
Goldi locks and the Three Specif icat ions

John V. Guttag*

Massachusetts Institute of Technology
Cambridge, MA 02139 USA
Emaih guttag~ics.mit.edu

A b s t r a c t . A young girl enters Threads Forest. She becomes lost. She
searches for enlightenment.

1 P r o l o g

Goldilocks' mother had often warned her not to enter Threads Forest. It was a
strange and sometimes dangerous place. On the floor of the forest, where the
sun never penetrated, grew toxic fungi. Dangerous beasts lurked everywhere.

There were many paths through the forest, and since they often crossed and
frequently dead ended it was easy to get lost, even to starve. Furthermore from
time to time old paths disappeared and new ones appeared. Wise men and
women asserted that some paths would always be there, but were cryptic about
which ones.

Despite her mother's repeated warnings, Goldi ventured into the forest. She
soon became hopelessly lost. After giving her plight a moment's thought, she
took the only rational course of action. "Help, get me out of here," she screamed.

Somewhat to her surprise, her plea was answered almost immediately. Three
strangers slipped from behind three graceful deciduous conifers. "What seems
to be the problem?" they asked in unison. "I can't find my way out of this
stupid forest," Goldi replied. "Not to worry," said the shortest of the strangers.
"You're in luck. It just so happens that we're cartographers, and we've each just
completed a map of the forest."

With that, the cartographers each handed Goldi a map. Upon examining
them, Goldi discovered (to her disgust) that they were all different. "Of course
they are," exclaimed the cartographers. "One is too weak, one is too strong,
and one is juuuuust right."

For some reason, that explanation didn't satisfy Goldi. Seeing her puzzle-
ment, the smallest cartographer tried to explain. "All of the paths on the too

*Support for this research has been provided in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval Research Research
under contract N00014-89-J-1988, and in part by the National Science Foundatlon under grant
9115797-CCR.

weak map exist at present and will continue to exist forever. However, there are
many paths through the forest that don't appear on the map. The too strong
map contains all of the useful paths through the forest at the present time.
However, some of these paths may disappear in the future. The just right map
contains all of the paths that will always be available."

Again, the explanation did not satisfy Goldi. "Why," she demanded, "do
you insist on confusing me by giving me three maps?" The tallest cartographer,
who was more patient than the others, made one more attempt at educating
Goldi. "The too weak map is easier to follow than either of the others, and
does contain some paths (albeit often longer than necessary) through the forest.
The too strong map contains the shortest paths through the forest today. The
problem is that you may not be able to use them tomorrow. The just right map,
well that's juuuuust right."

Goldi was still puzzled. "Perhaps," she pleaded, a tear glistening in the
corner of one eye, "you could give me formal specifications of all this? Ok,"
chortled the middle-sized cartographer, with a mocking glint in his eye, "you
asked for it."

2 I n t r o d u c t i o n

In designing an interface, there is sometimes a tradeoff between making it easy
to implement and making it easy to use. This tradeoff often centers, particularly
in concurrent programs, around the amount of nondeterminism allowed. More
nondeterminism leaves freedom for the implementor to choose a simpler or more
efficient implementation. Less nondeterminism may support the development of
simpler or more efficient client programs.

This paper presents three alternative formal specifications of part of a threads
interface. The specifications presented here differ in the amount of nondetermin-
ism allowed, and describe a hierarchy of implementations: the implementations
satisfying the "too strong" specification are a strict subset of those satisfying the
"just right" specification which, in turn, are a strict subset of those satisfying
the "too weak" specification.

The specifications presented here are based upon work the author did in
conjunction with Andrew Birrell, Jim Horning, Roy Levin and Garret Swart--
all of the Digital Equipment Corporation Systems Research Center (SRC). In
[1] we published what purported to be a formal specification of the threads
synchronization primitives implemented as part of the Topaz operating system
on the Firefly multi-processor. To the best of our knowledge, the implementation
of Topaz indeed satisfied these specifications. However, the specifications were
simultaneously too weak and too strong. The specifications were too weak in
that they could not be used to justify some reasonable uses of the specified
primitives in client programs, because the specifications permitted paths that
could not actually arise in the implementation. The specifications were too
strong in that they would not be satisfied by contemplated remote procedure
call (RPC) implementations, because the specifications guaranteed the existence

of paths that would disappear in those implementations.
The next section presents a short overview of Larch interface specifications.

