
A F u l l y P a r a l l e l C a l c u l u s o f
S y n c h r o n i z i n g P r o c e s s e s *

Diego Latella t Paola Quaglia$

| CNR Ist. CNUCE, Pisa, email: iatella@fdt.cnuce.cnr.it **
t Dip. di Informatica, Univcrsits degli Studi di Pisa, emaJl: quaglia@di.unipi.it

Abs t rac t . We propose a fully parallel calculus of synchronizing processes.
The calculus was deeply inspired by LOTOS, of which it inherits multi-party
synchronization in process parallel composition. On the other hand, its se-
mantics is not interleaving whereas LOTOS one is. The model we propose is
somehow in between Milner's SCCS and ASCCS in that independent actions
are performed simultaneously, whereas synchronization is achieved by means
of delay. Also, delay is coJ~trolled in the sense that no process can delay an
action if the environment allows that action to be performed.
The calculus we propose here was originally designed as a first step towards a
probabilistic one. Nevertheless we thiuk that the pure version of the calculus
has some features which are interesting on their own. As an example we use
it to describe a quite simple system which may be thought of as a possible
fault tolerant architecture for a hardware component.
We also provide a set of equational laws based on a notion of strong bisimu-
lation.

1 Introduction

In this paper we present a tinily parallel calculus of synchronizing processes. Tile
calculus was originally designed as a first step towards a probabilistic one [I1]. Sev-
eral probabilistie models have been proposed ill the literature [2,4,5,6,8,13,18,21,22].
They are derived mostly from SCCS [15] which, contrary to CCS [14], has a non-
interleaving semantics.

In fact, ill order to reason about probabilistic systems, it is a crucial point to
have a direct correspondence between choice operalors in bchaviour expressions and
the branching slruclure of the transition systems those expressions denote. This is so
because on the syntactical level probabilities are associated only to the alternatives of
choice expressions. On the other hand, from a semantic point of view, the transitions
leaving from any state nmst define, all logelher, a stochastic experiment, which
implies all of them being labeled by both an event and a probabili ty value, so that
the transition system can be thought of as a Markov system. This is not the case

* This work has been done within the ESPRIT Project Ref. 2304 - LOTOSPHERE and has
been partially funded by CPR (Consorzio Pisa Ricerche) and the CNR-NATO Advanced
Fellowships Program.

** Current address: Univ. of Twente, Dept. of Comp. Science - PO BOX 217 - 7500 AE
Enschede - NL email: latelln@cs.utwente.nl

733

with interleaving semantics since there are branches in transition systems which do
not come from non-deterministic choice, but rather fl'om parallel composition.

All the proposals for probabilistic process calculi mentioned above do not allow
for multi-party synchronization, which is a main feature of CSP [1] and LOTOS [7]
and is essential for modeling multi-/broad-casting. Tile only proposals for dealing
with multi-party synchronization for probabilistic processes we know about are [3,
20]. Anyway they both are based on interleaving semantics and force to assign the
same (fictitious!) prohability to all transitions of branches generated by parallel
expressions.

In our calculus, .like in LOTOS, parallel composition looks like BIIGIB2 , where
B1 and B2 are behaviour ezpressioas (i.e. processes) which can proceed in parallel
but are compelled to simt,ltaneously execute those actions belonging to the list G.

Departing from LOTOS standard semantics, we require (as in SCCS) that every
transition corresponds to the simultaueous execution of an action by every compo-
nent of the system. So the notion of a single atomic action at a time is replaced by the
notion of as soou as possible and composite event, the latter being denoted by a multi-
set. In other terms an action must be executed as soon as the environmentmakes it
possible. For instance, being ';' the prefixing operator, the process a; st@l[llb; stop
performs {{a, b}} and becomes stoplHIstop (using '{{' and '}}'as nmlti-set brackets).

The situation is quite similar to Milner SCCS in that independent actions are
executed simultaneously, but the actual action each process performs depends both
on the actions it. is able to perform aud the synchronization constraints imposed by
the parallel context in which it is put, i.e. its environment. In particular, when a
process is ready to perform an action which is not allowed by the environment, the
former is delayed and the action will be executed if and as soon as the synchronization
constraints will allow it. In the n manwhile, the process will be forced to idle.

