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Abstract .  For several years now, the Geometric Modeling Group of 
Strasbourg has been working on new formal concepts and tools for 
describing and manipulating the boundary representation of geometric 
objects. In a large project of an interactive modeller for volumic objects, 
the description of which is based on generalized maps, it attempts to cover 
the whole process from mathematical modeling to efficient 
implementation, via a complete algebraic specification. Basic concepts and 
results of this experiment in horizontal and vertical software specification 
and development are presented along with several illustrations. Advances in 
algebraic specification methodology are highlighted, specially hierarchical 
construction of ordered sorts and operations. 

1 Introduction 
For geometrical applications, algebraic specifications improve modeling and software 
development processes. We try to show it through the report of a large-size project. 

Several methods have been proposed for describing and manipulating geometric 
objects on computers [41, 42]. One of them, namely boundary representation [2, 38, 39], 
consists in describing objects by their subdivisions, in vertices, edges, faces and volumes. 
In this frame, mathematical combinatorial models have been proposed. The oldest one is 
the combinatorial map [16], well studied in [28, 44, 43, 8]. It has numerous uses in 
geometric modeling [1, 31, 21, 11]. New combinatorial topological models of n- 
dimensional objects rely on map extensions [9, 29, 32, 13]. Among them, we have 
proposed the n-dimensional generalized map, or n-g-map [33, 34, 35]. It is a particularly 
efficient model to deal with topology of manifolds. When completed by an embedding 
model, it allows to describe the entire geometry of n-dimensional manifold objects. 

Furthermore, for a long time, it has been attempted to improve the computer graphics 
programming techniques by functional [40], logical [20], or object-oriented [26] 
approaches. But we think that decisive progress will come above all from formal 
specification techniques, particularly algebraic ones [17, 3, 46]. Their first outstanding 
use was in [36, 37] where graphical basic objects and operations were algebraically 
specified . Other works normalize libraries of graphical interactive primitives, like GKS 
[10], or describe particular algorithms [30]. Note also the attempt of [25] which specifies 
elementary geometric constructions with an extended OBJ3. In [12, 13, 14], we give the 
basis of an algebraic specification of maps and extensions. However using algebraic 
specifications has never been reported for computer graphics real-size applications. 

So, for a full-scale test of both the operationality of the n-g-map model and the 
efficiency of the algebraic specification techniques, our group has designed and developed 
original and complex software, namely an interactive volumic modeller, i.e., a program 
which helps to interactively build and handle 3D geometrical objects, with topological 
basis [5]. The algebraic specification of this software is the continuation of our preceeding 
work. It gives us a rigorous hierarchical description of object sorts and operations, with a 
functional constructive point of view, an horizontal structuring, a vertical development 
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[18], and even a logical prototyping [3] and a real implementation. As far as we know, this 
is the first attempt to develop an interactive volumic modeller on a topological basis, and, 
moreover, with the help of a complete algebraic specification. This kind of product is the 
kernel of specialized software for industrial applications, e.g., mechanical CAD, 3D 
meshing, design, architecture. 

We present here the n-g-maps and the modeller. However, the paper is especially 
centered on the specification problem and on the solutions supplied. We insist on the 
theoretical fundamentals, the methodology of construction of the ordered sorts and the 
specification of the main operations. We rapidly discuss a few choices we made on 
realization, interactivity and implementation. The power of the modeller is illustrated by 
complex geometric objects. 

Section 2 describes the embedded n-g-maps, derived notions and properties. Section 3 
presents the main functionalities and user operations of the modeller. Section 4 proposes 
an order-sorted kernel of algebraic specification for the modeller. Section 5 deals with the 
vertical development.  Section 6 treats the horizontal structuring. Section 7 presents 
technical features of the modeller. Section 8 summarizes this experiment and gives future 
prospects. An Appendix shows screen pictures of objects built by the modeller. 

2 A G e o m e t r i c a l  M o d e l  

2.1  A T o p o l o g i c a l  M o d e l  

The n-dimensional generalized map, n-g-map for short, is a combinatorial notion, which 
is used as a general basis for the topological modeling in dimension n. The mathematical 
elements we give here are only those used in the following. A complete study as well as 
justifications for modeling and mathematical proofs of soundness are in [33, 34, 35]. 
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Fig. 1. An example of a 3-g-map with 2 colmected components. 

Recall that an involution 0. in a set D is a bijection such that 0.(0.(x)) = x for any x in D. 
Let n > -1. An n-g-map G = (D, ct 0 .. . . .  0.n) consists of a finite set D of darts with n+ l  
companion involutions c~. in D, 0 < k < n, with the constraints" 0.. o 0.' is an involution, 

K - -  - -  " K J 
for k+2 _< j < n. Darts x and y are said to be k-sewn in G if ctk(x ) = y (and tXk(y ) =x). 