The section after that presents a short overview of what threads are about, lays
out the issues involved in choosing the degree and types of non-determinism to
be allowed, and presents formal specifications of three interesting alternatives in
that space. The note concludes with a brief discussion of how the specifications
were derived and the utility of the process and the specifications.

3 L a r c h I n t e r f a c e S p e c i f i c a t i o n s

Larch is a family of languages for writing formal specifications of interfaces in
digital systems. The basic approach is described in [4].

The Larch family of languages supports a two-tiered, definitional style of
specification. Each specification has components written in two languages: one
language that is designed for a specific programming language and another lan-
guage that is independent of any programming language. We call the former kind
Larch interface languages, and the latter the Larch Shared Language (LSL).

Interface languages are used to specify the interfaces between program com-
ponents. Each specification provides the information needed to use an interface.
Each interface language deals with what can be observed by client programs
written in a particular programming language. It provides a way to write asser-
tions about program states, and it incorporates programming-language-specific
notations for features such as side effects, exception handling, iterators, and
concurrency.

Larch interface languages encourage a style of programming that emphasizes
the use of abstractions, and each provides a mechanism for specifying abstract
types. If its programming language provides direct support for abstract types,
the interface language facility is modeled on that of the programming language;
if its programming language does not, the facility is designed to be compatible
with other aspects of the programming language.

An interface specification can describe exported types, constants, variables,
and procedures. The specification of each procedure in an interface can be
studied, understood, and used without reference to the specifications of other
procedures. A specification consists of a procedure header (declaring the types
of its arguments, results, and any global variables it may access) followed by a
body of the form:

requires Predicate

modifies Target list

ensures Predicate

A specification places constraints on both clients and implementations of the
procedure. The requires clause is used to state restrictions on the state, including
the values of any parameters, at the time of any call. The modifies and ensures
clauses place constraints on the procedure's behavior when it is called properly.
When specifying sequential programs, they relate two states, the state when

uses TaskQueue;

mutable type queue;

immutable type task;

task *getTask(queue q)

modifies q;

e n s u r e s

if isEmpty(q ^)

then result = NIL A unchanged(q)

else (*result)' = first(q ̂) A q' = tail(q^);

Figure 1: An LCL interface specification

the procedure is called, the pre-slate, and the state when it terminates, the
pose-state.

A modifies clause says what objects a procedure is allowed to change. It says
that the procedure must not change the value of any objects visible to the client
except for those in the target list. Any other object must have the same value in
the pre and post-states. If there is no modifies clause, then no externally visible
object can be changed.

Figure 1 contains a sample interface specification. The specification is written
in LCL (a Larch interface language for C). This fragment introduces two abstract
types and a procedure (function in C parlance) for selecting a task from a task
queue. Briefly, * means pointer to (as in C), r e s u l t refers to the value returned
by the function, the symbol ^ is used to refer to the value of an object in the
pre-state, and the symbol ' to refer to its value in the post-state.

The specification of ge tTask is not self-contained. For example, looking only
at this specification there is no way to know which task getTask selects, because
the meaning of the operators f i r s t and t a i l are not given. Is f i r s t (q ^) the
task that has been in q the longest? Is it is the one in q with the highest priority?

Interface specifications rely on definitions from auxiliary specifications, writ-
ten in LSL, to provide semantics for the primitive terms they use. Specifiers
are not limited to a fixed set of notations, but can use LSL to define specialized
vocabularies suitable for particular interface specifications or classes of specifica-
tions. The uses clause in Figure 1 incorporates the LSL specification TaskQueue
(not shown), which defines the operators f i r s t and t a i l .

The logical basis for Latch's treatment of concurrency is described in [1] and
is similar to the one discussed in [7]. Our specifications deal only with safety,
not with liveness.

Specifications of procedures for concurrent programs are similar to specifi-
cations of procedures for sequential programs. In both cases, the specifications
prescribe the observable effects of procedures, without saying how they are to
be achieved. In a sequential program, the states between a procedure call and

its return cannot be observed in the calling environment. Thus one can specify
a procedure by giving a predicate relating just the state when the procedure is
called and the state when it returns [5]. Similarly, an atomic action in a concur-
rent program has no visible internal structure; its observable effects can also be
specified by a predicate on just two states.

