
Algebraic Specification and Development
in Geometric Modeling*

Y. Bertrand, J.-F. Dufourd, J. Fran~on, P. Lienhardt

D6partement d'Informatique, Universit~ Louis-Pasteur / CNRS
7, rue Renr-Descartes, 67084 Strasbourg Cedex, France, tel: 33 88 61 43 00,

e-mail: {bertrand, dufourd, fran~on, lierthardt} @dpt-info.u-strasbg.fr

Abstract . For several years now, the Geometric Modeling Group of
Strasbourg has been working on new formal concepts and tools for
describing and manipulating the boundary representation of geometric
objects. In a large project of an interactive modeller for volumic objects,
the description of which is based on generalized maps, it attempts to cover
the whole process from mathematical modeling to efficient
implementation, via a complete algebraic specification. Basic concepts and
results of this experiment in horizontal and vertical software specification
and development are presented along with several illustrations. Advances in
algebraic specification methodology are highlighted, specially hierarchical
construction of ordered sorts and operations.

1 Introduction
For geometrical applications, algebraic specifications improve modeling and software
development processes. We try to show it through the report of a large-size project.

Several methods have been proposed for describing and manipulating geometric
objects on computers [41, 42]. One of them, namely boundary representation [2, 38, 39],
consists in describing objects by their subdivisions, in vertices, edges, faces and volumes.
In this frame, mathematical combinatorial models have been proposed. The oldest one is
the combinatorial map [16], well studied in [28, 44, 43, 8]. It has numerous uses in
geometric modeling [1, 31, 21, 11]. New combinatorial topological models of n-
dimensional objects rely on map extensions [9, 29, 32, 13]. Among them, we have
proposed the n-dimensional generalized map, or n-g-map [33, 34, 35]. It is a particularly
efficient model to deal with topology of manifolds. When completed by an embedding
model, it allows to describe the entire geometry of n-dimensional manifold objects.

Furthermore, for a long time, it has been attempted to improve the computer graphics
programming techniques by functional [40], logical [20], or object-oriented [26]
approaches. But we think that decisive progress will come above all from formal
specification techniques, particularly algebraic ones [17, 3, 46]. Their first outstanding
use was in [36, 37] where graphical basic objects and operations were algebraically
specified . Other works normalize libraries of graphical interactive primitives, like GKS
[10], or describe particular algorithms [30]. Note also the attempt of [25] which specifies
elementary geometric constructions with an extended OBJ3. In [12, 13, 14], we give the
basis of an algebraic specification of maps and extensions. However using algebraic
specifications has never been reported for computer graphics real-size applications.

So, for a full-scale test of both the operationality of the n-g-map model and the
efficiency of the algebraic specification techniques, our group has designed and developed
original and complex software, namely an interactive volumic modeller, i.e., a program
which helps to interactively build and handle 3D geometrical objects, with topological
basis [5]. The algebraic specification of this software is the continuation of our preceeding
work. It gives us a rigorous hierarchical description of object sorts and operations, with a
functional constructive point of view, an horizontal structuring, a vertical development

This research has been supported by the GDR Programmation, CNRS, France.

76

[18], and even a logical prototyping [3] and a real implementation. As far as we know, this
is the first attempt to develop an interactive volumic modeller on a topological basis, and,
moreover, with the help of a complete algebraic specification. This kind of product is the
kernel of specialized software for industrial applications, e.g., mechanical CAD, 3D
meshing, design, architecture.

We present here the n-g-maps and the modeller. However, the paper is especially
centered on the specification problem and on the solutions supplied. We insist on the
theoretical fundamentals, the methodology of construction of the ordered sorts and the
specification of the main operations. We rapidly discuss a few choices we made on
realization, interactivity and implementation. The power of the modeller is illustrated by
complex geometric objects.

Section 2 describes the embedded n-g-maps, derived notions and properties. Section 3
presents the main functionalities and user operations of the modeller. Section 4 proposes
an order-sorted kernel of algebraic specification for the modeller. Section 5 deals with the
vertical development. Section 6 treats the horizontal structuring. Section 7 presents
technical features of the modeller. Section 8 summarizes this experiment and gives future
prospects. An Appendix shows screen pictures of objects built by the modeller.

2 A G e o m e t r i c a l M o d e l

2.1 A T o p o l o g i c a l M o d e l

The n-dimensional generalized map, n-g-map for short, is a combinatorial notion, which
is used as a general basis for the topological modeling in dimension n. The mathematical
elements we give here are only those used in the following. A complete study as well as
justifications for modeling and mathematical proofs of soundness are in [33, 34, 35].

I : i !

!

I
10

11

I

/

\

Fig. 1. An example of a 3-g-map with 2 colmected components.

Recall that an involution 0. in a set D is a bijection such that 0.(0.(x)) = x for any x in D.
Let n > -1. An n-g-map G = (D, ct 0 0.n) consists of a finite set D of darts with n+ l
companion involutions c~. in D, 0 < k < n, with the constraints" 0.. o 0.' is an involution,

K - - - - " K J
for k+2 _< j < n. Darts x and y are said to be k-sewn in G if ctk(x) = y (and tXk(y) =x).

Fig. 1 (and Picture 1 in Appendix) shows a 3-g-map represented, or embedded, in R 3.
Darts are natural numbers (only partially written in the drawing for clarity) embedded as
half straight line segments in R j. Involution 0.o is symbolized by thin strokes between
half segments, 0.1 by their junctions, 0.2 by thicker black strokes, and 0.3 by hatched
strokes. Thus IXo(1) = 2, 0.3.0(2) = 1, ~1(3) = 5, o.2(1) = 3, 0.2(8) = 7, 0.3(8) = 9, ot3(9) = 8,
0.1(10) = 10, 0.2(9) = 9, 0.3(1) = 1, etc.

