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Abstract.  Research in systems where learning is integrated to other 
components like problem solving, vision, or natural language is 
becoming an important topic for Machine Learning. Situations where 
learning methods are embedded or integrated into broader systems offers 
n e w  theoretical challenges to ML and enlarge the potential range of ML 
applications. In this position paper we propose the research topic of 
integrated learning architectures as an initial discussion of the role of 
learning in intelligent systems. We review the current state of the art and 
characterise several dimensions along which integrated learning 
architectures may vary. This paper has been prepared as a position paper 
with the purpose of providing an initial common ground for discussion in 
the ECML-93 Workshop on Integrated Learning Architectures. The paper 
has been edited by E Plaza on the basis of the individual contributions of 
the authors. 

Over the years, AI has divided itself into a number of research areas: planning, 
learning, vision, knowledge representation etc. Moreover, a multiplicity of learning 
methods and systems have been developed in the last decade in Machine Learning. 
There are currently more and more advocates both in ML and AI in general that invite 
the research community to think about our current situation and re-think our research 
strategies keeping in mind the long-range goal of a theoretical comprehension and a 
computational integration of present and future work. In the ML community, a 
growing trend exists today towards theoretical and implementational integration of the 
ML methods already developed. We want to bring together in the Integrated Learning 
Architectures workshop this growing research lines that integrate different ML methods 
with each other and ML with problem solving. In this paper, we will initiate the 
discussion of the role of learning in intelligent systems as a key issue on the research 
agenda on integrated systems. 

1. Background 
One of the main issues in AI is that of the adaptation of a system to its environment: 
hardly any system that systematically behaves identically during its interactions with 
the environment could be considered intelligent. The lack to adequately cope with the 
adaptation issue has been 'explained' in different ways: lack of flexibility or 
adaptability, lack of graceful degradation (brittleness), etc. From the beginning of AI, 
research on learning processes coped with these problems, from adapting to the 
environment and learning through practice to learning from observation and discovery. 
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Machine Learning developed into an active field in these last years, and therefore 
developed its owns goals, techniques, research programmes and paradigmatic 
achievements. Nevertheless, the necessity of understanding the role of learning 
processes in intelligent systems remains an open issue. 

On the more technical side, building AI systems, both research and commercial, have 
also suffered from a number of problems, particularly the knowledge acquisition 
bottleneck and the fragility issue. Machine Learning has been mainly applied to the 
first problem as an aid to synthesis of new knowledge. Ideally, learning has been 
viewed, in this paradigm, as a process that from examples (and maybe interactions 
with some expert users) 'generates' a complete delivery system capable of solving a 
range of tasks: e. g. use a learning program to build and deliver a rule-based expert 
system. This approach has a modularity advantage: it is easier (or not much more 
difficult) in principle to connect ML techniques and AI problem solving techniques 
when kept both separate. However, an ML-generated delivery system will most likely 
suffer the same adaptability deficiencies as any other AI system. Yet it is manifest that 
a lot of flexibility and adaptability can be gained if an AI system, working in a task 
environment, would be capable of learning from practice, from experience, or from 
observation, depending on the task at hand (or from all of them). Therefore we have 
arrived again at the issue of integrating learning with task performance. 

The integration of learning into a broader framework is a decisive strategic decision in 
ML research, from which scientific and technical advances can be gained. Integration 
issues can establish the nature and goals of learning in the framework of global goals 
or concerns (e.g. adaptation to environment, routine task speed-up, theory revision, 
etc.) In fact, it is difficult to conceive how learning can make any sense in complex 
domains without constraints external to the learning process itself. 

Research in ML addresses specific learning tasks in the context of specific problem 
solvers, In particular the complexity of the full scope of intelligent learning and 
problem solving is sometimes narrowed down by: 
�9 Assuming a single, uniform task for the performance component. Apart from 

systems that learn declarative knowledge bases, most systems involve performance 
tasks that are defined by data and solutions and that have no internal structure. 

�9 Focusing on learning at a single dimension of the performance knowledge (e.g. 
generalisation, speed up or compression) 

�9 Presenting relevant input data for the learning process in the right form, indicating 
the role of the data in the learning task. It may not be obvious if and how 
knowledge is relevant for learning. For example, if we learn to drive a car, it may 
not be clear if understanding the mechanics of the car is relevant and if so, how this 
can be used to learn to drive. 