With this respect the model is similar to Milner's ASCCS [15] in that it does not
force the specifier to explicitly insert idle actions in tile specification in order to get
the processes synchronized. On the other hand, it differs from the above mentioned
calculus since delay is controlled: no process Call delay an action if the environment
allows that action to be performed. For instance consider the behaviour expression
BII[a]IB2 = (a; stop)l[a]l(b; a; stop). When B2 performs b, process B1, whose initial
action is a synchronization one, namely a, is delayed and executes the special idliug
action ,~:

B11[a]l B2 {~a,:,b)] BI'I[a]IB2' = (a; stop)l[a]l(a; s top).

Now both BI ' and B2' can perform action a, so:

BI'I[a]IB2' {{~'~}} (stopl[a]lstop).

In conclusion, we call our model fully parallel in the sense that it expresses the
highest level of parallelism of actions which is allowed by synchronization constraints
(i.e. everything which can be done must be done).

We formalize the concept of delay by means of an operational semantics which
defines transition relations parametrized by delay sets, i.e. sets of actions which
must be delayed. Given any finite set ,_4 C_ Gates (Gates being tile set of observable
actions), B ~-~a B ~ informally means that B can produce the event a and transform
in B' when all the actions belonging to z5 are delayed. Given a behaviour expression

734

its semantics is then the one generated by letting ,5 = 0, the intended meaning
being obvious. The reason why we do not consider only the transition relation -----+o
is that, when a behaviour expression is put in a synchronization context, the delay
se t /1 is computed according to synchronization constraints. In other terms, in order

Q' ot l
to deduce BllGIB2 ~ B' , we need to know B1 ----+ai B1 ~ and B2 ~'-~ aa B2' for
suitable ,41 and Z22, as we shall see later.

The rest of the paper is organized as follows. In Section 2 we discuss the formal
semantics of the calculus. An example of its application is given in Section 3. In Sec-
tion 4 we provide a notion of slroug bisimulatiou equivalence and a set of equational
laws. Section 5 contains diz:cctions for future work.

For the sake of simplicity we consider here only a subset of the calculus 1 con-
sisting of inaction, actiou prefix, choice, parallel composilion, hiding, relabeliug, and
process iustautiatiou. A process B has the following sintax:

B ::=sto, , l / . t ;B]B[lBlLq611~]hidegl , . . . , ranin 131B[al/fl,...,a,t/.:n]I
P [a l , . . . , an]

where IJ,gj, aj, f j ~ Gates for 1 < j < n.
We collect now some notational conventions which are used throughout tile paper.

Given any synchronization list G, we let G denote also the set with tim same elements
of the list., hm.hermore a', a ' l , a'2, /'3, /31, /32 E t'.v which is the set of the events, i.e.
of tile finite multi-sets on Gales tO {)~} where)~ ~ Gates. {{a}} + denotes tile multi-
set which contains only a finite, non-zero number of occurrences of a while # (a , a)
denotes the number of occurrences of a in the multi-set ~. V is the union operator
over multisets and finally o.[al/fl an~f n] denotes the multi-set obtained by
simultaneously replacing in a: all l, he occurrences of any f j with aj and, if F =
{gl ,gn}, we use a[a/r] as a shorthand for a[a/gl, . . . , a/gn].

In the sequel we shall assume the absence of unguarded recursion. Moreover, for
the sake of notational simplicity, we shall often let the same symbol denote both
a multiset and tile set, of its elemeuts, the intended meauing being clear from the
context.

2 O p e r a t i o n a l S e m a n t i c s

We define tile operational semantics [17] of tile fully parallel calculus by means of an
auxiliary set of axioms and deduction rules (Fig.l) 2 which define the relations ' a .
Let BE be the set of tile behaviour expressions; formally ----+,aC_ (BE • Sv • BE)
where z2 is a finite subset of Gates. Then tile semantics of a behaviour expression
(i.e. tile transition relation - -~) call be derived only by means of tile following rule:

B --%~ B'

B '~ , B '

In the sequel we shall suppose that B, B1, BI' ,B2 e B2' range over BE. Also,
O' Z t " B ~ ' a is a shorthand for 3B ' : B "-'-*a

i The reader interested in the whole calculus is referred to [11].
A first, simpler, version of this semantics is presented in [10], there it is also shows that
such a simple version is indeed una.ble to express externM nondeterminism.

