
Constraining Interference in an
Object-Based Design Method

C. B. Jones

Department of Computer Science
Manchester University, M13 9PL, UK

cbjOcs.man.ac.uk

Abstract. Thispaperis the first of a series which are intended to contribute to tractable
development methods for concurrent programs by exploring ways in which object-
based language concepts can be used to provide a compositional devalopment method
for concurrent programs. The property of a (formal) development method which gives
the developmentprocess the potential for productivity is compositionality; interference
is what makes it difficult to find compositional development methods for concurrent
systems. This paper shows how object-based concepts can be used to provide a designer
with control over interference; it also proposes a transformational style of development
(for systems with limited interference) in which concurrency is introduced only in the
final stages of design. The essential idea here is to show that certain object graphs limit
interference.
A companion paper discusses the problems of interference more fully and shows how
a suitable logic can be used to reason about those systems where interference plays
an essential role. There again, concepts are used in the design notation which are
taken from object-oriented languages since they offer control of granularity and way
of pinpointing interference. A third paper is in preparation which defines the semantics
of the object-based design notation.

1 Introduction

The most difficult aspect of finding tractable development methods for concurrent systems
is to provide a useful notion of compositionality which facilitates the division of work.
Compositionality can be defined as follows (adapted from [Zwi88])

A development method is compositionalifthe fact that a design step satisfies a given
specification can be justified on the basis of the specifications of any constituent
components without knowledge of their construction

Earlier work on shared-variable concurrency (see [Jon83] which is significantly extended
in [St090, Str la, St09 lb]) used rely and guarantee conditionsboth to describe and to reason
about interference. The fixed format of these specifications was rejected in [Jon91] in favour
of a logic with operators which use predicates of pairs of states (this is similar to Lmnport's
TLA [Lam90, Lam91]). But the proofs in [Jon91] remain long-winded and earlier work has
been dogged by issues like atomicity (granularity) and questions about where invariants etc.
are supposed to hold.

In common with many others, the current author sees language restrictions as a way
of constraining concurrency; in particular, the aim here is to reduce the number of proof

137

obligations in development. The current approach uses concepts of object-oriented languages
in order to constrain interference and fix a level of granularity, i It is not, however, the aim to
add yet one more language to those claiming to be object-oriented; the development method
envisaged here ought to be usable for programs in languages such as ABCL [Yon90],
Modula-3 [Nel91], Beta [KMMN91] or UFO [Sar92]. The claim is that some carefully
chosen subset of object-oriented concepts makes the design of concurrent programs more
tractable than in arbitrary shared-variable languages (or even languages like CSP). The move
to an object-based language has not made the interference logic redundant it has only reduced
the need for interference arguments; [Jon93b] explores the situation where interference is
essential.

The design notation used in this paper is heavily influenced by the programming language
'POOL' (see Section 4 for references and some comparative notes); it also reflects discus-
sions with colleagues at Manchester University. Most of the features of the language are
presented by examples. Points of interest include the following. Classes have methods only
one of which may be active at any one time (for a particular instance); invocation of methods
is synchronous but methods can return before they complete and this releases the invok-
ing process from the rendezvous. Consider Figure 1: this can be read as an object-oriented
program (which is actually developed from a specification in Section 2). The programming
task which is considered concerns sorting: a priority queue delivers - and removes - its
smallest value via a remove method (rem); new values can be added by another method
(add). Programs obtain a reference to (an instance of) a priority queue with a new Priq
statement. In fact, the created queue can be a linked list of instances of Priq but the using
program would have no way of detecting this. Each instance has two variables containing a
value and a link (possibly nil) to the next element.

Priq class
vats m: [R] *-- nil; h private ref(Priq) ,-- nil
add(e: I~) method

return
if m = nil then (m *-- e; I *- new Prlq)
eli| m < e then l!add(e)
else (t!add(,.); , . . - c)
fi

rein 0 method r: N
return m
if m # nil then m ,-- l!mm 0

if m = nil t h e n l ,--- nil
fi

fi

Fig. 1. Exanlple roflA program: Priq

1 The idea to use object-oriented languages was made more tempting by the positive experience
of building a theorem proving assistant [JJLM91] in Smalhalk and more recent discussions about
exploiting parallel hardware and tackling a multi-user version of mural.