Although these simplifications are inevitable in early stages of the research, the limits 
of this approach are becoming visible. There has also been work in AI generally, and 
in ML specifically, that is directly concerned with the issues mentioned. All of this 
deals, in some way or other, with the integration of learning into a more broad 
architecture. We can arrange them into three main research strategies: cognitive 
architectures (e.g. SOAR [Newell 90], ACT* [Anderson 83], PI [Holland et al], etc), 
architectures integrating learning and problem solving (integrated architectures like 
THEO [Mitchell et al 91], ICARUS [Langley et all, PRODIGY [Carbonell et al], and 
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case-based reasoning systems like JULIA [Kolodner 87], PROTOS [Porter 90]), and 
multistrategy learning [MSL-91]. 

The broader framework in which learning takes place in integrated architectures opens a 
new spectrum of opportunities for ML research and application. For instance, some 
issues that were implicit in ML systems need now to be dealt with explicitly. In 
current research on multistrategy systems, the issue of selecting one learning method 
among several alternatives is now addressed, and also the criteria that may be used to 
direct such a selection. In an integrated architecture it is required that the situations that 
offer opportunities for learning are clearly stated: which kind of situations (failures, 
success, impasses, etc. and their types) can be exploited by learning, and how? 
Different options have been explored: impasse-driven learning in Soar, architecture- 
specific axioms in EBL-Prodigy, etc. These are some of the goals we addressed in the 
following section. 

2. What is an Integrated Learning Architecture? 

To qualify as an Integrated Learning Architecture (ILA), a system must be able to learn 
and to perform at least one problem solving task, and either learning and problem 
solving must be flexibly integrated in a single control structure, or learning and 
problem solving must flexibly use the same knowledge structures. The main point 
here is distinguishing learning embedded in a global system from mere usage of 
learning methods instrumental to (but external to) build, say, an expert system. 

An ILA can be characterised as an architecture for tasks with three different life cycles: 
simple problem solving, interactive problem solving and learning. These systems can 
be characterised in terms of their architecture. 

Problem 
Solving 

Simple PS 

Data Knowledge Architecture 

presented once & stable stable 
forgotten 

Interactive PS increasing/ stable stable 
being replaced/ 
forgotten 

Learning increasing/ changing stable 
being replaced/ 
forgotten 

Some tasks are "instantaneous": data are presented and a solution is requested. For 
other tasks, part of the knowledge remains valid and potentially applicable but other 
information (data) may change. This is the case in interactive consultation, monitoring 
systems, etc. Learning systems (in particular incremental learning systems) perform 
tasks at two levels of scope/time span: (a) the "problem" level (where only data change 
with a new problem) and (b) the "task" or "domain" level: they acquire knowledge for 
performing a particular range of tasks (in addition to type (a) problem solving with 
changing data). Our interest is in systems or methods that perform tasks involving 
both problem solving and learning and that are "architectures" in the sense that they are 
described in terms of components which can be configured in different ways. In 
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particular we want to explore systems performing tasks with both learning and 
problem solving subtasks. 

ILA's define a framework in which a number of new problems can be investigated: 

(a) Selecting a learning method 

For instance, some issues that were implicit in ML systems need now to be dealt with 
explicitly. In current research on multistrategy systems, the issue of selecting one 
learning method among several alternatives is now addressed, and also the criteria that 
may be used to direct such a selection. 

(b ) Learning from different types of data 

A characteristic of integrated learning architectures is that learning is experiential, i.e. 
it occurs incrementally through the performance of some reasoning task. Situations 
that offer opportunities for learning are clearly stated: which of situations (failures, 
success, impasses, etc. and their types) can be exploited by learning, and how? 
Different options have been explored: impasse-driven learning in Soar, architecture- 
specific axioms in EBL- Prodigy, etc. 

(c) Selecting data for learning 

Planning to learn, detecting opportunities to learn, and selecting learning methods to 
solve errors of other components of the architecture or improve their performance. The 
label of "active learning" is used to stress the importance of learning processes in 
natural intelligent systems, and to emphasise the relevance of learning process in AI 
systems. 

(d) Goal directed learning and problem solving 

An ILA has a flexible if not opportunistic learning strategy, in the sense that learning 
goals that are not immediately satisfiable are remembered so that the reasoner can 
recognise and use opportunities to pursue them. The learning goals in a ILA can be 
explicitly represented (e.g. the concepts of SUCCEEDS, FAILS, SOLE- 
ALTERNATIVE in EBL-Prodigy) or can be implicitly established in the 
implementation of the architecture. 