735

(st) stop ({-~}}a ~top

(~t) , ; n" ' -L! '~ .~n , i1 , r

(a2) V; B {{x_.~}} a ~; B , i1 ~ E ,a

(r n i z a m ' , ~ r +

(r B2 ~ a B~-', ~ r {{M} +

(ca) m ~-L,~ m ' , -B2 ~-s B2',

(pld) B1 ~--~1 GUA BI ' , 132 ~2-~GUa B2 I, D e l a (B I , G , o2)

implies BlIGII32 ~'l~--~~ BIIIGIB2 t

(prd) /31 ~-~t ota~ B I ' , B2 ..-~ B2 ~, Del.~(132, G,c*l)

implies /3~16'1B2 ~ BI'IGIB2'

implies BI[]B2 --'*a" B11

implies BI[]B2 --~ ,~ B2 I

vel,er2 ~ {{A}} + implies m l l B 2 "22J ,~ m'l]t~2'

~1 e,2
(p_b) B1 ----*c.nl~(BllOlB2)o, a , B2 -'---*c..t.a(~llOlB2)ta, a ,

tll t12
B I - - . * c . n t a (O l l O l t ~ 2) u a u r l /31 ~ , 132 ~ C . n t a (O l l G i O Z) u a o ~ g . 2 B 2 # ,
B,a(B1 ,B2 , G, cd ,a2 , f l l , f l2)

implies BI~GIB2 ~l--V--*a2za /311]GIB2 t
where F1 = (a l C ~ G) \ a 2 , F2 = (o2N G) \ c d

o *[i/gl,,..,i/tt n]
(h) 13 "-*~\{gl,. . . ,gn} /3t implies hide # 1 , . . . , #n in B " ' * a hide # 1 , . . . ,#n in B t

. -[.~/s~ H-I B'[~l / f l ~ . l / , q (r) B ---'*r B ' implies B [a l /] l a n / I n] "-'-~a
where l " = (a \ { f l , . . . , f n }) u { f j : a j E a }

(p) B [a l l / l anHn] "Y--,a B" implies P[al an]-2-.,a B '
where P[]I]n] = B

Fig. 1. OperationM Selnantics

The axiom (st) says that stop does not perform any action letting time pass.
The axioms for action prefix simply say that the atomic action #, which is the only

one ready to be executed, can actually be executed (al) only if it is not requested
to be delayed. If it is not the case (a2), then an idle action ,~ is performed and the
process remains unchanged, so that the same action will be ready for execution later.

The interpretation of the rules for hiding, relabeling and process instantiation
is straightforward. We simply want to point out that the language of our calculus
has indeed also a special unobservable action i which we omitted in the presentation
above for the sake of simplicity. It corresponds to the 7- action of CCS and can never
belong to a synchronization list. So in our framework, without making the notation
dull, it is sufficient to know that any delay set can never contain i. And in fact the
rule for hiding is such that the behaviour of hide g l , . . . , gn in B w.r.t. A is derived
by the one of B w.r.t, a delay set which does not contain the actions of {gl , gn}
which, just as the unobservable action i, have never to be delayed.

As far as relabeling is concerned, simply notice that, in order to infer the be-

736

haviour of B [a l / f l an~f n] when delayed on A, what we must know is tile
behaviour of B when delayed on those elements belonging to A that will not be
relabeled and those elements that will be relabeled by gates of ,4.

The semantics for the choice operator is such that the following requiremeuts are
met:

- in order for an alternative to be selected for execution it must not be the case
it is completely delayed on .4, i.e. it must produce an event which is not labeled
by As only ((el), (c2));

- if both alternatives are coml)letcly delayed then the choice expression itself is
delayed (c3).

For instance the only possible transitions of

B = (a; stoplflla; stop)[l(b; stoplOlb; stop)

when delayed respectively on 0, {a}, and {a, b}, are the following ones:
B--{{a, a}} --.~ (stoplfllstop) and t3--{{b, b}} --.~ (stopl~lstop),
B--{{b, b}} -"'{a} (stoplDlstop),
B--l{a}}--,~.,~ B.
The expression B above performs two transitions of size two when delayed on @ but
it executes only one transition w.r.t, the delay sets {a} and {a, b} (respectively of
size two and one).

O b s e r v a t i o n 1. All increase in the size of the delay set may induce a decrease on
the number of transitions of a choice expression as well as the size of the involved
events. The size of an event is to be intended as the potential degree of parallelism
of the event, i.e. the number of processes contributing to its realization. The actual
degree of parallelism is of course given by the number of non-)t actions in the event.

In order to explain the rules for parallel composition we need to introduce tile
function Znit~a (see Fig.2). Znit~a(B) is recursively defined on the structure of be-
haviour expressions and contains 3 all the observable actions which B may perform in
its first step when delayed on A. For instance Znit~((c; slop[]b; stop)l[a, b]l(a; slop[]b;
slop)) = {c, b} and in fact we do not expect that the parallel composition can per-
form a since a is a synchronization action and one of the partners cannot execute
it.

