K terms? 

T h e o r e m  3.5. The MINIMAL DNF EXPRESSION problem is NP-hard, co-NP-hard, 
and belongs to ~ .  

Proof: The NP-hardness result is given in [4], the co-NP-hardness follows from our 
previous arguments, and the inclusion in Y,g is straightforward, tt 

Further examples of query-learnable classes are read-once and read-twice DNF formu- 
las [2]. These are Boolean functions representable by DNF formulas where each variable 
appears at most once (twice). For this class we can prove the following. 

T h e o r e m  3.6. It is co-NP-complete to decide whether a Boolean function (given in 
DNF} is a read-once (read-twice} DNF formula. 

Proof: It suffices to use the following reduction from DNF-TAUTOLOGY: given a 
function f E F~ in DNF, construct a DNF representation for the function g(z ,  Yl, y~) = 
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[ ( z )  V VlV2 V fftff2. One can show that  f ~ 1 if and only if g can be expressed as a 
read-once DNF. The case of read-twice DNF formulas is handled analogously. I 

FinMly, consider the search version of the above problems: given a Boolean function 
f E F~ in DNF (with m terms), construct a special representation of f if one exists 
(say, find the weights and the threshold of a neuron computing the given function if one 
exists). A simple simulation of a query learning algorithm gives the following result. 

T h e o r e m  3.7. I f  a class C is query-learnable, then the correponding search problem for 
C can be solved in time 2 0("'~). 
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