This raises the following questions: 
�9 What is the goal(s) of learning? 
�9 How learning goals are generated and selected? 
�9 What knowledge of another component does a learning method require in order to 

be able to learn? 
�9 How do learning and problem solving constrain each other? 
�9 How can they support each other? 
�9 How the results of learning are integrated into the overall architecture? 

(e) Which knowledge is needed to perform integrated learning and problem solving? 

What knowledge of another component does a learning method require in order to be 
able to learn? How is that knowledge represented and used? 

One approach is to use a self-model of the architecture. Self-model(s) is(are) required 
because of the integration of learning method(s). In general, a learning method has to 
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have a model of what are "successes" and "failures" in the architecture, and of other 
relevant concepts for learning (e. g. the SOLE-ALTERNATIVE concept in EBL- 
PRODIGY). These concepts are part of the learning self-model of the ILA. Again, the 
self-model (the definitions of these concepts) can be explicit (as in the architecture 
axioms of EBL-Prodigy 1) or can be implicitly established in the implementation of 
the architecture. These models are method-specific, i.e. they are different for different 
learning methods (this is called "white-box requirement" of Prodigy in [Carbonell et 
al], meaning that any ML method has to be able to view and represent what it requires 
of the system). 

Moreover, the learning method needs to be able to effectively inspect part of the 
structure and behavior (state) of the architecture, and interpret that into its method- 
specific model. Therefore, learning is a type of meta-level inference. A meta-level 
inference is a kind of inference able to inspect (to have a model of) the object level, 
infer some new decision, and modify the object-level in such a way that it complies to 
that decision [Smith 86]. For instance, in EBL-PRODIGY, the architecture has to be 
able to analyse its behavior, detect situations that involve a failure, select and apply 
the EBS method, and include the result in its knowledge-base. Meta-level inference in 
learning has been acknowledged in the literature as the introspective [Ram et al 92] or 
reflective [Plaza 92] characteristic of embedded learning. 

Some examples may clarify this point. Meta-XP in Meta-AQUA [Ram et al 92] record 
a declarative model of the AQUA system problem solving, determine the blame 
assignment and selects the adequate method (EBG, index specialisation, etc.) the 
execution of which transforms the system's knowledge such that its behavior is 
improved. Another example is the Massive Memory Architecture [Plaza 92], where 
decisions, successes and failures are declaratively recorded in the system's memory of 
cases and search control in problem solving is guided (when lacking specific domain 
knowledge) by analogical transfer of past decisions in similar situations to the current 
problem. 

The meta-level issue is also implicit in the inferential learning theory [Michalski 91]. 
In ILT learning methods are analysed as higher-level inference patterns the result of 
which are "knowledge transmutations", i.e. the modification of the system's 
knowledge as mandated by the inference performed by the learning method. 

(f) Theoretical integration: learning and problem solving as inference 

Inevitably the issues of integrating learning with different types of problem solving 
into a coherent whole (an ILA) arises as a necessary element both for ML research 
specifically, and for the role of learning in AI more broadly. These topics will shape 
the discussion and understanding of integrating learning, in a principled and 
comprehensive way, with other kinds of architecture components. Our approach to this 
is architectural, viewing learning as problem solving, rather than "inference based" as 
in the work by Michalski [Michalski 91] and inductive logic programming. 

1 At least conceptually, architecture axioms are explicit in EBL-Prodigy. However, 
computationally, the architecture has those axioms implicitly included into the 
implementation (Alicia Pdrez, personal communication). 
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There are different dimensions along which ILAs may be at variance. One is the 
typology of opportunities for learning that are established in an architecture. This is 
part of the method-specific self-model, as for example in EBL-PRODIGY the typology 
is composed of the following types of learning opportunities SUCCEEDS, FAILS, 
SOLE-ALTERNATIVE, and GOAL-INTERFERENCE. Another dimension ranges from the 
fixed attachment of particular learning methods to specific types of situations vs. the 
dynamic selection of methods in multistrategy learning systems. Prodigy is an 
example of the fixed attachment of a learning method: only one of the existing 
methods (EBS, STATIC, derivational analogy, etc.) is used; while Meta-AQUA [Cox 
et all selects a learning method according to the type of situation encountered. 