Using Znita we can now establish (Def.2) which are the synchronization actions
that BIIGIB2 is not enabled to perform.

D e f i n i t i o n 2 . VB1, B2 E BE, VG synchronization list, VA C_ Gates,
eant a (B11GIB2) = G \ (Z,tit a (B1) n gnit a (B2)). �9

Since BIIGIB2 cannot execute actions in Canta, in order to infer the behaviour
of the parallel composition when delayed on A, we take under consideration only the
transitions of B1 and B2 when thcy are delayed (at least) on A U Cantza(BllGIB2).

a It can be proved [19] that Vlt E Gates, if It ~ ZnitA(13) then qo~ E g'v : B ---~.~ and
t~ E o~.

737

In i l z~(s top) = II

z.ic,(~,; ~) = {s,} \ A

Znit a(Bl[]B2) = In.it,a(B l) O Initza(B2)

Ini ta(BllGIB2) = (gnita(B1) N G fh Znita(B2)) U (Znita(B1) U Znita(B2)) \ C

Znit~a(hide gl gin in B) = (Z,titA\tg~,...,g, t (B))[i /{t / l , . . . , an}]

5fnit ,a(B[al/ f l , . . . ,an/ fn]) = (In i t r (B) i [a l / f l an~f n]
where F = (A \ { f l fn}) U { f j : a j q. A}

Znit,~(P[al a,*]) = Init,a(B[al / f l, , , , / f n])
where P i l l fn] = B

Fig. 2. gnita(B)

How can we combine such transitions? There are essentially three cases to handle;

we are going to discuss them letting

a2
B1 etl)ca,~t..a(BllGlB2)UA and B2 "-"*Ca,,ta(BllGlB2)ua

F i r s t case. Consider tile following parallel expression and let A = @:

(a; stoP)l[a, b]l(b; stop)

Both B1 and B2 are completely delayed by Cant,a(BllGIB2)U A. In such a
case also BIIGIB2 must be cornpletely delayed. This behaviour can be obtained by
pairing transitions of B1 and B2 delayed at least on CanlA(BIlGIB2) O ,4.

|

S e c o n d case. Both crl and a2 are events not in {{A}} +. In such a case we can
infer the behaviour of BI[GIB2 by combining transitions of the partners provided
that such transitions are 'compatible ' . More precisely, it must not be allowed to pair
different synchronization actions of B1 and B2.

Take for instance the following expression with A = @:

(a; slop[]b; slop) l[a, b]l(a; stop[]b; stop)

Of course we do not want to pair ~1 = {{a}} and a2 = {{b}}. Then the only
transitions which we are allowed to take under consideration are those obtained
augmenting the delay set of B1 and of B2 respectively by

Cl=(o.lnC)\,~2 and r2.---~(L~21~G)\o'l

which are the sets of synchronization actions belonging to ~xl and not to a2 or vice-
versa (with a bit of overloading in the use of the variables a j wMch actually denote
multisets).

738

Now recall tile rules for choice expressions. For any delay set F , a choice expres-
sion may execute the same event performed by one of its components only if such a
partner is not completely delayed by F. Thus auglnenting F may result in 'dropping
away' one alternative (or even both) of tile choice expression (see Obs.1).

This is just tile case for (a; stop[]b; stop)l[a, b]l(a; slop[]b; slop) with A = 0, ~1 =
{{a}} and a2 = {{b}}. In fact we have, for instance, AUCama((a; stop[]b; stop)l[a , b]]
(a; stop[]b; stop)) U F1 = {a} and (a; stop[]b; stop)--{{ b }} --,{,1. Such a transition
has nothing to do with the event a l previously considered and so we want to find a
way for not picking it! Notice that the reason why we got such a 'wrong ' transition
was that the alternative a,2.was such that (xl resulted completely delayed.

So we want to augment the delay set by F1 (and respectively ['2) and besides
this we require that T'l (F2) does not completely delay the alternative of a choice
expression which possibly takes part. in the execution of the event crl (c~2). Lett ing

/32
B1 #I~Cant,afBIlGIBq)uzlUF 1 and B2 "--'*Cant,a(BIlGIB2)o.4UF2

we infer a transition for B11GIB2 by pairing/31 and/32 only if tile above requirement
is met . We would like tile condition (/31 = o~[a/r~] , : , d /32 = a2[A/F2]) hold.
Actually this is not possible due to tile fact that the nmnber of As can decrease when
delay sets grow (see Obs.1). So we have to define a new relation, _ , which accounts
for this (Def.3).