Fig. 1 (and Picture 1 in Appendix) shows a 3-g-map represented, or embedded, in R 3. 
Darts are natural numbers (only partially written in the drawing for clarity) embedded as 
half straight line segments in R j. Involution 0.o is symbolized by thin strokes between 
half segments, 0.1 by their junctions, 0.2 by thicker black strokes, and 0.3 by hatched 
strokes. Thus IXo(1 ) = 2, 0.3.0(2) = 1, ~1(3) = 5, o.2(1) = 3, 0.2(8) = 7, 0.3(8) = 9, ot3(9) = 8, 
0.1(10) = 10, 0.2(9) = 9, 0.3(1) = 1, etc. 
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An n-g-map can be viewed as a multigraph in D with n+ l  companion symmetric binary 
relations determined by the ct k, for 0 < k _< n. The result is a notion of (strong) connected 
component for n-g-map as in multigraphs (cf. Fig. 1). The connected component of dart x 
in G is denoted <~0 ..... Ctn>(X ). New simple notions can also be introduced. 

For 0 < k < n, the (n-1)-g-map of k-cells of the n-g-map G = (D, cx 0 . . . . .  o~n) is def'med 
by G k = (D, o~ 0 . . . . .  ctk.1, c~k+ 1 ..... O~n). The k-cell of G incident to dart x is the connected 
component of x in G k. The 0-cells, 1-cells, 2-cells and 3-cells of G are respectively called 
the vertices, edges, faces and volumes of G (Fig. 2). 

I ': , 

| 

(a) A vertice (b) An edge (c) A face (d) A volume 

Fig. 2. K-ceils incident to dart 8 of the 3-g-map in Fig. I. 

Similarly, for 0 < k < n, the (k-1)-g-map of simple k-cells of G is defined by G' k = (D, ct o, 
.... CXk.1). The simple k-cell of G incident to dart x is the connected component of x in G~k 

- - "  " " V " (Fig. 3). So, constraints r k o cti is an m olutlon of the n-g-map definition say that k- 
sewings are always done in n-g-n~aps for all the darts of isomorphic simple k-cells. 
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(a) A s. vertex (b) A s. edge (c) A s. face (d) A simple volume (= a volume) 

Fig. 3. Simple (or s.) k-cells incident to dart 8 of the 3-g-map in Fig. 1. 

2.2 A Geometrical Embedding Model 

For any dimension k, 0 _< k < n, the geometric k-embedding of an n-g-map in an n- 
dimensional  Euclidean space R n is fixed by labels associated with k-cells, in fact by a 
single dart per k-cell. 
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More precisely, for 0 < k < n, k-embedding labels are manifolds of dimension k, i.e., in 
dimensions 0, 1, 2, etc, respectively points, Jordan arcs, disc homeomorphic patches, etc. 
In Fig. 1, each vertex is 0-embedded in a point of R 3, each edge as a straight line segment, 
each face as a plane patch, and each volume as a polyhedron. Note that the display often 
splits the cells, to show darts and sewings, as in Fig. 1 and Picture 1. 

2.3 Properties of the Generalized Maps 

Many interesting properties about the topology of objects can be obtained from a 
modeling by n-g-maps. The principal ones concern 2-g-maps which modelize surfaces. 
Indeed, with a given 2-g-map may always be associated the topology of a subdivision of a 
surface, open or closed, orientable or not, with or without boundaries. Conversely, a 2-g- 
map may always be associated with the topology of any surface subdivision [27, 33]. 

Three characteristics of a 2-g-map are typical of the subdivision of the surface whose 
topology is represented by the 2-g-map. They are the number of boundaries, the 
orientability factor (the value of which is 0 if the surface is orientable, 1 or 2 otherwise), 
the genus (i.e., the number of holes) [27]. For instance, the triplet of characteristics of a 
disk, a sphere, a torus, a Mo~bius strip, a Klein bottle, respectively are (1, 0, 0), (0, 0, 0), 
(0, 0, 1), (1, 1, 0), (0, 2, 0). These characteristics can be computed from a 2-g-map 
associated with the surface. Picture 2 shows non orientable open and closed surfaces. 

3 Functionalities of the Modeller 

The modeller is a program which allows interactively to construct, modify, manipulate, 
display and record geometric 3D objects, thanks to numerous original facilities. 

3.1 M o d e l e d  O b j e c t s  

The end user of the modeller manipulates embedded 3-g-maps with some additional 
constraints. They modelize objects composed of vertices, edges, faces and volumes, which 
are regularized or not [45]. Thus, dangling edges, open faces or volumes, non orientable 
faces can intentionally be manipulated, efficiently detected and possibly discarded. 

More precisely, the following additional topological constraints are adopted for the 3- 
g-maps handled by the user: (1) ct 0 is an involution with no fixed point; (2) ~ o otl has no 
fixed point; (3) o~ 0 o or2 has no fixed point; (4) C~l(X ) = x implies ~3(x) = x; (5) <o~ 0, 
~l>(x) and <or 0, ~l>(C~3(x)) are disjoint for any dart x. 