Any behavior of a concurrent system can be described as the execution of a
sequence of atomic actions. In specifying atomic actions, we don' t specify how
atomicity is to be achieved, only that it must be. In an implementation, atomic
actions may proceed concurrently as long as the concurrency isn't observable.

Atomic procedures execute just one atomic action per call. Each can be
specified in terms of just two states: the state immediately preceding and the
state immediately following the action. Note that, when dealing with concur-
rent programs, the pre-state of the action corresponding to a procedure body is
not necessarily the state in which the procedure call was initiated; actions by
other threads may have intervened. Similarly, the post-state of the action is not
necessarily the state in which the caller resumes execution.

The observable effects of a non-atomic procedure cannot be described in terms
of just two states. Its effects may span more states, and actions of other threads
may be interleaved with its atomic actions. However, each execution of a non-
atomic procedure can be viewed as a sequence of atomic actions. We specify a
non-atomic procedure by giving a predicate that defines the allowable sequences
of atomic actions (i.e., sequences of pre-post state pairs). Each execution of
the procedure must be equivalent to such a sequence. Although it is sometimes
necessary to specify constraints on the sequence as a whole, it often suffices to
specify the atomic actions separately.

In addition to the constructs used to specify sequential interaces, we use the
following constructs in specifying the procedures in the threads' interface:

when clauses stating conditions that must be satisfied for atomic actions
to take place. They place constraints not on the client but on the called
procedure, which is obligated to make sure that its condition holds before
taking any externally visible action. A when clause may thus impose a
delay until actions of other threads make its predicate true. An omit ted
when clause is equivalent to when true, that is, no delay is required.

action clauses specifying named actions. They are within the scope of
the procedure header, and may refer to the procedure's formal parameters,
results, and specification variables.

composition of clauses indicating that any execution of a non-atomic
procedure must be equivalent to execution of the named actions in the
given order, possibly interleaved with actions of other threads.

�9 The reserved word self, standing for the identity of the thread executing
the specified action.

mutable type mutex;

uses Mutex;

mutex mutex_create(void) {

ensures fresh(result) A result' = free;
}

void acquire(mutex m) {

modifies m;

when isFree(m ̂) ensures m' = grantMutex(self);
}

void release(mutex m) {

requires holder(m ̂) = self;

modifies m;

ensures m' = free;
}

Figure 2: Specification of mutexes

4 The th r eads interface

The threads interface provides facilities for creating and controlling threads,
which may or may not share memory. This note is concerned only with the
facilities used for synchronizing threads. 1 Some of these are rather simple, and
are derived from the concepts of monitors and condition variables described by
Hoare[6]. Their semantics is similar to that provided by Mesa [8].

As far as clients of threads are concerned, all threads can execute concur-
rently. The threads implementation is responsible for assigning threads to real
processors. The way in which this assignment is made affects performance, but
does not affect the semantics of the synchronization primitives. The programmer
can reason as if there were as many processors as threads.

M u t e x e s

A mutex [3] is the basic tool enabling threads to cooperate on access to shared
variables. A mutex is normally used to achieve an effect similar to monitors,
ensuring that a set of actions on a group of variables can be made atomic relative
to any other thread's actions on these variables. A mutex is associated with the
set of variables, and each critical section is bracketed by calls of the procedures
acquire and re l ease . The semantics of a c q u i r e and r e l e a s e ensure that these
critical sections are indeed mutually exclusive.

There seems to be little controversy about the appropriate semantics for mu-
texes, so we give only one specification, Figure 2. The interface specification

1For more extensive descriptions of how threads are intended to be used and how they can
be implemented see [1] and [2].

begins by asserting that rautex is a mutable abstract type. It then incorpo-
rates an LSL specification, Mutex that provides the operators i s F r e e , h o l d e r ,
grantMutex, and f r e e used in specifying the procedures exported by the inter-
face. This LSL specification contains the axioms

holder(grantMutex(t)) = t
isFree (grantMut ex(t))

isFree(free)

C o n d i t i o n V a r i a b l e s

Condition variables make it possible for a thread to suspend its execution while
awaiting an action by some other thread. The normal paradigm for using con-
dition variables is as follows. A condition variable c is associated with some
shared variables protected by a mutex m and a predicate based on those shared
variables. A thread acquires m (i.e., enters a critical section) and evaluates the
predicate to see if it should call wai t (m, c) to suspend its execution. This
call atomically releases the mutex (i.e., ends the critical section) and suspends
execution of that thread.