D e f i n i t i o n 3 . Va,/3 E S v , / 3 ~ o' iffY/z E Gales ,
#(t~,/3) = # 0 , , ~) ,,,~d #(.\,/3) <_ #(.Lc,.).

/3 _~ ~ informally means that /3 is essentially tim sarne as a' except for the fact that it
may contain less As than a'. So tile above requirement can be formalized as follows:

/31 5 . l [A/r~} .,,.<t 97 _~ , ,2[air2]

|
T h i r d case . Consider the following expression and let .4 = 0, (~1 = {{c}}:

(~; slop[l(a; stop[]b; stoP))l[., b]l(.,; stop[]b; slop)

c~l contains observable actions (i.e. a,1 ~ {{A}}+), and they are not involved in
synchronization (i,e. crl n G = 0); on the other band B2 can only synchronize (i.e.
Znit,a(B2) C G).

In snell a case we expect B2 to be completely delayed and the whole process to
perform all the actions belonging to aC. Such a behaviour cannot be obtained as
above, since the method used in the 'second case' does not work now. It is too weak,
so to speak. It lacks of a global view oil all the alternatives of the par tner which
must be delayed. In fact, looking at tile trfi.nsitions of B2 one at a t ime (a2 = {{aJ}
and c~2 = {{b}}), we find them, one at a time, completely delayed. In fact we have
132 /~ a2 in both cases, so that no transition of the parallel composition can be
inferred for a l = {{c}}.

In the present ease, and in the symlnetric one, the correct behaviour is obtained,
indeed, by pairing transitions of B1 and B2 delayed on G U A. In fact under the
above assumptions G O/_3 completely delays the component which is only able to

739

synchronize (B2 in the example) but it does not delay the actions which the other
partner can perform alone. Thus the above expression executes the event {{c,,~}}.

|
As a result of the above discussion we may handle parallel composition by means

of three rulcs. Two of them, wlfich are symmetric, are devoted to situations like those
described in the third case. Such rules are (pld), i.e. 'parallel left delayed', and (prd),
i.e. 'parallel right delayed'. They have, amoug the hypotheses, a predicate (Def.4)
which establishes whether the rule is suitable for tim ease under consideration, that
is it says whether a process (partner of a parallel composition) is completely delayed
by a given event ct (chosen by the other component, which is not delayed), relative
to synchronization list G.

Def in l t ion4 . VB E BE, VG synchronization list, Vet E gv, VA C Gates,
Del,a(B,G, cr) = a' ~ {[A}} + and trNG = @ a,!d Znita(B) C_ G.

Finally, the last rule ((p_b), i.e. 'parallel both') deals simultaneously with the first
and the second eases diiseussed above. Also this rule has a boolean condition (Def.5)
among its hypotheses. It just formalizes our previous discussion.

Definlt ion5.
VB1, B2 E BE, VG synchronization list, VA C Gates, if

cx2
B 1 a l ~ c a n t , a (B l l G I B 2) u A , B2 -"'~Ca,*t.a(BIIG'IB~-)UA ,
r l = (~ l n G) \ ~ 2 , r2=(a .2nG) \o .1 ,

B1 31~Cant,a(BI[G,[B2)UAtgI" 1 , B2 ~02~Canta(BIIG,]B2)UAop 2 , then
Ba(B1, B2, G, a l , a2, 31,/32) = not Dela(B1, G, ,~2) and

no._At Dela(B2, G, cxl) and
(/31 _-< a.I[,VF1] a n r 32 ___ ~2[),//'2])

It can be proven [19] that if one of the three conditions Dela(B1, G, a2), Dela(
B2, G, a l) , and Bza(B1, B2, G, ctl, ~2,/31,/32) is true then the others are false. More-
over, if c~l aM c~2 naake all the three predicates above false then we must deduce
no transition for BIIGIB2. In fact, under that hypothesis, c~l and a.2 are such that
(/31 --4_ ~I[A/FI] and/32 --< a'2[A/F2]) does not hold. Therefore at least oneof the two
transitions (or a choice sub-component) would be completely dela~,ed by the selec-
tion of the other, even if it is not the case that one (or both) partner(s) of the parallel
composition has (have) to be delayed. This simply means that the particular pairing
a l , a2 is not allowed, like {{a}}, {{b}} in (a; slop[]b; stop)l[a, b]J(a; slop[]b; slop).