The intuitive meaning of these constraints is: (1) dangling darts are forbidden; (2) 
loops are forbidden; (3) bent edges, i.e., simple edges 2-sewn to themselves, are forbidden; 
(4) only closed simple faces can be sewn; (5)folded simple faces, i.e., simple faces 3-sewn 
to themselves, are forbidden. The 3-g-map in Fig. 1 satisfies these properties. 

A very simple embedding is adopted: each vertex is embedded as a point of Q3. Thus, an 
edge is implicitly embedded as the line segment joining the two points associated with the 
vertices that bound the edge. Similarly, a face is implicitly embedded as a surface patch 
joining the line segments associated with the edges which bound the face. If the face is 
bounded by three edges, the patch is planar. Otherwise its exact form is not essential in our 
application. Such a patch, which is only defined by its boundary, is easily handled by most 
basic graphics libraries, for instance to fill it or to render it. 

3.2 High-level Operations 

About 150 high-level operations can be used through menus. Creation, deletion, 
duplication, subdivision, sewing and unsewing of k-cells and connected components of 
embedded 3-g-maps are among the main supplied facilities. Production and sewing of 
linearized cubic curves, bicubic surfaces, tricubic volumes, revolution and sweeping curves 
and surfaces are very useful operations offered for building quickly realistic objects. 
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Motion and deformation with constant topology of designated parts of an object are 
possible under an interactive control. Immediate computing of the three characteristics of 
built surfaces allows the user to permanently check their quality. Visualization, coloring, 
picking, files, undo-redo, press book, etc, complete the functionalities. 

Despite the simplicity of the topological and embedding models, it is possible to build 
complex objects with these operations, as displayed in Pictures 3 to 8 of Appendix. In 
traditional modellers, such objects sometimes need Boolean shape operations [41], which 
are brute force and time consuming. The clear distinction between topology and embedding 
in the geometrical model often allows us to avoid these operations. Moreover this 
distinction is a basic principle of the following formal specifications. 

4 Algebraic Specification of an N-g-map Basic Kernel 

We formalize a kernel of n-g-maps manipulations. It is more general than what is strictly 
needed for the modeller in order to make specification, subsequent programmation and 
future re-using more easy, clear and safe. In this section, the specification is mainly an 
horizontal  structuring by ex tens ions  without parameter,  and without explicit ly 
importing~exporting modules [18]. The specification is order-sorted [23] and equational, 
with the usual i f_then_else and == (for comparison) polymorphic functional symbols 
[17]. We always adopt an -initial semantics point of view [17, 23]. Specifications of 
Booleans, non null natural, natural and rational numbers, i.e., Boolean, nznat, nat and 
rat sorts, are built-in, with the constraint to be in the initial semantics [18]. 

4.1 Topology 
The dart sort is named dart. An erroneous dart err dart is introduced with the dart? sort as 
such that dart < dart?, in the sense of the ordered sorts [23]. We choose atomic n-g-map 
generators  to facilitate the building of other operations by composition, particularly 
sewings and unsewings of k-cells. That leads to sorts which are greater than necessary and 
which are called by the generic name map. The specification of the most general sort, 
mapO, begins by that of the topological generators, v, i, and l: 

s o r t s  dart  dart? mapO 
s u b s o r t  dart < dart? 
o p e r a t i o n s  

err_dart : --> dart? 
v : -~ mapO 
i : mapO dart --~ mapO 
l : mapO n a t  dart dart --~ mapO 

For simplification's sake, we identify here dart sort and nznat, err dart and O, and dart? 
and nat. This enables us to stay in the initial semantics avoiding-both parameters and 
functorial considerations [17]. In fact, darts are actually represented by pointers in the 
modeller implementation. The symbol of constant v corresponds to the empty map, i(m, 
x) inserts a dart x in a map m, l(m, k, x, y) associates y to x with label (in dimension) k, in 
a "semi-sewing". These operations are total. So, we can insert by i several times the same 
dart in a map, and apply l anyhow. In initial semantics, the sort mapO is interpreted as the 
set of all the closed terms which are generated by these operators. 