77

An n-g-map can be viewed as a multigraph in D with n+ l companion symmetric binary
relations determined by the ct k, for 0 < k _< n. The result is a notion of (strong) connected
component for n-g-map as in multigraphs (cf. Fig. 1). The connected component of dart x
in G is denoted <~0 Ctn>(X). New simple notions can also be introduced.

For 0 < k < n, the (n-1)-g-map of k-cells of the n-g-map G = (D, cx 0 o~n) is def'med
by G k = (D, o~ 0 ctk.1, c~k+ 1 O~n). The k-cell of G incident to dart x is the connected
component of x in G k. The 0-cells, 1-cells, 2-cells and 3-cells of G are respectively called
the vertices, edges, faces and volumes of G (Fig. 2).

I ': ,

|

(a) A vertice (b) An edge (c) A face (d) A volume

Fig. 2. K-ceils incident to dart 8 of the 3-g-map in Fig. I.

Similarly, for 0 < k < n, the (k-1)-g-map of simple k-cells of G is defined by G' k = (D, ct o,
.... CXk.1). The simple k-cell of G incident to dart x is the connected component of x in G~k

- - " " " V " (Fig. 3). So, constraints r k o cti is an m olutlon of the n-g-map definition say that k-
sewings are always done in n-g-n~aps for all the darts of isomorphic simple k-cells.

I l i A "

8 13 7 8

�9 m

(a) A s. vertex (b) A s. edge (c) A s. face (d) A simple volume (= a volume)

Fig. 3. Simple (or s.) k-cells incident to dart 8 of the 3-g-map in Fig. 1.

2.2 A Geometrical Embedding Model

For any dimension k, 0 _< k < n, the geometric k-embedding of an n-g-map in an n-
dimensional Euclidean space R n is fixed by labels associated with k-cells, in fact by a
single dart per k-cell.

78

More precisely, for 0 < k < n, k-embedding labels are manifolds of dimension k, i.e., in
dimensions 0, 1, 2, etc, respectively points, Jordan arcs, disc homeomorphic patches, etc.
In Fig. 1, each vertex is 0-embedded in a point of R 3, each edge as a straight line segment,
each face as a plane patch, and each volume as a polyhedron. Note that the display often
splits the cells, to show darts and sewings, as in Fig. 1 and Picture 1.

2.3 Properties of the Generalized Maps

Many interesting properties about the topology of objects can be obtained from a
modeling by n-g-maps. The principal ones concern 2-g-maps which modelize surfaces.
Indeed, with a given 2-g-map may always be associated the topology of a subdivision of a
surface, open or closed, orientable or not, with or without boundaries. Conversely, a 2-g-
map may always be associated with the topology of any surface subdivision [27, 33].

Three characteristics of a 2-g-map are typical of the subdivision of the surface whose
topology is represented by the 2-g-map. They are the number of boundaries, the
orientability factor (the value of which is 0 if the surface is orientable, 1 or 2 otherwise),
the genus (i.e., the number of holes) [27]. For instance, the triplet of characteristics of a
disk, a sphere, a torus, a Mo~bius strip, a Klein bottle, respectively are (1, 0, 0), (0, 0, 0),
(0, 0, 1), (1, 1, 0), (0, 2, 0). These characteristics can be computed from a 2-g-map
associated with the surface. Picture 2 shows non orientable open and closed surfaces.

3 Functionalities of the Modeller

The modeller is a program which allows interactively to construct, modify, manipulate,
display and record geometric 3D objects, thanks to numerous original facilities.

3.1 M o d e l e d O b j e c t s

The end user of the modeller manipulates embedded 3-g-maps with some additional
constraints. They modelize objects composed of vertices, edges, faces and volumes, which
are regularized or not [45]. Thus, dangling edges, open faces or volumes, non orientable
faces can intentionally be manipulated, efficiently detected and possibly discarded.

More precisely, the following additional topological constraints are adopted for the 3-
g-maps handled by the user: (1) ct 0 is an involution with no fixed point; (2) ~ o otl has no
fixed point; (3) o~ 0 o or2 has no fixed point; (4) C~l(X) = x implies ~3(x) = x; (5) <o~ 0,
~l>(x) and <or 0, ~l>(C~3(x)) are disjoint for any dart x.

The intuitive meaning of these constraints is: (1) dangling darts are forbidden; (2)
loops are forbidden; (3) bent edges, i.e., simple edges 2-sewn to themselves, are forbidden;
(4) only closed simple faces can be sewn; (5)folded simple faces, i.e., simple faces 3-sewn
to themselves, are forbidden. The 3-g-map in Fig. 1 satisfies these properties.

A very simple embedding is adopted: each vertex is embedded as a point of Q3. Thus, an
edge is implicitly embedded as the line segment joining the two points associated with the
vertices that bound the edge. Similarly, a face is implicitly embedded as a surface patch
joining the line segments associated with the edges which bound the face. If the face is
bounded by three edges, the patch is planar. Otherwise its exact form is not essential in our
application. Such a patch, which is only defined by its boundary, is easily handled by most
basic graphics libraries, for instance to fill it or to render it.

3.2 High-level Operations

About 150 high-level operations can be used through menus. Creation, deletion,
duplication, subdivision, sewing and unsewing of k-cells and connected components of
embedded 3-g-maps are among the main supplied facilities. Production and sewing of
linearized cubic curves, bicubic surfaces, tricubic volumes, revolution and sweeping curves
and surfaces are very useful operations offered for building quickly realistic objects.