After any thread changes the shared variables so that o's predicate might be
satisfied, it calls s i g n a l (c) to awaken one thread or b r o a d c a s t (c) to awaken
all of them. S i g n a l and b r o a d c a s t allow blocked threads to resume execution
and re-acquire the mutex. When a thread returns from wai t it is in a new
critical section. It re-evaluates the predicate and determines whether to proceed
or to call wa i t again.

There are several subtleties in the semantics of these procedures, e.g., even
if threads take care to call s i g n a l only when the predicate is true, the predicate
may become false before a waiting thread resumes execution. These subtleties,
and the utility of formal specifications in clarifying them, are discussed at some
length in [1].

Figure 3 contains a specification of condition variables. It begins by import-
ing the specification of the mutex interface. Next, type c o n d i t i o n is specified
to be a mutable abstract type. The uses clause incorporates an LSL specifica-
tion of finite sets, and asserts that objects of type c o n d i t i o n will be modeled
in the specification as sets of objects of type t h r ead . When a thread executes
wai t (m, c) it notionally inserts itself in the set c and waits for some other
thread to remove it by calling s i g n a l or b r o a d c a s t . We s a t "notionally" be-
cause while it is convenient in the specification to model a condition variable as
a set of threads, it need not be implemented that way.

Note that the specification of b r o a d c a s t implies the specification of s i g n a l .
B roa dc a s t must unblock all threads waiting on the condition variable, whereas
s i g n a l unblocks one or more threads (assuming that there are any waiting on
the condition). This means that any implementation that satisfies b r o a d c a s t ' s
specification will also satisfy s igna l ' s . Of course, a good implementation of
s i g n a l should strive to unblock exactly one thread. The difficulty in guarantee-
ing this stronger specification arises from the possibility of a race between calls

imports mutex;

mutable type condition;

uses Set(thread, condition);

condition condition_create(void) {

ensures fresh(result) A result' = { };
}

void signal(condition c)

modifies c;

ensures if c ̂ = { } then c' = { } else c' C c^;
}

void broadcast(condition c) {

modifies c;

ensures c' = { };
}

void wait(mutex m, condition c) {

= composition of Enqueue; Kesume

requires holder(m ̂) = self;

modifies m, c;

action Enqueue

ensures m' = free A c' = insert(self, c^);

action Resume

when isFree(m ̂) A self ~ c ̂

ensures m' = grantMutex(self) A c' = cA;

Figure 3: Specification of condition variables

to s i g n a l and wai t . It is a limitation of the specification technique that we
specify only what is guaranteed, and not what should happen most of the time.

A l e r t s

Alerts provide a polite form of interrupt. They are most often used to request
termination of a long-running computation or a long-term wait.

The procedure call a l e r t (t) is used to request that the thread t respond to
an alert. A thread can check whether it has been alerted by calling t e s t t l e r t .
It is considered good practice for threads executing long-running computations
to occasionally call t e s t t l e r t . Similarly, threads executing waits that may last
for a long time should block themselves by calling a l e r t W a i t rather than wai t .
The function a l e r t W a i t is similar to wai t , except that

1. The wait can be terminated by an alert even if the condition on which the

imports condition;

typedef enum {alerted, signaled) alertStatus;

spec immutable type pendingAlerts;

uses Set(thread, pendingAlerts);

spec pendingAlerts pa = { };

void alert(thread t) pendingAlerts pa; {
modifies pa;
ensures pa' = insert(t, pa^);

}

Figure 4: Common part of specification of alerts

thread is waiting has not been signaled, and

2. a l e r t W a i t returns a value indicating whether it is responding to a signal
or to an alert.

A key issue in the design of a threads package with alerts is the amount of
nondeterminism allowed in t e s t l l e r t . If a thread executes a l e r t (t) before the
thread t executes testAlert, will testAlert necessarily return true? Clients
would prefer an unqualified "yes." However, in a distributed system with remote
procedure calls, t may migrate from node to node and a l e r t may have to chase
t . Guaranteeing that t e s t A l e r t will always return true may be unacceptably
inefficient, and clients may have to settle for "sometimes."

A similar question arises with a l e r t W a i t . Things are straightforward when
a blocked thread receives only a signal or an alert, but if a thread receives
both, what is guaranteed about the outcome? Must it always return s i g n a l e d
if possible? Always return a l e r t e d if possible? Respond to whichever comes
first? Or can the choice be nondeterministic?