The following operator a formalizes the n-g-map functions a k (cf. section 2) extended 
to the maps: a(m, k, x) returns the successor at dimension k o fx  in the map m: 

o p e r a t i o n  
a : mapO n a t  dart -~dart? 

a x i o m s  (ra : mapO, k j : n a t ,  x y z : dart) 
a(v, k, z) = err_dart 
a(i(m, x), k, z) = i f  z == x t hen  x e lse  a(m, k, z) 
a(l(m, j ,  x, y), k, z) = i l k  == j a n d  z == x t hen  y else a(m, k, z) 
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To retrieve the usual cases, we define a new mapl sort, with rnapl < rnapO, interpreted 
as a set of directed rnultigraphs on darts, with edges labelled in na t .  The invariant 
inv_rnapl characterizes the maps of rnapO which belong to map1. The operation i(m, x) is 
interpreted as the insertion of a graph node x in rn, and l(rn, k, x, y) as the addition of an 
edge (x, y) labelled by k. The Boolean operation exdart(m, x) returns t rue iff x is in m: 

sor t  map l 
s u b s o r t  map1 = mapO [inv_map l] 
operations 

ex_dart : mapO dart -9 Boolean 
inv map1 : mapO -~ B o o l e a n  

precone~tions (m : map1, k : nat ,  x y : dart) 
p r e c  [map1] i(m, x) ~ not ex_dart(m, x) 

�9 p r e c  [map1] l(m, k, x, y) - e x d a r t ( m ,  x) a n d  e x d a r t ( m ,  y) 
axzoms (m : mapO, k n : nat ,  x y z : dart) 

ex_dart(v, z) = f a l s e  
ex_dart(i(m, x), z) = z == x or  ex_dart(m, z) 
ex_dart(l(m, k, x, y), z) = ex_dart(m, z) 
inv_map l (v) = t r u e  
inv_mapI( i (m,  x)) = n o t  ex_dart(m, x) a n d  inv_mapI(m)  
inv_map I (l(m, k, x, y)) = ex_dart(m, x) a n d  ex_dart(m, y) 

a n d  inv_map l (m)  

Preconditions for i and l derive from the invariant inv_rnapl: when applied to rnapl m, 
i(rn, x) returns a legal element of rnapl iff x does not belong to rn, and l(rn, k, x, y) iff x 
and y belong to rn. Each precondition definition is indexed by the target sort of  the 
operator between square brackets, e.g., [map1] for i. In fact, the above preconditions are 
the weakest ones to satisfy the invariant, which can be proven. The new operations i and l 
are restrictions of the old ones: they have exactly the same semantics as previously on the 
domain defined by the invariant. This satisfies the monotonicity condition of [23]. 

A hierarchy of  about 40 ordered map sorts with invariants and operations with 
preconditions has been defined. Constraints get more and more restrictive: sorts with a k 
injective, with a k a permutation, with a k an involution, with k _< 3, with embedding 
constraints, etc. For instance, the sort map3 take into account the perrnutativity of i and l: 

sor t  map3 
s u b s o r t  map3 < map2 
ax ioms  (m : map2, k k'  n : nat ,  x y x ' y ' z  : dart) 

i(i(m, x), x') = i(i(m, x'), x) 
l(l(m, k, x, y), k ,  x ; y') = l(l(m, k;  x ; y'), k, x, y) 
ia(m, k, x, y), z) = ta(m, z), k, x, y) 

The sort hierarchy meets the order-sorted signature constraints: it is regular and coherent, 
in the sense of [23]. It is completely described in [4]. 

4.2 Embedding 

We extend the specification with an embedding generator em. Thus, em(m, k, x, q) embeds 
the k-cell of rn containing dart x on a geometric object q of sort embed and of dimension k" 

sor t  embed 
operation 

e m :  mapO n a t  dart  embed ---> mapO 
precondition (m : mapO, k : nat ,  x : dart, q : embed) 

p r e e  era(m, k, x, q) - inv_embed(q ,  k) 

To meet this constraint, we introduce sorts ernbedk of geometric objects of dimension 
k, with ernbedk < embed. We also define an invariant invernbed(q, k), t rue  iff q belongs 
to sort ernbedk, which is the precondition for ern. In fact, only 0-embeddings are explicit 
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in the modeller. They are 3D points, i.e., triplets of ra t  coordinates, built  by the 0- 
embedding generator genembedO. Thus we have in this simple case: 

operations 
genembedO : r a t  3 -9 embedO 
inv embed : embed -~ Boolean 

a x i o m  (xy  z x l  :rat ,  k :na t )  
inv embed(genembedO(x, y, z), k) = k == 0 

The introduction of the map generator em enriches the set of mapO terms. It also forces 
to complete the previous specifications. For instance, a new axiom is needed for a: 

a x i o m  (m : mapO, k ~ : nat ,  x z : dart, q : embed) 
a(em(m, k, x, q), j, z) = a(m, j, z) 

Such axioms can always be automatically added, and wont be written here anymore. In 
fact, as there are thousands in the modeller specification, it is impossible to write them by 
hand. They are called implicit axioms in [37]. As previously, only darts present in a map 
can be embedded. This property restricts the mapO sort to a new sort mapel < mapO 
Furthermore, for the modeller, at most one dart per k-cell is k-embedded. Thus, we introduce 
again a new sort mape2  < mapel ,  defined by an invariant i nv_mape2 ,  in fact 
free_embed(m, k, x), that is t rue iff no dart of the k-cell of x is k-embedded in m: 

sor t  mape2 
subsort mape2 = m a p e l  [inv_mape2] 
a x i o m  (m : mapel ,  k : nat ,  x : dart, q : embed) 

inv_mape2(em(m, k, x, q)) = free_embed(m, k, x) 

We immediately deduce from this invariant the weakest precondition of operator em for 
the mape2 sort. At this level, the precondition for l is more tricky to obtain: l(m, k, x, y) 
is legal w.r.t, the embedding constraints only if, for all j ;~ k, the j-cells of x and y are still 
the same ones, or one of them is not j-embedded. The auxiliary operation free_embedl(rn, 
k, x, y) returns t rue  iff this condition holds. Its formal specification is not given here. 