79

Motion and deformation with constant topology of designated parts of an object are
possible under an interactive control. Immediate computing of the three characteristics of
built surfaces allows the user to permanently check their quality. Visualization, coloring,
picking, files, undo-redo, press book, etc, complete the functionalities.

Despite the simplicity of the topological and embedding models, it is possible to build
complex objects with these operations, as displayed in Pictures 3 to 8 of Appendix. In
traditional modellers, such objects sometimes need Boolean shape operations [41], which
are brute force and time consuming. The clear distinction between topology and embedding
in the geometrical model often allows us to avoid these operations. Moreover this
distinction is a basic principle of the following formal specifications.

4 Algebraic Specification of an N-g-map Basic Kernel

We formalize a kernel of n-g-maps manipulations. It is more general than what is strictly
needed for the modeller in order to make specification, subsequent programmation and
future re-using more easy, clear and safe. In this section, the specification is mainly an
horizontal structuring by ex tens ions without parameter, and without explicit ly
importing~exporting modules [18]. The specification is order-sorted [23] and equational,
with the usual i f_then_else and == (for comparison) polymorphic functional symbols
[17]. We always adopt an -initial semantics point of view [17, 23]. Specifications of
Booleans, non null natural, natural and rational numbers, i.e., Boolean, nznat, nat and
rat sorts, are built-in, with the constraint to be in the initial semantics [18].

4.1 Topology
The dart sort is named dart. An erroneous dart err dart is introduced with the dart? sort as
such that dart < dart?, in the sense of the ordered sorts [23]. We choose atomic n-g-map
generators to facilitate the building of other operations by composition, particularly
sewings and unsewings of k-cells. That leads to sorts which are greater than necessary and
which are called by the generic name map. The specification of the most general sort,
mapO, begins by that of the topological generators, v, i, and l:

s o r t s dart dart? mapO
s u b s o r t dart < dart?
o p e r a t i o n s

err_dart : --> dart?
v : -~ mapO
i : mapO dart --~ mapO
l : mapO n a t dart dart --~ mapO

For simplification's sake, we identify here dart sort and nznat, err dart and O, and dart?
and nat. This enables us to stay in the initial semantics avoiding-both parameters and
functorial considerations [17]. In fact, darts are actually represented by pointers in the
modeller implementation. The symbol of constant v corresponds to the empty map, i(m,
x) inserts a dart x in a map m, l(m, k, x, y) associates y to x with label (in dimension) k, in
a "semi-sewing". These operations are total. So, we can insert by i several times the same
dart in a map, and apply l anyhow. In initial semantics, the sort mapO is interpreted as the
set of all the closed terms which are generated by these operators.

The following operator a formalizes the n-g-map functions a k (cf. section 2) extended
to the maps: a(m, k, x) returns the successor at dimension k o fx in the map m:

o p e r a t i o n
a : mapO n a t dart -~dart?

a x i o m s (ra : mapO, k j : n a t , x y z : dart)
a(v, k, z) = err_dart
a(i(m, x), k, z) = i f z == x t hen x e lse a(m, k, z)
a(l(m, j , x, y), k, z) = i l k == j a n d z == x t hen y else a(m, k, z)

80

To retrieve the usual cases, we define a new mapl sort, with rnapl < rnapO, interpreted
as a set of directed rnultigraphs on darts, with edges labelled in na t . The invariant
inv_rnapl characterizes the maps of rnapO which belong to map1. The operation i(m, x) is
interpreted as the insertion of a graph node x in rn, and l(rn, k, x, y) as the addition of an
edge (x, y) labelled by k. The Boolean operation exdart(m, x) returns t rue iff x is in m:

sor t map l
s u b s o r t map1 = mapO [inv_map l]
operations

ex_dart : mapO dart -9 Boolean
inv map1 : mapO -~ B o o l e a n

precone~tions (m : map1, k : nat , x y : dart)
p r e c [map1] i(m, x) ~ not ex_dart(m, x)

�9 p r e c [map1] l(m, k, x, y) - e x d a r t (m , x) a n d e x d a r t (m , y)
axzoms (m : mapO, k n : nat , x y z : dart)

ex_dart(v, z) = f a l s e
ex_dart(i(m, x), z) = z == x or ex_dart(m, z)
ex_dart(l(m, k, x, y), z) = ex_dart(m, z)
inv_map l (v) = t r u e
inv_mapI(i (m, x)) = n o t ex_dart(m, x) a n d inv_mapI(m)
inv_map I (l(m, k, x, y)) = ex_dart(m, x) a n d ex_dart(m, y)

a n d inv_map l (m)

Preconditions for i and l derive from the invariant inv_rnapl: when applied to rnapl m,
i(rn, x) returns a legal element of rnapl iff x does not belong to rn, and l(rn, k, x, y) iff x
and y belong to rn. Each precondition definition is indexed by the target sort of the
operator between square brackets, e.g., [map1] for i. In fact, the above preconditions are
the weakest ones to satisfy the invariant, which can be proven. The new operations i and l
are restrictions of the old ones: they have exactly the same semantics as previously on the
domain defined by the invariant. This satisfies the monotonicity condition of [23].

A hierarchy of about 40 ordered map sorts with invariants and operations with
preconditions has been defined. Constraints get more and more restrictive: sorts with a k
injective, with a k a permutation, with a k an involution, with k _< 3, with embedding
constraints, etc. For instance, the sort map3 take into account the perrnutativity of i and l:

sor t map3
s u b s o r t map3 < map2
ax ioms (m : map2, k k' n : nat , x y x ' y ' z : dart)

i(i(m, x), x') = i(i(m, x'), x)
l(l(m, k, x, y), k , x ; y') = l(l(m, k; x ; y'), k, x, y)
ia(m, k, x, y), z) = ta(m, z), k, x, y)

The sort hierarchy meets the order-sorted signature constraints: it is regular and coherent,
in the sense of [23]. It is completely described in [4].