A third dimension corresponds to the spontaneous/deliberate occurrence of learning. 
SOAR and the Massive Memory Architecture are examples of spontaneous learning in 
the sense that learning taking place automatically and not after an explicit system 
decision. PRODIGY and Meta-AQUA on the other hand are both examples of deliberate 
learning because both apply a learning method as an explicit decision resulting from an 
assessment of the utility of applying a particular learning method to a concrete 
situation. 

3. A Framework for Describing ILAs 

In this section we outline a framework for describing integrated learning architectures 
and propose our research strategy based on that framework. An integrated architecture is 
the computational realisation of a theory in terms of a fixed form, variable contents 
program that can be instantiated in a systematic and predictable way to achieve a range 
of systems the behavior of which exhibits a range of aspects of intelligence. Well 
known integrated architctures are SOAR [Newell 90], ACT* [Anderson 83], PI 
[Holland et all, etc), THEO [Mitchell et al 91], ICARUS [Langley et all and 
PRODIGY [Carbonell et al]. 

We propose that there are three distinct architectural levels that are meaningful, and 
useful; to talk about and that correspond roughly to a why, how and what descriptions. 
These are the knowledge level, the functional (symbol) level and the behavior level. 

�9 The behavioral description describes the observable behavior exhibited by a system 
when it is being applied or executed. This is a what model of system behaviour 
(i.e., a series of episodes of the system's activities) and it is created by an act of 
observation. 

�9 The functional description describes a system in terms of its representational and 
computational primitives that together constitute the architectural primitives. The 
functional description is a how model of system behaviour and created by an act of 
mechanisation. 

�9 The knowledge level description describes a system in terms of the knowledge of 
the world and the principles that are applied when using that knowledge (principles 
of rationality). It is a 'why' model of system behaviour and created by an act of 
rationalisation. 

For example a re-implementation of Mycin in SOAR has a behavioral description in 
terms of consultation episodes, a functional description describing how these 
consultations are realised as a search in a problem space using certain operators and 
preference rules, and a knowledge level description that explains the system behavior in 
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terms of the medical and patient knowledge that it is assumed to embody. 

These three perspectives can be used as follows. An integrated architecture is, 
basically, described at the functional level. That is, it provides one with classes of 
structures (e.g., state-space, rule, knowledge source, blackboard) and mechanisms (e.g., 
state-space search, chunking, unification) interconnected and controlled in a fixed way. 
These structures and mechanisms are the architectural primitives that must be used in 
order to realise a system behavior. This system behavior, once exhibited, can be 
described either at the behavioral level or at the knowledge level. Thus, and this is 
crucial, a single functional architecture is used to implement a range of knowledge 
level and behavioral descriptions. This makes an architecture a computational theory 
with "fixed form" but "variable contents" that is targeted towards implementing a range 
of knowledge level and behavioral descriptions in a controlled and predictable way. 

Knowledge level descriptions are, typically, in terms of goals, tasks, methods and 
models [Steels 90]. Descriptions in these terms capture not only the actual knowledge 
that is being used, but also the structure that emerges when the knowledge is being put 
to use in a class of situations. This structure can be called a knowledge level 
architecture, i.e., a use-specific window on the knowledge. For example, the model of 
heuristic classification is visible in a pattern of inferences that contribute to abstract, 
heuristic match and refinement steps in reasoning [Clancey 85]. The model is not 
visible at the functional level, but it is the recurrent structure for knowledge level 
descriptions of behavioral episodes exhibited by the system. 

KL d~cripti~ 1 Knowledge Level _~ 

Architecture ~ ... 

KL description n 

~_havioL~l epLg~/e 1 
Functioi~l 

.~ 

Architecture 
Bd~avioz~l episode n 

We propose to compare architectures by the range of knowledge level architectures that 
they can realise. Integrated learning architectures will include in their knowledge level 
architecture, at least one learning goal. Learning goals, tasks and methods are described 
in exactly the same way as the reasoning aspects. The problem solving aspects of a 
diagnostic application might be roughly described as follows: 

Goal: diagnosis of a car 
Task: identify smallest component with functional discrepancy 
Method: try shortcut rules, otherwise hierarchical decomposition and testing 
Models: heuristic symptom-fault associations, structural model, 
expected behavior of components, tests. 