4.3 Geometric O p e r a t o r s  

We impose to the final objects of the modeller exactly one k-embedding per k-cell. A new 
sort mape3 < mape2 derives. To maintain the mape3 invariant, operator l might be called 
by a new operator ll which removes some embeddings to avoid two distinct k-embeddings 
for a k-cell. Thus, operation U(m, k, x, y) removes, if necessary, the embeddings of the 
cells which contains y, and k-sews x and y by l(l(m, k, x, y), k, y, x). Precisely, before the 
k-sewing, for all j ~ k, it calls a function llk(m, j, x, y) which removes if necessary the j -  
embedding associated with the j-cell containing y. 

Symmetrically, function rr(m, k, x) first unsews in m darts x and y = a(m, k, x), then 
duplicates if necessary the j-embeddings for all j ;~ k if x is j-embedded in m. It calls for all j 

k a function rrk(m, k, j, x, y) which duplicates the j-embedding if necessary. 

4.4 Sort Hierarchy and Initial Semantics 

This leads us to a rather complex map sort hierarchy, with the top level mapO. Several 
branches go down: one for topology, with ... map2 < map1 < mapO, one for embedding, 
with ...< mape2 < mapel < rnapO, and other ones for cell markers (cf. Section 5). Note that 
new map generators are always introduced at top level, with automatical repercussions on 
the lower levels by implicit axioms. The 3-g-map sort of the embedded 3-g-maps with the 
modeller constraints of Section 3 is at the bottom of the hierarchy. In an initial semantics, 
it can be interpreted as the intersection of all its upper sorts, in other words, as the set of 
the mapO terms which exactly satisfy the invariants of the whole hierarchy [4]. 
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With order-sorted algebras [23] it is easy to describe step by step numerous geometric 
models, starting from a unique model with atomic generators, lnvariants and preconditions 
help to easily limit ordered geometric sorts, as pointed out by [25]. Intermediate models 
correspond to intermediate states when building geometric objects [13]. They facilitate 
defining total operations. They can also be used in modeling as such, when extending the 
class of handled objects beyond the strict 3-g-maps [4]. 

However, our specifications might be considered as over-specified [6]. It is the case 
with any specification where generators are chosen, sometimes rather early for practical 
reasons, because some implementations and algorithms are favoured. In fact, art early 
decision about the choice of the generators allows us to properly define the sort hierarchy 
and to make the kernel tunable, which is essential for debugging. 

Moreover, our aim is that the last level of specification be isomorphic with the 
implementation. That is an additional reason why, contrary to other approaches, as for 
instance loose semantics [46], we have favoured an initial semantics approach during the 
whole development of the specifications. 

The properties of the 3-g-maps, for instance cr k being an involution, for 0 < k _< 3, a 0 
being an involution with no fixed point, c~ 0 o a l  having no fixed point, ete, can be 
obtained from the specification as inductive theorems. That agrees with the initial 
semantics. These theorems can be proven by a mechanized inductive reasoning [14, 15]. 

5 Vertical Development 
The previous operators are combined to obtain new ones. Their definitions can be given 
first at a high level of abstraction, appropriate for logical prototyping, but often 
inefficient for a realistic implementation. The new operators have to be refined in a 
progressive vertical development. Our aim is to keep the same specification framework for 
this refinement. We examine this process through an example. 

We specify operator cc of cell traversal: cc(m, x) extracts the connected component of 
m of sort mapl  containing dart x. We start with a short abstract definition fi la Kruskat 
using other operators, the specification of which is simple and only given in comments: 

o p e r a t i o n  
ce : m a p l  dart  --~ map1 

p r e c o n d i t i o n  (m : map1, x : dart) 
p r e e  cc(m, x) - e x _ d a r t ( m ,  x) 

a x i o m s  (ra : map1, k : nat ,  x y z : dart) 
cc(i(m, x), z) = i f  x == z t h e n  i(v, z) e lse  cc(m, z) 
ce(l(m, k, x, y), z) = i f  islink(l(ra, k, x, y), z, x) 

t h e n  i f  islink(m, x, y) t h e n  l(cc(m, z), k, x, y) 
e l se  l(union(cc(m, x), cc(m, y)), k, x, y) 

else cc(m, z) 
/* union(m1, m2) merges mlet  m2; 

is link(m, x, y) is true iff the connected components of x and y in m are the same ones */ 

A straight implementation of cc as specified (a logical prototyping) will always have a 
time complexity exponential w.r.t, p, the number of darts in the map (in the best, average 
and worst cases). In fact, an acceptable response time imposes a complexity of cc in O(p) 
in the worst case. 