4.2 Embedding

We extend the specification with an embedding generator em. Thus, em(m, k, x, q) embeds
the k-cell of rn containing dart x on a geometric object q of sort embed and of dimension k"

sor t embed
operation

e m : mapO n a t dart embed ---> mapO
precondition (m : mapO, k : nat , x : dart, q : embed)

p r e e era(m, k, x, q) - inv_embed(q , k)

To meet this constraint, we introduce sorts ernbedk of geometric objects of dimension
k, with ernbedk < embed. We also define an invariant invernbed(q, k), t rue iff q belongs
to sort ernbedk, which is the precondition for ern. In fact, only 0-embeddings are explicit

81

in the modeller. They are 3D points, i.e., triplets of ra t coordinates, built by the 0-
embedding generator genembedO. Thus we have in this simple case:

operations
genembedO : r a t 3 -9 embedO
inv embed : embed -~ Boolean

a x i o m (xy z x l :rat , k :na t)
inv embed(genembedO(x, y, z), k) = k == 0

The introduction of the map generator em enriches the set of mapO terms. It also forces
to complete the previous specifications. For instance, a new axiom is needed for a:

a x i o m (m : mapO, k ~ : nat , x z : dart, q : embed)
a(em(m, k, x, q), j, z) = a(m, j, z)

Such axioms can always be automatically added, and wont be written here anymore. In
fact, as there are thousands in the modeller specification, it is impossible to write them by
hand. They are called implicit axioms in [37]. As previously, only darts present in a map
can be embedded. This property restricts the mapO sort to a new sort mapel < mapO
Furthermore, for the modeller, at most one dart per k-cell is k-embedded. Thus, we introduce
again a new sort mape2 < mapel , defined by an invariant i nv_mape2 , in fact
free_embed(m, k, x), that is t rue iff no dart of the k-cell of x is k-embedded in m:

sor t mape2
subsort mape2 = m a p e l [inv_mape2]
a x i o m (m : mapel , k : nat , x : dart, q : embed)

inv_mape2(em(m, k, x, q)) = free_embed(m, k, x)

We immediately deduce from this invariant the weakest precondition of operator em for
the mape2 sort. At this level, the precondition for l is more tricky to obtain: l(m, k, x, y)
is legal w.r.t, the embedding constraints only if, for all j ;~ k, the j-cells of x and y are still
the same ones, or one of them is not j-embedded. The auxiliary operation free_embedl(rn,
k, x, y) returns t rue iff this condition holds. Its formal specification is not given here.

4.3 Geometric O p e r a t o r s

We impose to the final objects of the modeller exactly one k-embedding per k-cell. A new
sort mape3 < mape2 derives. To maintain the mape3 invariant, operator l might be called
by a new operator ll which removes some embeddings to avoid two distinct k-embeddings
for a k-cell. Thus, operation U(m, k, x, y) removes, if necessary, the embeddings of the
cells which contains y, and k-sews x and y by l(l(m, k, x, y), k, y, x). Precisely, before the
k-sewing, for all j ~ k, it calls a function llk(m, j, x, y) which removes if necessary the j -
embedding associated with the j-cell containing y.

Symmetrically, function rr(m, k, x) first unsews in m darts x and y = a(m, k, x), then
duplicates if necessary the j-embeddings for all j ;~ k if x is j-embedded in m. It calls for all j

k a function rrk(m, k, j, x, y) which duplicates the j-embedding if necessary.

4.4 Sort Hierarchy and Initial Semantics

This leads us to a rather complex map sort hierarchy, with the top level mapO. Several
branches go down: one for topology, with ... map2 < map1 < mapO, one for embedding,
with ...< mape2 < mapel < rnapO, and other ones for cell markers (cf. Section 5). Note that
new map generators are always introduced at top level, with automatical repercussions on
the lower levels by implicit axioms. The 3-g-map sort of the embedded 3-g-maps with the
modeller constraints of Section 3 is at the bottom of the hierarchy. In an initial semantics,
it can be interpreted as the intersection of all its upper sorts, in other words, as the set of
the mapO terms which exactly satisfy the invariants of the whole hierarchy [4].

82

With order-sorted algebras [23] it is easy to describe step by step numerous geometric
models, starting from a unique model with atomic generators, lnvariants and preconditions
help to easily limit ordered geometric sorts, as pointed out by [25]. Intermediate models
correspond to intermediate states when building geometric objects [13]. They facilitate
defining total operations. They can also be used in modeling as such, when extending the
class of handled objects beyond the strict 3-g-maps [4].

However, our specifications might be considered as over-specified [6]. It is the case
with any specification where generators are chosen, sometimes rather early for practical
reasons, because some implementations and algorithms are favoured. In fact, art early
decision about the choice of the generators allows us to properly define the sort hierarchy
and to make the kernel tunable, which is essential for debugging.

Moreover, our aim is that the last level of specification be isomorphic with the
implementation. That is an additional reason why, contrary to other approaches, as for
instance loose semantics [46], we have favoured an initial semantics approach during the
whole development of the specifications.

The properties of the 3-g-maps, for instance cr k being an involution, for 0 < k _< 3, a 0
being an involution with no fixed point, c~ 0 o a l having no fixed point, ete, can be
obtained from the specification as inductive theorems. That agrees with the initial
semantics. These theorems can be proven by a mechanized inductive reasoning [14, 15].