We conclude this section with a remark pertaining to the fact that idling gives
rise to transitions, a. questionable choice 'a priori'. Indeed the preseni:e of transitions
labeled by As only has the major advantage that any process always, i.e.w.r.t, any
delay set, performs an event. Vice-versa, if we remove {{,~}}+ from gv, then any
behaviour expression B such that Znita(B) = 1~ executes no event when delayed on
A. As a result of this, idling transitions could be removed fi'om our model only at the
price of having more rules for parallel composition. In fact, on the one hand, rules
(pld) mad (prd) would need only some refinements; for instance (prd) should become

something like B1 ~'l,6,ua BI', Enita(B2) C G implies BIIGIB2 -2~a BI'IG[B2.

V

But, on the other hand, there should be three different 'versions' of rule (p_b). Such
versions should cope with the distinct situations which could arise out of the addition
of F1 and, respectively, ['2 to Canta (B11GIB2) U,-4. In fact it could be the case that
both B1 and B2 give rise to a transition w.r.t, the new delay sets, as well as the case
that only B1 (or only B2) can perform an event w.r.t. Ca,da(BI IGIB2) 0 A O /'1
(Cautza(BliGI132) U A U 1"2).

3 A n E x a m p l e

I '

740

Fig. 3. Overall system

In this section a simple system is described. Its topology is shown ill Fig.3. The
overall system may be thought of as a possible fault tolerant architecture for a
hardware component.

The sub-systems P1 and P2 are such that each of thenl, on request from outside
(r) reads a value w which has been broadcasted to them via gate v and sends it
back on gate is. Itowever, this last value is non-deterministically affected by errors
ek (Fig.4). We are using here a slightly richer version of the language in which we
allow to deal with data values too. Anyway, we assume type I V of values received
by the two processes, as well as type O V of their output values, be finite. Under
this assumption the specification using data values can be proven equivalent to one
without data values.

The third component of the system is a comparator Comp (Fig.5). It receives
values wl and w2 fi'om P1 and P2 respectively and compares them. If Iwl - w21 is
smaller than or equal to e, for suitable c, then it returns Wl, otherwise it returns
FAIL.

Finally the formal specification of the overall system is given in Fig.6 whereas
Fig.7 shows the labeled transition system of the overall system under the simplifying
assumption I V = {1 ,2} ,OV = {1,2,3}, m = 1, el = 1, e = O.

process P l [r , v , i s] =
r;v?xl:IV;
(i;is!xl?x2:OV;Pl[r,v,is]
[] i;is!(xl+el)Yx2:OV;Pl[r,v,is]
[] i;is!(xl+e2)?x2:OY;Pl[r,v,is]

. , o

[] i;is!(xl+em)Yx2:OY;Pl[r,v,is]
)

endproc

process P 2 [r , v , i s] =
r ;v?x2: IV;
(i ; i s ? x l : 0 V ! x 2 ; P 2 [r , v , i s]
[] i;is?x*:OY!(x2+el);P2[r,v,is]
[] i;isYxl:OY!(x2+e2);P2[r,v,is]
o . ,

, * o

[] i;is?xl:OY!(x2+em);P2[r,v,is]
)

endproc

741

Fig. 4. Specification of processes Pj, j = 1, 2

process Comp[is,s]
is?.l :OVua2:OV;
([I1al-w21<=e] --> s!~al;Comp[is,s]

[]
[lwl-w21> e] --> s!FAIL;Comp[is,s])

endproc

Fig . 5. Specification c,f process Comp

4 Strong Bisimulation Equivalence

In the sequel we propose a.n adapta t ion of tile notion of strong bisimulation equiva-
lence [14,16] to our model.

In our calculus tile minimal observational unit is the composi te event, then:

D e f i n i t i o n 6 . A synametric binary rela.tion 7~ C B E x B E is a strong bisimulaLion
iff BI~ .B2 implies that Ya 6 Sv,
if B1 ~ B I I then 3B2' : B2 .~., B T and B l t ~ B T . *

D e f i n i t i o n 7. B1 and B2 are s trong bis inmlat iou equivalent, B1 -~ B 2 , iff exists a
s trong bisilnulation "P~ containing (BI , B2). *

742

process P P [r , v , s]
hide i s in

(P l [r , v , i s] l [r , v , i s] l P 2 [r , v , i s]) l [i s] l e o m p [s , i s]
endproe

Fig . 6. Specification of the overall system

rrA

i i i ,~As(1)

/ / ~ i A v ~ i i i ~ _ AAs f F)

_ iii ~ _ AAs (F)

iii ~ _ A)~s(2)
q F

~" i i i ~ _ AAs(2)