We improve this situation by a refinement of the specification. Thanks to a new mapO 
generator o f  dart marking, named mark, we specify a depth-first traversal mkcc(m, x), 
which marks the connected component of x in m instead of extracting it. The complexity 
in maximum time of this new operator is in O(p), when supposing an 0(1) complexity for 
the implemented basic operators, which is true in the actual implementation of the 
modeller. To simplify, we directly pass to a new sort of marked maps, named mapc, such 
that m a p c <  map1. The objects of this sort meet the following constraint of s tr ic t  
connectivity: existence of a path from a dart x to a dart y implies existence of another one 
from y to x. This property also holds for n-g-maps, so 3-g-map < mapc < map1: 
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operat ion 
m k c c  : m a p c  dar t  -9 m a p c  

p r e c o n d i t i o n  (m : mapc,  x : dart)  
p r e c  mkcc (m ,  x) --= ex_dart(m,  x) a n d  n o t _ m a r k ( m )  

axioms (m ~n l : mapc,  n : na t ,  x : dart) 
m k c c ( m ,  x) = m k c c _ a u x ( m a r k ( m ,  x), d im(m) ,  x) 
with  mkcc_aux(m,  n, x) = i f  n < 0 t h e n  m e l se  m k c c _ a u x ( m  l ,  n - 1, x) 

with ml  = i f  ismark(m, a(m, n, x)) then m else mkcc(m, a(m, n, x)) 
/* mark(m, x) marks the dart x in m; 

ismark(m, x) is true iff dart x is marked in map m; 
notmark(m) is true iff no dart of m is marked; 
dim(m) gives the dimension of map m */ 

For a final non recursive implementation, we refine once more the specification into 
another one, which is tail recursive, and directly implementable in O(p) time. Actually, it 
is easier to realize this traversal in a breadth-first way, the queue of marked darts being 
explicitly linked in the map itself thanks to another map generator, called markcc: 

a x i o m s  (m mO m l  m 2  : mape, n : na t ,  x xO y z z l  t tO t l  t2 : dart) 
mkcc (m ,  x) = mkec_lis t(mO, xO, tO) 
w i t h  (mO, tO) = m k c c _ a u x ( m a r k c c ( m ,  x, x), d im(m) ,  x, x) 

xO = succ_markcc(m l ,  x) 
mkcc_list(m, z, t) = i f  z == z l  t h e n  m else  mkcc__list(ml, z l ,  t l )  

w i t h  z l  = succ_markcc (m,  z) 
(ml ,  t l )  = mkcc__aux(m, n, z l ,  t) 
mkcc_aux(m,  n, z, t) = i f  n < 0 t h e n  (m, t) 

e lse  mkcc_aux(m2, n - 1, z, t2) 
w i t h  (m2, t2) = endmarkcc(m,  t, a(m, n, z)) 

/* succ markec(rn, x) is the successor of dart x in the queue of marked darts; 
endmarkec(rn, t, x) takes dart x after dart t in this queue * / 

Note that the mapO sort enrichment by new mark generators is only realized with the 
last version of the generators, i.e., in the example, with markcc. In fact, when we go down 
the sort hierarchy, for instance fixing n = 3, or imposing that some involutions be without 
fixed points, we can write specialized traversal functions still more efficient than the ones 
above. Thus, an edge traversal in a 3-g-map can be realized by direct compositions of a, for 
dimensions 2 and 3, without explicit depth- or breadth-first traversal. Finally, through 
factorizing definitions by with and using iterators (cf. Section 6), the specification can 
be directly translated into a procedural language. 

6 Horizontal Structuring 

6.1 Sewing O p e r a t o r s  

At 3-g-map level, we can write functions to create, remove, sew and unsew k-cells. We 
distinguish between topological operators ,  with strong topological and embedding 
preconditions, and geometrical (i.e., topological and embedding) operators of higher 
level, that only have topological preconditions. Particularly, sewing operators which 
meet the 3-g-maps constraints of the modeller can be defined this way. 