5 Vertical Development
The previous operators are combined to obtain new ones. Their definitions can be given
first at a high level of abstraction, appropriate for logical prototyping, but often
inefficient for a realistic implementation. The new operators have to be refined in a
progressive vertical development. Our aim is to keep the same specification framework for
this refinement. We examine this process through an example.

We specify operator cc of cell traversal: cc(m, x) extracts the connected component of
m of sort mapl containing dart x. We start with a short abstract definition fi la Kruskat
using other operators, the specification of which is simple and only given in comments:

o p e r a t i o n
ce : m a p l dart --~ map1

p r e c o n d i t i o n (m : map1, x : dart)
p r e e cc(m, x) - e x _ d a r t (m , x)

a x i o m s (ra : map1, k : nat , x y z : dart)
cc(i(m, x), z) = i f x == z t h e n i(v, z) e lse cc(m, z)
ce(l(m, k, x, y), z) = i f islink(l(ra, k, x, y), z, x)

t h e n i f islink(m, x, y) t h e n l(cc(m, z), k, x, y)
e l se l(union(cc(m, x), cc(m, y)), k, x, y)

else cc(m, z)
/* union(m1, m2) merges mlet m2;

is link(m, x, y) is true iff the connected components of x and y in m are the same ones */

A straight implementation of cc as specified (a logical prototyping) will always have a
time complexity exponential w.r.t, p, the number of darts in the map (in the best, average
and worst cases). In fact, an acceptable response time imposes a complexity of cc in O(p)
in the worst case.

We improve this situation by a refinement of the specification. Thanks to a new mapO
generator o f dart marking, named mark, we specify a depth-first traversal mkcc(m, x),
which marks the connected component of x in m instead of extracting it. The complexity
in maximum time of this new operator is in O(p), when supposing an 0(1) complexity for
the implemented basic operators, which is true in the actual implementation of the
modeller. To simplify, we directly pass to a new sort of marked maps, named mapc, such
that m a p c < map1. The objects of this sort meet the following constraint of s tr ic t
connectivity: existence of a path from a dart x to a dart y implies existence of another one
from y to x. This property also holds for n-g-maps, so 3-g-map < mapc < map1:

83

operat ion
m k c c : m a p c dar t -9 m a p c

p r e c o n d i t i o n (m : mapc, x : dart)
p r e c mkcc (m , x) --= ex_dart(m, x) a n d n o t _ m a r k (m)

axioms (m ~n l : mapc, n : na t , x : dart)
m k c c (m , x) = m k c c _ a u x (m a r k (m , x), d im(m) , x)
with mkcc_aux(m, n, x) = i f n < 0 t h e n m e l se m k c c _ a u x (m l , n - 1, x)

with ml = i f ismark(m, a(m, n, x)) then m else mkcc(m, a(m, n, x))
/* mark(m, x) marks the dart x in m;

ismark(m, x) is true iff dart x is marked in map m;
notmark(m) is true iff no dart of m is marked;
dim(m) gives the dimension of map m */

For a final non recursive implementation, we refine once more the specification into
another one, which is tail recursive, and directly implementable in O(p) time. Actually, it
is easier to realize this traversal in a breadth-first way, the queue of marked darts being
explicitly linked in the map itself thanks to another map generator, called markcc:

a x i o m s (m mO m l m 2 : mape, n : na t , x xO y z z l t tO t l t2 : dart)
mkcc (m , x) = mkec_lis t(mO, xO, tO)
w i t h (mO, tO) = m k c c _ a u x (m a r k c c (m , x, x), d im(m) , x, x)

xO = succ_markcc(m l , x)
mkcc_list(m, z, t) = i f z == z l t h e n m else mkcc__list(ml, z l , t l)

w i t h z l = succ_markcc (m, z)
(ml , t l) = mkcc__aux(m, n, z l , t)
mkcc_aux(m, n, z, t) = i f n < 0 t h e n (m, t)

e lse mkcc_aux(m2, n - 1, z, t2)
w i t h (m2, t2) = endmarkcc(m, t, a(m, n, z))

/* succ markec(rn, x) is the successor of dart x in the queue of marked darts;
endmarkec(rn, t, x) takes dart x after dart t in this queue * /

Note that the mapO sort enrichment by new mark generators is only realized with the
last version of the generators, i.e., in the example, with markcc. In fact, when we go down
the sort hierarchy, for instance fixing n = 3, or imposing that some involutions be without
fixed points, we can write specialized traversal functions still more efficient than the ones
above. Thus, an edge traversal in a 3-g-map can be realized by direct compositions of a, for
dimensions 2 and 3, without explicit depth- or breadth-first traversal. Finally, through
factorizing definitions by with and using iterators (cf. Section 6), the specification can
be directly translated into a procedural language.

6 Horizontal Structuring

6.1 Sewing O p e r a t o r s

At 3-g-map level, we can write functions to create, remove, sew and unsew k-cells. We
distinguish between topological operators , with strong topological and embedding
preconditions, and geometrical (i.e., topological and embedding) operators of higher
level, that only have topological preconditions. Particularly, sewing operators which
meet the 3-g-maps constraints of the modeller can be defined this way.