The same system could exhibit learning behavior along the following lines: 
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Goal: reduce number of tests required 
Task: acquire shortcut rules from successful episodes 
Method: learning through progressive refinement 
Models: causal model of component behavior 

Implicit in this description is a decision on when to learn (after success), how to learn 
and what knowledge to use. This is the knowledge level equivalent of the architecture 
axioms (section 2), and we call them integration principles. In other words, an 
integration principle is a paradigmatic way to interconnect problem solving and 
learning in order to achieve a learning goal. Note that learning through progressive 
refinement is not the computational learning technique but an indication of the fact 
that the system behaves as if it uses such a technique. Whether this is the case or not 
depends on the functional architecture and as shown in the previous figure, there is no 
direct mapping from functional architecture to knowledge level architecture. 

The above description in terms of goals tasks and methods, without the actual 
knowledge statements is the knowledge level architecture of the system. In this case it 
is likely to be fixed. It is however, perfectly possible that the same functional 
architecture could be used to realise other knowledge level architectures. For example 
the system might be able to learn from failures as well and maybe include a learning 
goal of limiting memory overhead which it realises by a task of forgetting infrequently 
used rules. It may exhibit pursue different learning goals depending on circumstances. 
In that case it will implement different knowledge level architectures (or a more 
sophisticated one). For example, the functional architecture of SOAR provides a single 
learning mechanism (chunking) that can realise a multiplicity of knowledge level 
learning goals (speedup, increasing goal directedness, smoother interaction, and so 
forth). 

A similar role can be given to the behavior description, though it is typically less 
central. We propose that classes of behaviors can be described qualitatively to capture 
behavioral characteristics that make no difference from a rational (knowledge level) 
point of view but imply different pragmatic constraints. For example the ordering of 
questions in an interaction episode may be important to determine the practical 
usability of a system. Behaviors could be characterised as smooth, erratic, aggressive 
and so forth to describe pragmatic aspects of architectures. These are more prominent 
for physically behaving systems like robots, and we will not treat this issue further in 
this paper. 

The above scheme is the basis for a research strategy on integrated learning 
architectures. We propose to analyse functional architectures in terms of the knowledge 
level architectures that they can realise and, the other way around, to derive ways in 
which a desired knowledge level architecture can be realised in a given functional 
architecture. This requires the investigation of knowledge level descriptions of learning 
goals, tasks and methods in addition to problem solving, and the development of 
integration principles and architectural axioms that can realise knowledge level 
architectures in functional architectures. 

The framework could be used to describe existing architectures. Here is an initial 
description of S~OAR [Newell 90] and CREEK [Aamodt] architectures. The 
descriptions are highly incomplete, both in depth and breadth and are intended to serve 
as an example of characterisations of well-known systems, as well as a proposal to 
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further discussions and eventually to sum up the architectures presented at the 
workshop. 

3.1 Knowledge Level Description 

A knowledge level description of an architecture is a description in terms of the 
purpose of the architecture and how this purpose is fulfilled by a task decomposition, 
methods and knowledge. At this level, a system's behaviour in terms of what it 
intends to do, and what it brings to bear in order to be able to do it, can be explained. 
The potential and limitations of the system's capabilities can be predicted. 

K~Qwledge-lcvel descriotion of SOAR: 

Goal: 

Subtasks: 

Methods : 

Knowledge : 

Unified cognitive behaviour. 

Solve problem 

Learn during problem solving 

Problem solving by state-space search, 
states are existing or created goals. 

Learning by chunking. 

Domain knowledge as productions. 

Strategic knowledge as preferences. 

Knowledee-level descriotion of CREEK 

Goal: 

subtasks: 

Methods : 

Knowledge : 

Problem solving in real world, open domains. 

Solve problem. 

Learn after each problem solving session. 

Problem solving by co,lined case-based and 
generalisation-based reasoning. 

Learning by retaining cases. 

Domain knowledge as a dense semantic net, 
with cases integrated into it. 

Strategic knowledge as heuristics. 

_Description items: Goal hierarchy. Tasks assigned to goals. Methods to achieve tasks. 
Knowledge needed by the methods. A method is applied to a task. This will either lead 
to an achievement of the task or a decomposition of it into subtasks 2. 

3.2 Symbol Level Description 

A symbol level description of an architecture is a description in terms of its knowledge 
representation language, the inference methods of the language, and how these combine 
into specific reasoning and learning methods. At this level, it can be explained how a 
system is able to achieve its goals through its methods and its knowledge, by referring 

2 See [Steels 90] on knowledge-level descriptions of expert systems and [van de Velde 90] 
for an application to learning systems. 
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to the underlying functions that are executed. Predictions can be made about a system's 
problem solving competence, what it is able to learn, its ability to interact with the 
external world, etc. 