We present three examples: topological sewing, se, geometric sewing, gse, and 
insertion, gie2, of two simple edges, with only the formal specifications of se and gse: 

operat ions  
se, gse : 3-g-map dar t  dart  -9 3-g-map 

precondi t ions  (g : 3-g-map,  x y : dart)  
p r e e  gse(g, x, y) ---: ex_dart(g, x) a n d  ex_dart(g, y) a n d  a(g, 2, x) == x 

a n d  a(g, 2, y) == y a n d  x # a(g, O, y) a n d  x # y 
p r e e  se(g, x, y) - p r e c  (gse(g, x, y)) a n d  free_embedl(g,  2, x, y) 

a n d  free_embedl(g, 2, a(g, O, x), a(g, O, y)) 
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a x i o m s  (g : 3-g-map, x y : dart)  
se(g, x, y) = L(L(g, 2, x, y), 2, a(g, O, x), a(g, O, y)) 
w i t h  L(g, k, x, y) = l(l(g, k, x, y), k, y, x) 
gse(g, x, y) = se(llk(llk(llk(Uk(g, 1, x, y), 3, x, y), O, x, y), 

o, a(g, o, x), a(g, O, y)), x, y) 

Operator gse is written efficiently by using, instead of the general operator ll, operator 
Ilk at the appropriate dimensions to remove superfluous embeddings (cf. subsection 4.3). 
Operation gie2(g, x, y), which uses se, is rather surprising. It allows us to subdivide one 
face or to merge two faces, depending on whether the faces of x and y are the same ones or 
not (Fig. 4, (a) and (b), and Pictures 9 and 10 in Appendix). 

- I 
j Y 

(a) y (b [ 

Fig, 4. Insertion of two simple sewn edges. 

In the modeller, several useful operators are defined the same way, in particular Euler 
operators, which keep the surface genus unchanged [39]. 

6.2 M es hes ,  Second  Order  and Iterators  

We now briefly present the specification of a high-level operator, namely a mesh 
c o n t r u c t o r  [4]. The interest lies in the way this operator is specified. It clearly 
distinguishes between topology and embedding, and reduces the required number of 
operations. Moreover, it makes possible to justify the introduction of second order 
functions and iterators in specifications. We propose here to create simple meshes, which 
can be completed by poles afterwards (Fig. 5, Picture 11, and Picture 12 for an extension). 

~ / ~ ~ ' q J - - - - - - -  pole 

Fig. 5. A simple mesh and a mesh with pole (the 0 and 2-sewings are omitted). 

A simple mesh is made of simple quadrangles sewn together by operator se. The mesh 
topology is progressively created and embedded thanks to a function f: na t  4 ---> embed  
which 0-embeds a dart per quadrangle. The 4 variables o f f  are n and p, which give the mesh 
size, and i E [0, n] andj  e [0, p], which give the columns and lines of the mesh points. 

The mesh function, denoted grid, uses auxiliary creations of squares, i.e., sqrgrid, 
sqrgrid11, sqrgridnl and sqrgridlp, whose specification is omitted (cf. [4] for details): 

operation 
gr id  : 3-g-map ( n a t  4 -9 e~bed )  n a t  2 -9 3-g-map 

a x i o m s  (g : 3-g-map, f :  n a t  ~ -9 embed, i j k n p : n a t )  
grid(g, f, n, p) = grid2(grid1(sqrgrid11(g, f, n, p), f, 2, n, p), f, 2, 2, n, p 
w i t h  gridl(g,  f, k, n, p)  = . ~ 

i l k  > n t h e n  g e lse  gr idl(sqrgrianl(g ,  f, k, n, p), f, k + 1, n, p) 
grid2(g, f, i, j ,  n, p) = 



85 

i f  i > n then  i f  j >_p then  g else grid2(sqrgridlp(g, f, j, n, p), 2, j + 1, n, p) 
else grid2(sqrgrid(g, f, i, j, n, p), i + 1, j, n, p) 

Second order functions, like grid, are out of the strict frame of traditional algebraic 
specifications. They could be avoided by using parameterized modules as in OBJ3 [24]. But 
it is a heavy solution when the parameters concern only a few functions as it is here the 
case, where, moreover, the semantics does not create any problems. 

The use of auxiliary functions grid1 and grid2 to simulate two embedded iterations on 
the mesh squares by a tail recursion makes the specification heavy and reduces its 
readability. To remove them, we use iterators, considered as macro-definitions. For 
instance, v = vO ; w h i l e  n o t  cond(v) do  succ(v) defines by induction the last value v of 
a sequence of values, where the initial, current and next ones are respectively vO, v and 
succ(v), and the stop condition cond(v). It textually replaces the following iter function 
defined by: v = iter(vO) w i t h  iter(v) = i f  cond(v) t h e n  v else iter(succ(v)). 

The following specification which redefines grid with two embedded iterators, 
simplifies the specifications and brings us closer to functional and procedural languages: 

ax ioms  (g g l  g2 gj : 3-g-map, f :  n a t  4 -~ embed, i j k n p : nat )  
grid(g, f, n, p) = g2 
w i th  (i, g2) = (2, g l )  ; wh i l e  i _~ n do (i+1, gj) 

w i th  O, gJ) = (2, sqrgridlp(g2, f,j ,  n, p)) ; 
whi le  j <_ p do (]+1, sqrgrid(gl, f, i, j, n, p)) 

(k, g l )  = (2, sqrgridll(g, f, n, p)) ; 
whi le  k _< n do (k+ l, sqrgridnl(gl, f, k, n, p)) 

6.3 Miscellaneous: User Interaction, Errors, Libraries 

Classical algebraic specifications do not conveniently deal with user interactions [37] 
which can be seen as a distinct process, concurrent with the modeller process. A formalism 
suited to the description of concurrency, like LOTOS, could be used. In our case, it is a 
heavy solution, since the entry of external events is strictly limited to a small 
specification part. We have prefered to describe user interactions by a meta-specification, 
i.e., a second level of specifications, which manipulate the first level ones by simple 
axiom modifications [4]. 