The three specifications Goldilocks was given by the cartographers deal with
these issues. Figure 4 contains material common to all three.

The specification uses a specification variable, pa, to keep track of pending
alerts. Specification variables are declared solely to facilitate writing specifica-
tions. Like other global variables, they appear in the headers and bodies of
specification. However, they are not exported by the interface, therefore client
code cannot refer to them.

The weakest, and simplest, specification considered here, Figure 5, allows
considerable nondeterminism. It allows t e s t A l e r t to return true only if the
thread has been alerted, but to return false any time. The specification allows
a l e r t W a i t to return s i g n a l e d only if the thread has been removed from c,
and to return a l e r t e d only if the thread has a pending alert. However, since
the two when clauses of the AlertResume action are not mutually exclusive, the

10

bool testAlert(void) pendingAlerts pa; {

modifies pa;

ensures

if result

then self E pa ̂ A pa' = delete(self, pa^)

else pa' = pa^;
}

alertStatus alertWait(mutex m, condition c) pendingAlerts pa; {

= composition of Enqueue; AlertResume

requires holder(m ^) = self;

modifies m,. c, pa;

action Enqueue ensures

m' = free A c' = insert(self, c ̂) A pa' = pa^;

action AlertResume

when isFree(m ^) A self ~ c ̂

ensures result = signaled A m' = grantMutex(self)

A c' = c ̂ A pa' = pa^;

when isFree(m ^) A self q pa ̂

ensures result = alerted A m' = grantMutex(self)

A c' = delete(self, c ̂) A pa' = delete(self, pa^);

Figure 5: Too weak specification

11

alertStatus alertWait(mutex m, condition c) pendingAlerts pa; {

= composition of Enqueue; ChooseOutcome; GetMutex

requires holder(m ^) = self;

modifies m, c, pa;

spec boo1 signalChosen;

action Enqueue

ensures m' = free A c' = insert(self, c ̂) A pa' = pa^;

action Choose0utcome

when self ~ c ̂ V self q pa ̂

ensures signalChosen' = self ~ c ̂

A c' = delete(self, c ̂) A m' = m ̂

A pa' = (if signalChosen' then pa ̂

else delete(self, pa^));

action GetMutex

when isFree(m ^)

ensures m' = gramtMutex(self) A c' = c ̂ A pa' = pa ̂

A result = (if signalChosen then signaled else alerted);

Figure 6: Just right specification of alertWait

procedure can return either signaled or alerted when the thread has been
alerted and the condition variable signaled. Therefore, this specification does
not rule out the possibility that a signal will be lost by being delivered only to a
thread that subsequently returns a l e r t e d rather than s igna l ed . Since it fails to
provide this guarantee, which is useful to clients without causing implementation
problems, we label this specification "too weak."

The "just right" specification, Figure 6, provides a stronger guarantee for
a l e r t W a i t . It introduces a local specification variable, s igna lChosen and an
extra action, Choose0utcome. Here a l e r t W a i t must return s i g n a l e d when a
signal comes first, but either outcome is allowed when an alert comes before a
signal. This specification does not allow signals to be lost; clients of s i g n a l can
rely on a waiting thread being unblocked, if there are any.

The "too strong" specl~'fication, Figure 7, strengthens testAlert's specifica-
tion by requiring that it return true if the thread has been alerted. Although this
guarantee is appropriate for uniprocessors, it is unlikely to be valid in an RPC
implementation in a distributed environment. The specification strengthens the
"too weak" specification of a l e r t W a i t by adding the conjunct s e l f E c to the
second when clause of the action AlertResume. This ensures that signals are not
lost. As it happens, however, this specification is "way too strong" in that we
know of no efficient implementation that satisfies it.