138

In the class Prig, the new method is implicit; all that happens when an instance is
created is that the instance variables (m and l) are initialized. Once created, there are two
methods which can be invoked for an instance of the Priq class: add puts its argument into
the queue and r6m - which takes no arguments - returns the smallest value contained in
the queue. Methods are invoked by expressions like I! add(7) (where I is a reference to an
instance of Prig). The semantics dictates that only one method can be active at any time in a
particular instance of Prig.2 Notice that the return statements occur at the the beginning of
the add and rem methods. This releases the user from the rendezvous and lets the remaining
code of the method run in parallel with other activity of the invoking program. Furthermore,
once - say - the call to the next add has been released, the method terminates and its
instance is available for other tnethod calls. One can picture a whole sequence of add and
rem methods rippling along the linked-list structure. The fact that the activity can never get
out of order is important and results from the object graph which is created. Marking the
contained references as private makes it easier to establish results about the object graphs.
Were ~r o/3,X a programming language, all sorts of concrete syntax details would have to be
resolved - here, a rather relaxed syntax is used with line breaks playing a meaningful part.
(The abstract syntax of the language used here is given in an appendix of [Jon92].) The
reader should remember that 7roflA is intended as a design notation to be used to develop
programs in a language where issues like parsing have received due attention.

In addition to the return statement, there is a yield statement which provides a way
of delegating the responsibility to answer a method invocation. As in Figure 1, objects
(instances of classes) are created by activating now for a class name; in 7rofl)~ explicit
methods for now can be written; the language does not offer inheritance.

In addition to the language presentation herein, it is to some extent true that the search
for a development method has been driven by examples: the approach has been to find
plausible development steps and then to look for formal rules which justify them. This
is largely motivated by the experience which shows that the thing which makes formal
development work like mathematics is finding the right steps of development; detailing
the proofs of individual steps is less rewarding. One key insight was the realization that
assertions (invariants etc.) about the object graphs created by object references are central
to the explanation of many algorithms. This paper looks at two topologies in Sections 2
and 3; both use decompositions which are justified by rules which support a 'promotion' of
properties about instances to properties about collections of instances. This can be compared
with the way in which an inference rule for a while statement can be used to infer results
about a composite statement from properties of its components. The need - in the case of
more general (DAG-like) topologies- to cope with interference is studied in [Jon93b].

There are at least two options for giving the semantics: mapping to Milner's Polyadic
z-calculus [Mi192] or a resumption semantics which fits the way methods work here
(cf. JAR89, ppl 11]; see also [Wo188, AR92]). Since the mapping to the ~r-calculus is quite
far advanced (see [Jon93a]), the working name for the design notation is rrol3A.

It can be useful to think of classes as blocks which can be multiply instantiated; each instance has
local (instance) variables and procedures (methods); the instance variables can only bc accessed or
changed by the methods; medmds arc called (invoked) by sending messages.

139

2 L i n k e d - l i s t s o f o b j e c t s

The first development example in this paper illustrates the object-based nature of the pro-
gramming language and the role that this plays in developing programs. What follows is
a step-wise development of a program which stores each element of a queue as a local
variable in an instance of an object; these objects are organized into a linked-list. Because
the specifications are simpler, the first steps of development assume sequential execution
within a queue (there might - however - be other concurrent threads); concurrency within
a queue is considered in the final development step where its use is justified by arguing that
it provides the same visible behaviour as the sequential implementation.

Specification

As in a Larch [GHW85, GH93] 'interface language', the design notation is used here to
provide a framework for the specification which is given as a class definition. The methods
are specified by pre- and post-conditions in a style similar to that used in VDM [Jon90].3
The separation of the assumptions that a developer can make into pre-conditions should
be noted; this is mirrored by the separation of assumptions about interference in [Jon93b].
In post-conditions, hooked identifiers refer to the value of the instance variables before
execution of the method and undecorated identifiers refer to the values after execution of
the method. Thus

b = b u { e }

requires that the value of the instance variable b after an invocation of add is the bag union
of the value of that variable before execution of the method with a unit bag containing
the value of the parameter. Notice that rcm is a partial method and - as in VDM - the
post-condition can be undefined if its pre-condition is not satisfied. (The external clauses
from VDM operations are barely necessary in the context of a class but there are places
where one really ought note that some variables are read-only.) Values of type bag etc. and
operators like U are part of the specification language.