In a modeller, errors are linked to user interaction. Operators with preconditions have 
been implemented in the way they were specified, i.e., without testing the preconditions 
in their bodies. They have been encapsulated in high-level functions, algebraically 
specified too, which deal with computer-human interactions, preconditions and errors. 

Today, graphical software development makes an intensive use of built-in graphical 
libraries. We have formally specified the library we use (Silicon Graphics GL), by an 
arbitrary choice of basic generators and by expressing other operators w.r.t, them. Such a 
task was difficult, given the imperfections of the documentation. 

7 Some Technical Features of the Modeller 

The modeller includes about 1800 operations: 1400 for geometric modeling and 400 for 
the environment and the interface. Most of them, except for 100 mathematical or trivial 
functions, were developed from complete algebraic specifications. The operations of the 
basic kernel were translated into PROLOG and tested by logical prototyping [4]. Only 150 
parameterized operations are visible for the user through the interface. 

The modeller is currently implemented in C for Silicon Graphics workstations. Thanks 
to the map concepts, the data structures that are used are very simple. Except for the upper 
ones, all the map and dart sorts of the hierarchy are really implemented with the same 
unified C types. A unified map structure consists mainly of a linked linear list of similary 
dart records, the fields of which are more or less constrained, depending on the invariants 
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of the corresponding map sort. Each dart record contains 1 dart pointer to the successor in 
the list, 4 dart pointers to represent the k-sewings, for 0 _< k <_ 3, one pointer to the 
optional 0-embedding, and several markers for traversal and interactive selections. The 
program contains about 25 000 lines of C, a rather small number for software of this type. 
This is mainly due to the conciseness and reusability induced by algebraic techniques. 

Response time is comparable with those of commercial products with similar features 
and may be even better. The main operations, particularly the traversals, have a time 
complexity in O(p) ,  where p is the number of darts. This is not the case in many 
commercial modellers which often take O(p2), because they lack directly accessible 
topological data. Other classical data structures, such as those derived from the "winged 
edge" [2], often take comparable memory space for a more restricted modeling area. 

8 Conclusion 

The n-g-map is a general and efficient model that helps to describe and handle the topology 
of n-dimensional objects. With embeddings, this model can be implemented in any 
dimension. For example, we chose to derive 3-g-maps with 0-embedding for a geometric 
modeller of complex manifold objects embedded in Q3  Other choices could be made with 
other map extensions and embeddings. But the handling of non manifold objects [45] 
requires even more general mathematical concepts, cellular complexes [19] for instance. 

With the above algebraic specification and its ordered sorts and invariants, we obtain a 
formal, functional, hierarchized, and homogeneous description of objects and operations. 
As often [22], genericity has not been necessary. In the future for instance, it may become 
interesting, to parameterize the modeller by topological or embedding constraints. 
Finally, we expect to recover a specification language well suited to the needs above [7]. 

Proofs of c o r r e c t n e s s  of our horizontal structurings are possible and will be 
undertaken, with a mechanical help [24]. But, the proofs of correctness of our vertical 
developments, which involve techniques of program transformation and synthesis, are 
more difficult to bring into play. Moreover, work about using algebraic specifications in 
semi-automatical proofs of geometric properties is in progress [14, 15]. 

The concrete results of our study is an interactive modeller of 3D objects. Private firms 
are already interested by its functionalities. However, it must be adapted and extended in 
order to be used in real applications. Algebraic specifications give a basis which makes 
those extentions easier. Among the next fundamental ones, there is the cellular complexes 
[19] and the Boolean shape operators [41]. 

Our experiment illustrates how algebraic specifications help to elaborate and study 
models in geometry, and to design and develop software in this area. Conversely, the 
spectacular workbench of geometric modeling is convenient to understand how algebraic 
specifications improve axiomatization and programming processes in a complex field. 
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Picture 1: The 3-g-map of Figure 1 Picture 2: A Mo~bius band and 2 Klein bottles 

Picture 3: Mechanical parts Picture 4: Details of a splitted mechanical part 

Picture 5: A surfacic teapot Picture 6: A volumic teapot 



89 

Picture 7: Spout of the volumic teapot Picture 8: Handle of the volumic teapot 

Picture 9: A face to br split Picture 10: The splitted face 

Picture 11: Surfacir meshes Picture 12: Volumic meshes 