12

bool testAlert(void) pendingAlerts pa; {

modifies pa;

ensures result = (self q pa ̂) A pa' : delete(self, pa^);
)

alertStatus alertWait(mutex m, condition c) pendingAlerts pa; {

composition of Enqueue; AlertResume

requires holder(m ^) ~ self;

modifies m, c, pa;

action Enqueue ensures

m' : free A c' ~ insert(self, c ̂) A pa' = pa^;

action AlertResume

when isFree(m ^) A self ~ c ̂

ensures result m signaled A m' ~ grantMutex(self)

A c' ~ c ̂ A pa' ~ pa^;

when isFree(m ^) A self E pa ̂ A self E c ̂

ensures result ~ alerted A m' : grantMutex(self)

A c' ~ delete(self, c ̂) A pa' ~ delete(self, pa^);

Figure 7: Too strong specification

5 D i s c u s s i o n

An important aspect of the work discussed here was the interplay among clients,
implementors, and specifiers. We wrote a great many more specifications than
the three discussed here. Some were rejected because they didn't ensure proper-
ties needed by clients, others because they promised more than the implementors
knew how to provide efficiently.

Formalizability was never the bottleneck. Although the process of formalizing
something we thought we understood often revealed a lack of precision in that
understanding, we never found that we couldn't formalize something that we
truly understood. Many times when we had seemingly reached agreement in
oral discussion, the a t tempt to record that agreement in a specification revealed
ambiguity or incompleteness. On those occasions the specifiers would come back
to the clients or implementors with some precisely formulated alternatives and
ask "Which do you want?"

We now have specifications that both clients and implementors have ac-
cepted. Does this mean that they are necessarily perfect, or even perfect for
some purpose? No, but that isn't the issue.

In this exercise, we wanted to use formal specification as a tool to better
understand a set of possible threads interfaces. The formal specifications helped
us formulate precise questions about which design decisions were sensible, which
were reflected in an existing implementation, and which were likely to persist
in future implementations. Comparing alternative specifications helped us to

13

explore a portion of the design space. Others may not agree with our definition
of "just right" but at least we have clarified some of the choices.

6 E p i l o g

Shortly after parting from the cartographers, Goldi came upon a lone man,
frantically chopping away at the forest with a dull machete. Upon spotting
Goldi, he ceased his work and asked her what it was she held in her hand. Upon
being told that they were specifications, he immediately seized and then ate
them.

"What have you done?" protested Goldi, "Now I'll never find my way out of
here." "Real hackers don't use specifications," thundered the man. With that,
he handed Goldi a machete and a piece of paper. "You should be able to beat
your way out on your own. However, if you decide to wimp out, you Can always
call the number on this paper, and ask to speak to the wizard who created this
place."

Goldi, by now wise to the ways of the forest, wasted no time in dialing the
number. "The number you have reached is no longer in service," the computer-
generated voice informed her.

A c k n o w l e d g e m e n t s

Most of the material in this paper is drawn from an earlier note co-authored
with Jim IIorning. I appreciate his graciousness in allowing me to use it here.

Steve Garland played a major role in designing the specification language
used in this paper, and in adapting the original Modula-2 specifications to C.

Barbara Liskov, Sharon Perl, and Bill Weihl all provided useful and timely
comments on an earlier draft of this paper. Jim Horning provided many useful
comments on several versions of this paper.

R e f e r e n c e s

[1] A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. "Synchronization
primitives for a multiprocessor: a formal specification." Operating Systems
Review 21(5), Nov. 1987. Revised version in [9].

[2] Andrew Birrell, "An Introduction to Programming with Threads," Re-
port 35, Digital Equipment Corporation Systems Research Center, Palo
Alto, January 1989. Revised version in [9].

[3] Edsger W. Dijkstra, "The Structure of the 'THE'--Multiprogramming Sys-
tem," Comm. ACM, vol. 11, no. 5, 341-346, 1968.

[4] J.V. Guttag and J.J IIorning, with S.J. Garland, K.D. Jones, A. Modet and
J.M. Wing, Larch: Languages and Tools for Formal Specification, Springer-
Verlag, New York, 1993.

14

[5] C. A. R. Hoare, "Procedures and Parameters: An Axiomatic Approach,"
Symposium on Semantics of Algorithmic Languages, Springer-Verlag, 1971.

[6] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept,"
Comm. ACM, vol. 17, no. 10, 549-557, 1974.

[7] Leslie Lamport, "A Simple Approach To Specifying Concurrent Systems,"
Report 15, Digital Equipment Corporation, Systems Research Center, Palo
Alto, 1986.

[8] B. W. Lampson and D. D. Redell, "Experiences with Processes and Moni-
tors in Mesa," Comm. ACM, vol. 23, no. 2, 105-117.

[9] Greg Nelson (ed.). Systems Programming with Modula-3, Prentice Hall,
1991.