\ / i i A _ iii ~ -)~)~s(F)

vv;~(2) " N , ~ ' ' ~ " " "
iii . . AAs(F)

iiA "a,_ iii ~ _ AAs(3)
�9 l w ~ W t

Fig. 7. Labeled Transition System of P P

Then .,~= [.J{~.l~ is a s t rong b i s i m u l a t i o , } . In order to prove such an assertion
we have to define a function .T on the relations "/~ such that (B1, B2) E 9v(~) itr
Def.6 holds. ~" is monotone and "R. is a sl, rong bisimulation iff'R. C .~ '(~), therefore
.-~ is the greatest fixed point of 9 t" under set inclusion Moreover, in [19] the following
l e m m a t a have been proven:

L e l n m a 8 . The re lat ion ... is a congrueuce .

L e m m a g . T h e f o l l o w i n g laws hold.

B I [] B 2 ,-, B2[]B1
B I [] (B 2 [] B 3) ,',, (B I [] B 2) [] B 3

B I I G I B 2 ,,~ B 2] G I B 1

B l i G] B 2 .~ B l i G ' [B 2 if G = G'
h i d e g l , . . . , g n in B . . . h ide g l ' gn ' in B if {gl gn} = { g l ' , . . . , g n ' }
h i d e g l , . . . , g i n i n h ide g l r , g n ' in B "~ h ide f l , f h in B

if { f l f h } = {gl g in} U {91 ' g n ' }
h ide g l g n in g; B ~ g; h.ide g 1 gn in I3 if g ~ {gl , gn}

743

hide g l , . . . , g n in g;B ",~ i;hide g l , . . . , g n in B i fg E { g l , . . . , g n }
hide gl ,gn in BI[]B2) '-, (hide g l , . . . ,gn. in B1)[](hide g l , . . . , g n in B2)
hide g l , . . . ,gn in (BI IGIB2) ,--, (h, ide g l , . . . ,an in B1)lGl(hide gl, gn in B2)

if {gl ,/n} r i G =
stop[S] ,,, stop
(~; a) [S] ,,, t,[S]; B[S]
(BX[I~2)[S] ~ n l [S l [] B 2 [s l
B[S] ,-, B if [S] is tile identity on the set of label of B
P[a l , . . . , an] ,,~ B [a l / f l , . . . , a n / f n] if P [f l , . . . , fn] = B

All the laws of the above list have a counterpart in s tandard LOTOS, but our
notion of bisimulation is too strong, for instance, to get an absorption law. This is due
to the fact that the equivalence is sensitive to the number of occurrences of the idling
action in tile performed events. As an example notice that B = a; siop[[a, b]lb; stop
and B[]B = (a; stop[[a, b]lb; stop)[l(a; stopl[a , bllb; stop) are not bisimilar, since B ~
{{,k,,~}} ---+ B wMle B[]B--{{,k}} ---+ B[]B. Thus the absorption law, as .well as a
law eqt, ating B[]slop and B, could be recovered by a weaker notion of bisimulation
abstract ing from idle moves. Such a bisimulation should be still stronger than the
usual weak bisimulalion..

We conclude the section with some remarks on the possibility of s tat ing an
expansion law. Indeed, in order to get it, we should include composite events as
argumeuts of tim prefixing operator. But this is not enough. Let us consider, for
instance, the expression B = a; stopl~lb; stop. Of course we would equate it to
the process {{a,b}};(stopl~lstop). On the other hand, consider the parallel com-
position B[[a,b]l(a;st.op[]b;stop). Due to synchronization constraints such a pro-
cess can only perform the events {{a,)~, a}} and {{,k, b, b}}. So, in order to be able
to state an expansion of the whole behaviour, it should hold the equality B =
{{a, ~}}; (stop]~[b; stop))[]{{)~, b}}; (a; stopl~lstop) , instead of the above one. As a re-
sult, s tat ing an expansion law is really far from obvious, it would seem that 'auxil-
iary ' expansion laws (unfortunately depending upon delay sets) are needed. In other
words, in the bisimulation semantics, as well as in the operational one, the interaction
of non-determinism and parallelism turns out to be intrinsically intricate.

5 Future work

In view of its synchrony, tile proposed model seems to be quite appropriate for
describing real-time systems or, to some extent, hardware systems, rather than dis-
tributed programs.

Anyway as we have ah'eady mentioned before, this work is a par t of the definition
of a probabilistic calculus [11] which can be considered as an extension of the lan-
guage defined in this paper. ILl the complete work [12] also examples of applications
as well as relation with Markov tlleory are presented.