We present three examples: topological sewing, se, geometric sewing, gse, and
insertion, gie2, of two simple edges, with only the formal specifications of se and gse:

operat ions
se, gse : 3-g-map dar t dart -9 3-g-map

precondi t ions (g : 3-g-map, x y : dart)
p r e e gse(g, x, y) ---: ex_dart(g, x) a n d ex_dart(g, y) a n d a(g, 2, x) == x

a n d a(g, 2, y) == y a n d x # a(g, O, y) a n d x # y
p r e e se(g, x, y) - p r e c (gse(g, x, y)) a n d free_embedl(g, 2, x, y)

a n d free_embedl(g, 2, a(g, O, x), a(g, O, y))

84

a x i o m s (g : 3-g-map, x y : dart)
se(g, x, y) = L(L(g, 2, x, y), 2, a(g, O, x), a(g, O, y))
w i t h L(g, k, x, y) = l(l(g, k, x, y), k, y, x)
gse(g, x, y) = se(llk(llk(llk(Uk(g, 1, x, y), 3, x, y), O, x, y),

o, a(g, o, x), a(g, O, y)), x, y)

Operator gse is written efficiently by using, instead of the general operator ll, operator
Ilk at the appropriate dimensions to remove superfluous embeddings (cf. subsection 4.3).
Operation gie2(g, x, y), which uses se, is rather surprising. It allows us to subdivide one
face or to merge two faces, depending on whether the faces of x and y are the same ones or
not (Fig. 4, (a) and (b), and Pictures 9 and 10 in Appendix).

- I
j Y

(a) y (b [

Fig, 4. Insertion of two simple sewn edges.

In the modeller, several useful operators are defined the same way, in particular Euler
operators, which keep the surface genus unchanged [39].

6.2 M es hes , Second Order and Iterators

We now briefly present the specification of a high-level operator, namely a mesh
c o n t r u c t o r [4]. The interest lies in the way this operator is specified. It clearly
distinguishes between topology and embedding, and reduces the required number of
operations. Moreover, it makes possible to justify the introduction of second order
functions and iterators in specifications. We propose here to create simple meshes, which
can be completed by poles afterwards (Fig. 5, Picture 11, and Picture 12 for an extension).

~ / ~ ~ ' q J - - - - - - - pole

Fig. 5. A simple mesh and a mesh with pole (the 0 and 2-sewings are omitted).

A simple mesh is made of simple quadrangles sewn together by operator se. The mesh
topology is progressively created and embedded thanks to a function f: na t 4 ---> embed
which 0-embeds a dart per quadrangle. The 4 variables o f f are n and p, which give the mesh
size, and i E [0, n] andj e [0, p], which give the columns and lines of the mesh points.

The mesh function, denoted grid, uses auxiliary creations of squares, i.e., sqrgrid,
sqrgrid11, sqrgridnl and sqrgridlp, whose specification is omitted (cf. [4] for details):

operation
gr id : 3-g-map (n a t 4 -9 e~bed) n a t 2 -9 3-g-map

a x i o m s (g : 3-g-map, f : n a t ~ -9 embed, i j k n p : n a t)
grid(g, f, n, p) = grid2(grid1(sqrgrid11(g, f, n, p), f, 2, n, p), f, 2, 2, n, p
w i t h gridl(g, f, k, n, p) = . ~

i l k > n t h e n g e lse gr idl(sqrgrianl(g , f, k, n, p), f, k + 1, n, p)
grid2(g, f, i, j , n, p) =

85

i f i > n then i f j >_p then g else grid2(sqrgridlp(g, f, j, n, p), 2, j + 1, n, p)
else grid2(sqrgrid(g, f, i, j, n, p), i + 1, j, n, p)

Second order functions, like grid, are out of the strict frame of traditional algebraic
specifications. They could be avoided by using parameterized modules as in OBJ3 [24]. But
it is a heavy solution when the parameters concern only a few functions as it is here the
case, where, moreover, the semantics does not create any problems.

The use of auxiliary functions grid1 and grid2 to simulate two embedded iterations on
the mesh squares by a tail recursion makes the specification heavy and reduces its
readability. To remove them, we use iterators, considered as macro-definitions. For
instance, v = vO ; w h i l e n o t cond(v) do succ(v) defines by induction the last value v of
a sequence of values, where the initial, current and next ones are respectively vO, v and
succ(v), and the stop condition cond(v). It textually replaces the following iter function
defined by: v = iter(vO) w i t h iter(v) = i f cond(v) t h e n v else iter(succ(v)).

The following specification which redefines grid with two embedded iterators,
simplifies the specifications and brings us closer to functional and procedural languages:

ax ioms (g g l g2 gj : 3-g-map, f : n a t 4 -~ embed, i j k n p : nat)
grid(g, f, n, p) = g2
w i th (i, g2) = (2, g l) ; wh i l e i _~ n do (i+1, gj)

w i th O, gJ) = (2, sqrgridlp(g2, f,j , n, p)) ;
whi le j <_ p do (]+1, sqrgrid(gl, f, i, j, n, p))

(k, g l) = (2, sqrgridll(g, f, n, p)) ;
whi le k _< n do (k+ l, sqrgridnl(gl, f, k, n, p))

6.3 Miscellaneous: User Interaction, Errors, Libraries

Classical algebraic specifications do not conveniently deal with user interactions [37]
which can be seen as a distinct process, concurrent with the modeller process. A formalism
suited to the description of concurrency, like LOTOS, could be used. In our case, it is a
heavy solution, since the entry of external events is strictly limited to a small
specification part. We have prefered to describe user interactions by a meta-specification,
i.e., a second level of specifications, which manipulate the first level ones by simple
axiom modifications [4].

In a modeller, errors are linked to user interaction. Operators with preconditions have
been implemented in the way they were specified, i.e., without testing the preconditions
in their bodies. They have been encapsulated in high-level functions, algebraically
specified too, which deal with computer-human interactions, preconditions and errors.

Today, graphical software development makes an intensive use of built-in graphical
libraries. We have formally specified the library we use (Silicon Graphics GL), by an
arbitrary choice of basic generators and by expressing other operators w.r.t, them. Such a
task was difficult, given the imperfections of the documentation.