Descriotion items: Knowledge representation language, operations on the 
representation - in terms of input/output descriptions. A symbol level description, not 
getting into the actual computational mechanisms. 

Symbol-level descriotion of SOAR: 

Representation: 

Functions 

- probl, solv: 

- learning: 

- primitive: 

Problem spaces represents tasks 

Productions represent all knowledge 

Attribute-value pair is the representational 

unit 

Decision cycle: Elaborate, Decide 

Decide: Evaluate preferences, Detect impasse, 

Create subgoal 

Create chunk after each impasse/subgoaling 

Select problem space, Select state, Select 

operator, Apply operator to state. 

Symbol-level descriotion of CREEK: 

Representation: Single semantic network holds all knowledge 

Frames represent all concept types 

Frame-slot-facet-value quadruple 

(Concept-relation-relation_type-value) 

is the representational unit 

Functions 

- probl.solv: Main cycle: Understand-Generate-Select 

Subcycle for each main function: Activate- 

Explain-Focus 

- learning: Main cycle for case-learning: 

�9 Extract-Construct-Evaluate-Store 

- primitive: Spread activation, Determine context, Retrieve 

cases, Derive plausible l~porheses, Select 

best hypothesis, Extract relevant case info, 

Index case 
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4. Conclusion 

Although there is already some experience in the embedding of learning methods into 
integrated architectures, most of the crucial issues remain open nowadays. Some of the 
open issues are general to any computational system that integrates several 
components, from hybrid representation languages to integrated cognitive architectures. 
These issues includes the uniform vs. hybrid approaches discussion, and the tight/loose 
integration spectrum. Uniform approaches like Theo and Soar achieve integration by 
having all components represented in the same language. Introspective systems like 
Meta-AQUA and the Massive Memory Architecture achieve integration having a serf- 
model of the system used for learning purposes. Still, other systems like Prodigy have 
several learning methods that have different models of the problem solving component 
and thus are separately integrated with the same problem solver but no further 
integration among them is achieved. 

More specifically, embedding learning arises some crucial issues for ML, as we 
discussed in w What knowledge of another component does a learning method require 
in order to be able to learn? What is(are) the goal(s) of learning? How learning goals 
are generated and selected in the integrated architecture? How the results of learning are 
integrated into the overall architecture? Furthermore, the necessity of a comprehensive 
theory for analysing and comparing different learning and problem solving components 
arises. One candidate is the Inferential Learning Theory [Michalski 91], another one is 
using a knowledge-level description like the Components of Expertise [Steels 90] for 
describing both learning and problem solving components [van de Velde 90], [Plaza 
92]. 

There are also following are some long term research objectives: 

�9 categorisation of learning goals of agents, either ,as individual [Mitchell 90] or as a 
group [Brazdil et al 92]. 

�9 study of integration principles (architecture axioms) and their applicability 
conditions. Associated methods for flexible and dynamic (re-)configuration of 
learning task and methods within problem solving to deal with varying learning 
goals imposed by the environment. 

�9 techniques for the genuine combination of learning methods, rather than treating 
them as alternatives to be selected or, alternatively, techniques for the unification 
of learning methods in a single approach. 

�9 learning beyond domain knowledge, for example of new tasks or methods. 
Learning about learning (about why, when, what and how to learn). 

�9 learning under resource limitations (anytime learning, memory management, role 
of forgetting). 

�9 are the processes of learning and problem solving really different van de Velde 90]? 
Are learning and adaptation really different [Maturana and Varela]? 

�9 integration with physical behaving systems, robots [van de Velde 92] while taking 
into account recent results from robotics [Maes 90], biology [Maturana and Varela] 
and epistemology [Clancey 85]. 

The ultimate goal, of course, is to construct an architecture that embodies the answers 
to all of these questions. The research strategy outlined above is an approach toward 
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this goal. It is our feeling that work on isolated learning can not yield significant new 
insights and that now is the time to try the integration of the results from Machine 
Learning and other disciplines in a unifying theory and architecture of reasoning, 
behavior and learning. 

Advances in the direction of ILA's will be both of theoretical and practical interest. We 
expect that it will integrate research on learning and problem solving, increasing our 
understanding of intelligence. On the other hand it will teach us how to apply learning 
in the context of intelligent systems, even where these are based on a wide variety of 
problem solving architectures. This will broaden the range of possible applications of 
ML techniques. 
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