With respect to the pure nondeterministic calculus we call refine tim definition
of the proposed operational semantics iLl order to represent synchronization with
only one occurrence of the gate (in a way similar to LOTOS). We only need to
redefine the rules for the parallel composition operator in such a way that nmltiple

744

occurrences of any action occurring in G are replaced by a single occurrence of the
same action. This should be of particular importance when the event is in {{A}} + in
order to equate all deadlock processes.

Finally, the proposed semantic model could be taken as a starting point for the
development of a general fi'amework for reasoning about parallelism degree. This
would give raise to a parallelism spectrum the end-points of which would be the
(standard LOTOS) interleaving semantics, where no parallelism at all is allowed,
and the fully parallel semantics proposed in the present paper, where the only con-
straints imposed on parallelism are those implied by synchronization. A fi'amework
like this could be obtained by mneans of parameterizing the transition relation also
with a number representing the maximal parallelism degree allowed by the system.

A c k n o w l e d g e m e n t s . We would like to thank an anonymous referee whose stilnu-
lating observations led us t:o a more careful exposition of the topics of the paper.

References

1. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A Theory of Communicating Sequential
Processes. Journal of the ACM, Vol.31, No.3, pp. 560-599, 1984.

2. I. Ghristoff. Testing Equivalences and Fully Abstract Models for Probabilistic Pro-
cesses. CONCUR 90, LNCS 458, Springer-Verlag, 1990.

3. I. Christoff. Testing Equivalences for Probabilistic Processes. Ph .D. Thesis, Dept. of
Comp. Science, UppsaJa Univ., ISSN 0283-0574, 1990.

4. A. Giacalone, C.C. Jou, S.A. Smolka. Algebraic re~oning for probabilistic concurrent
systems. Proc. of Working Conference on Programming Concept and Methods IFIP
TC 2, 1990.

5. R. van Glabbeek, S.A. Smolka, B. Steffeu, C. Tofts. Reactive, Generative and Stratified
Models of Probabilistic Processes. Proc. of 5th LICS, 1990.

6. H. Hausson, 13. Jonsson. A Calculus for Communicating Systems with Time and Prob-
abilities. IEEE RTSS, 1990.

7. ISO. Information processing systelns - Open systems interconnection - LOTOS - A for-
mal description technique based on the temporal ordering of observational behaviour.
ISO 8807, 1989.

8. C.C. Jou, S.A. Smolka. Equivalences, congruences and complete axiomatizations for
probabilistic processes. CONCUR 90, LNCS 458, Springer-Verlag, 1990.

9. J. Keilson. Markov Chain Models-Rarity and Exponentiality. Applied Mathematical
Sciences, Vol.28, Springer-Verlag, 1979.

10. D. Latella, P. Quaglia. A fully parallel semantics for LOTOS. LotoSphere reference
Lo/WP1/T1.2/CNUCE/NOO23/V1, 1991.

11. D. Latella, P. Quaglia. A Proposal for a Calculus of Probabilistic Processes. InternM
Report CNUCE-CNR C91-27, 1991.

12. D. Latella, P. Quaglia. A Calculus of Probabilistic Synchronizing Processes and Some
Applications. Internal Report CNUCE-CNR C92-17, 1992.

13. K. G. Larsen, A. Skou. Bisimt, latiou through probabilistic testing. Proc. POPL, 1989.
14. R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.
15. R. Miluer. Calculi for Synchrony attd Asynchrony. Theoretical Computer Science, 25(3),

1983.
16. D. Park. Concurrency and automata on infinite sequences. Proe. 5th GI-Conference,

LNCS 104, Springer-Verlag, 1981.

745

17. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI-FN-19, Comp. Science Dep., Aarhus University, 1981.

18. S. Purushothaman, P.A. Subrahmanyam. l)~easoning about probabilistic behavior in
concurrent systems. IEEE Trans. Software Engineering, Vol. SE-13, N.6, pp.740-745,
1987.

19. P. Quaglia. Proposta per una variante probabilistica di LOTOS. Tesi di Laurea in
Scienze dell'Infornlazione, Universita' degli Studi di Pisa, 1991.

20. N. Rico, G.v. Bochmann. Performance description and analysis for distributed systems
using a variant of LOTOS. Proc. of XI Int. IFIP Symp. on Protocol Specification,
Testing and Verification, North Holland, 1991.

21. S.A. Smolka, B..Steffen. Priority as extremal probability. CONCUR 90, LNCS 458,
Springer-Verlag, 1990.

22. C. Torts. A synchronous calculus of relative frequency. CONCUR 90, LNCS 458,
Springer-Verlag, 1990.