7 Some Technical Features of the Modeller

The modeller includes about 1800 operations: 1400 for geometric modeling and 400 for
the environment and the interface. Most of them, except for 100 mathematical or trivial
functions, were developed from complete algebraic specifications. The operations of the
basic kernel were translated into PROLOG and tested by logical prototyping [4]. Only 150
parameterized operations are visible for the user through the interface.

The modeller is currently implemented in C for Silicon Graphics workstations. Thanks
to the map concepts, the data structures that are used are very simple. Except for the upper
ones, all the map and dart sorts of the hierarchy are really implemented with the same
unified C types. A unified map structure consists mainly of a linked linear list of similary
dart records, the fields of which are more or less constrained, depending on the invariants

86

of the corresponding map sort. Each dart record contains 1 dart pointer to the successor in
the list, 4 dart pointers to represent the k-sewings, for 0 _< k <_ 3, one pointer to the
optional 0-embedding, and several markers for traversal and interactive selections. The
program contains about 25 000 lines of C, a rather small number for software of this type.
This is mainly due to the conciseness and reusability induced by algebraic techniques.

Response time is comparable with those of commercial products with similar features
and may be even better. The main operations, particularly the traversals, have a time
complexity in O(p) , where p is the number of darts. This is not the case in many
commercial modellers which often take O(p2), because they lack directly accessible
topological data. Other classical data structures, such as those derived from the "winged
edge" [2], often take comparable memory space for a more restricted modeling area.

8 Conclusion

The n-g-map is a general and efficient model that helps to describe and handle the topology
of n-dimensional objects. With embeddings, this model can be implemented in any
dimension. For example, we chose to derive 3-g-maps with 0-embedding for a geometric
modeller of complex manifold objects embedded in Q3 Other choices could be made with
other map extensions and embeddings. But the handling of non manifold objects [45]
requires even more general mathematical concepts, cellular complexes [19] for instance.

With the above algebraic specification and its ordered sorts and invariants, we obtain a
formal, functional, hierarchized, and homogeneous description of objects and operations.
As often [22], genericity has not been necessary. In the future for instance, it may become
interesting, to parameterize the modeller by topological or embedding constraints.
Finally, we expect to recover a specification language well suited to the needs above [7].

Proofs of c o r r e c t n e s s of our horizontal structurings are possible and will be
undertaken, with a mechanical help [24]. But, the proofs of correctness of our vertical
developments, which involve techniques of program transformation and synthesis, are
more difficult to bring into play. Moreover, work about using algebraic specifications in
semi-automatical proofs of geometric properties is in progress [14, 15].

The concrete results of our study is an interactive modeller of 3D objects. Private firms
are already interested by its functionalities. However, it must be adapted and extended in
order to be used in real applications. Algebraic specifications give a basis which makes
those extentions easier. Among the next fundamental ones, there is the cellular complexes
[19] and the Boolean shape operators [41].

Our experiment illustrates how algebraic specifications help to elaborate and study
models in geometry, and to design and develop software in this area. Conversely, the
spectacular workbench of geometric modeling is convenient to understand how algebraic
specifications improve axiomatization and programming processes in a complex field.

References

I. Baudelaire, P and Gangnet, M: Planar Maps: An Interaction Paradigm for Graphic Design. Proc.
CHI'89 (1989) 313-318

2. Baumgart, B: A Polyhedron Representation for Computer Vision. Proc. AFIPS Nat. Conf. Proc. 44
(1975) 589-596

3. Bergstra, J A, Heering, J and Klint, P: Algebra& Specification. ACM, Addison-Wesley (1988)
4. Bertrand, Y: Sp6cification Alg6brique et R6alisation d'un Modeleur Interactif de Subdivisions

Tridimensionnelles. Th~se de Doctorat, CRI-ULP, Strasbourg (1992)
5. Bertrand, Y, Dufourd, J-F, Franqon, I et Lienhardt P: Mod61isation Volumique h Base Topologique.

Proc. Micad, Paris (1992)
6. Bidoit, M: Development of Modular Specification by Stepwise Refinements using the PLUSS

Specification Language. Tech. rep. LIENS 91-9 (1991),
7. Bidoit, M, Kreowski, H-J, Lescanne, P, Orejas, F and Sannella, D: Algebraic System Specification

and Development. LNCS n~ Springer-Verlag (1991)

87

8. Bryant, R and Singerman, D: Foundations of the Theory of Maps on Surfaces with Boundaries.
Quart. Journal of Math. Oxford Vol 2 n o 36 (1985) 17--41

9. Cori, R: Un code pour les graphes planaires et ses applications. Astdrisque n o 27 (1975)
10. Duce, D A , Fielding, E V C and Marshall, L S: Formal Specification of a Small Example based on

GKS. ACM Trans. on Graphics Vol 7 n o 3 (1988) 180-197
11. I)ufourd, J-F, Gross, C and Spehner, J-C: A Digitisation Algorithm for the Entry of Planar Maps.

Proc. Comp. Graphics Int. Leeds, Springer-Verlag (1989) 649-662
12. Dufourd, J-F: Algebraic Map-Based Topological Kernel for Polyhedron Modelers. Proc.

Eurographics, Hamburg, Elsevier (1989) 301-312
13. Dufourd, J-F: Formal Specification of Subdivisions using Hypermaps. Computer Aided Design,

Butterworth-Heinemann Vol 23 n ~ 2 (1991) 99-116
14: Dufourd, J-F: An OBJ3 Functional Specification for the Boundary Representation. Proc. ACM-

Siggraph Syrup. on Solid Modeling Foundations & CAD/CAM Appl., Austin (1991) 61-72
15. Dufourd, J-F: Foundations of Boundary Representation Revisited with a New Foremap Axiomatics.

Proc. Eurographics Work. on Formal Spec. in Comp. Graphics, Marina di Carrara (1991)
16. Edmonds, 1: A Combinatorial Representation for Polyhedral Surfaces. Not. AMS Vol 7 (1960)
17. Ehrig, H and Mahr, B: Fundamentals of Algebraic Specifications Vol 1 : Equations and Initial

Semantics. Springer-Verlag (1985)
18. Ehrig, H and Mahr, B: Fundamentals of Algebraic Specifications Vol 2 : Module Specifications

and Constraints. Springer-Verlag (1990)
19. Elter, H et Lienhardt, P: Extension de la Notion de Carte pour la Reprtsentation de la Topologie

d'Objets Gtomttriques Complexes. Proc. Journdes Gros-Plan, Lille (1991)
20. Franklin, W R, Wu, P Y F & Samaddar, S: Prolog & Geometry Projects. IEEE CG & A Vol 6 (1986)
21. Gangnet, M, Hervt, J-C, Pudet, T and Van Thong, J-M: Incremental Computation of Planar Maps.

ACM Computer Graphics Vol 23 n ~ 3 (1989) 345-354
22. Gaudel, M-C: Structuring and Modularizing Algebraic Specifications. R. 01-92 LRI, Orsay (1992)
23. Goguen, J A & Meseguer, J: Order-Sorted Algebra I: Equational Deduction for Multiple

Inheritance, Overloading, Exceptions, and Partial Operations. Tech. Rep.n ~ 89-10 SRI-CSL
(1989)

24. Goguen, J A and Winkler, T: Introducing OBJ3. Tech. Rep. n~ SRI-CSL Menlo Park (1988)
25. Goguen, J A: Modular Algebraic Specification of Some Basic Geometrical Constructions.

Artificial Intelligence Vol 37 (1988) 123-153
26. Grant, E, Ambum, P and Whitted, T: Exploiting Classes in Modeling and Display Software. IEEE

CG&A Vol 6 (1986) 13-20
27. Griffiths, H-B: Surfaces, Cambridge Univ. Press, Cambridge (1981)
28. Jacques, A: Constellations et Graphes Topologiques. Coll. Math. Soc. J. Bolyai (1970) 657--672
29. James, L: Maps and Hypermaps: Operations and Symmetry. PhD thesis, Dep. of Mathematics,

Univ. of Southampton (1985)
30. Lakshminarasimhan and A L, Srivas, M: A Framework for Functional Specification and

Transformation of Hidden Surface Elimination Algorithms. CG. Forum Vol 8 n ~ 2 (1989) 75-98
3 I. Lienhardt, P: Free-Form Surfaces Modeling by Evolution Simulation. Proc. Eurographics, Nice,

Elsevier (1988) 327-341
32. Lienhardt, P: Extension of the Notion of Map and Subdivision of Three Dimensional Space. Proc.

STACS, Bordeaux, LNCS Vol 294, Springer-Veflag (1988) 301-311
33. Lienhardt, P : Subdivisions of Surfaces and Generalized Maps. Proc. Eurographics, Hamburg,

Elsevier (1989) 439--452
34. Lienhardt, P: Subdivisions of N-Dimensional Spaces and N-Dimensional Generalized Maps. Proc.

5 0 ACM Syrup. on Comp. Geometry , Saarbriicken (1989) 228-236
35. Lienhardt, P: Topological Models for Boundary Representation : A Comparison with N-

dimensional Generalized Maps. Comp.-Aided Design Vol 23 n ~ 1, Butterworth-H. (1991) 59-82
36. Mallgren, W R: Formal Specification of Graphic Data Types. ACM TOPLAS Vol 4 n~ (1982) 687-

710.
37. Mallgren, W R: Formal Specification of Interactive Graphics Programming Languages. ACM

Distinguished Dissertation, MIT Press (1982)
38. Miintyl~, M and Sulonen, R: GWB : A Solid Modeler with Euler Operators. IEEE CG & A Vol 2 n o

7 (1982) 17-31
39. M~intylii, M: An Introduction to Solid Modeling. Computer Science Press, Rockville (1988)
40. Parsons, M S: Image Representations Using Miranda Laws. Comp. Graphics Forum Vol 8 n~

North-Holland (1989) 99-106
41. Requicha, A: Representations for Rigid Solids : Theory, Methods and Systems. ACM Computing

Surveys Vol 12 n ~ 4 (1980) 437-464
42. Requicha, A A G and Voelker, H B: Solid Modeling: Current Status and Research Directions. IEEE

CG & A Vol 3 n ~ 7 (1983) 25-37
43. Tutte, W: Graph Theory. Encyclop. of Mathematics and its Applications, Addison-Wesley (1984)
44. Vince, A: Combinatorial Maps. J. of Combinatorial Theory Series B n o 34 (1983) 1-21
45. Weiler, K: The Radial Edge Structure: A Topological Representation for Non-Manifold Geometric

Boundary Modeling. in Geometric Modeling for CAD Applications, Elsevier (1988) 3-36
46. Wirsing, M: Algebraic Specification. Handbook of Theoretical Computer Science, Vol 2 : Formal

Models and Semantics, Elsevier (1990) 675-788

A p p e n d i x

88

Picture 1: The 3-g-map of Figure 1 Picture 2: A Mo~bius band and 2 Klein bottles

Picture 3: Mechanical parts Picture 4: Details of a splitted mechanical part

Picture 5: A surfacic teapot Picture 6: A volumic teapot

89

Picture 7: Spout of the volumic teapot Picture 8: Handle of the volumic teapot

Picture 9: A face to br split Picture 10: The splitted face

Picture 11: Surfacir meshes Picture 12: Volumic meshes