Priq class
cars b: H-bag , - { }
add(c: 1~) method

/ . - . . .

postb= b U{e}
rein 0 method r: I~

pre b ~ { }

p o s t r = m i n (b) A b = b - { r }

Just as in VDM, 'satisfiability' proof obligations can be generated for each method specifi-
cation.

Straightforward data reification

It is possible to represent the bag abstraction b by an ascending sequence. This step of data
reification is sketched here in order to afford comparison with the reification to a linked-list
which follows. The objects concerned are

3 The classes here can be compared with modules in VDM-SL [-BSI92, Daw91]..

140

AscSeq = 1~*

inv(b) A is-ascending(b)

The invariant is a restriction on the elements which are in the set AscSeq (is-ascending -
and other simple functions- are taken to be obvious). 4

The relationship between this representation and the abstract objects is defined

retr : AscSeq ~ N-Bag

retr(b) ~__ bagel(b)

bagof : X* ---+ X-Bag

bagoy(t) {e eard{i E ind- t I t(i) = e} l e elemst}

This representation is 'adequate' (there is at least one element of AscSeq which corresponds
- under relr - to each element of l~-bag). The methods of Priq can be specified on this
representation as follows.

Priq class
vars b: AscSeq ~- []
add(e: 1~) method

post 3i E inds b. b(i) = e A del(b, i) = b
rem 0 method r: I~1

pro b # []

p o s t r = h d b A b = t l b

del(l , i) A t (1 , . . . , i - 1) ' * t (i + 1 , . . . , l e n t)

The correctness of such a step can be justified by further rules (operation domain/resul0
of [Jon90].

It is worth taking this opportunity to reflect on where the invariant must hold: a user
would presumably accept an implementation of add which put new elements at the end of a
list and then sorted it. Thus an invariant does not have to be true mid-operation: it is really
a way of abbreviating pre-/post-conditions. It would be possible to develop a sequential
implementation - using decomposition rules to justify that the use of while statements etc.
- which satisfies this intermediate specification.

Reification involv ing class instances

The main line of object-based development is now considered (i.e. the reification to A s cSeq
is ignored and the reference point for this step is the initial specification in terms of a bag).
Here again, the first design step focuses on the development of the data structure and finding
an appropriate invadant is a key issue. This development step employs multiple instances of
class Priq; they form a linked-list with the l variable in one instance pointing to the next; tile
local variables (m) of the instances collectively represent the bag b. The use of references

4 Throughout this paper, VDM notation [Jon90] is used for sequences, maps etc.

141

necessitates talking about a global state (or E S) . This is viewed as a map from references
to instances

27 = R e f ,n Inst

and variable names are applied as selectors to objects of htst (e.g. if p is a reference to an
instance of Priq, then m(tr(p)) is a natural number). The state is a Curried argument to
functions which depend on the global state. The predicate is-linked-list(p, l)(~r) is true if
the instance pointed to by p (in ~,) is the start of a linked-list via the references contained in
the I variables of each instance. Although the objective here is to talk about linked-lists etc.
without needing to th.ink at the reference level, this predicate can be defined in terms of S
as follows. 5

is-linked-list : l~ef x Name .--+ 27 ---+ IB

is-linked-list(p, l)(cr) A
3pl E Ref* �9

pl(1) = p ^ l (~(pl0on pl))) = ~il ^
Vi E { 1 , . . . , I o n p l - 1 } - p l (i + 1) = l (u(p l (i)))

Similarly, a function to extract a sequence from a linked list is e~tract-seq(p, 1, n) which
generates a sequence of the (non-nil) n values from instances linked by the I references.

eztract-seq : R e f x Name x Name ~ S ~ X*

eztract-seq(p, l ,n)(cr) A
it p = nil thon []
elif n(cr(p)) = nil then extract-seq(l(~r(p)), I, n)(cr)

~l~e [nC~CP))l ~ e~t,aet-sedl(~(p)), l, n)Ca)
fi

This can be used to define the set of references which can be reached from a reference.

reach : R e f x Name ---+ S ~ X*

reach(p, I)(~r) A elems eztvact-seq(p, l, l) (a)

The data type invariant can then be defined as follows.

inv : R e f ~ 27 ~

inv(p)(~) &
is-linked-list (p, l)(~) ^ is- asccnding(e~tract-seq (p, t, ,n)(~)) ^
Vr E reach(p, l)(cr) . l (~(r)) = ni l r162 m(cr(r)) = ni l

s It would be possible to pass a lambda expression (or simply make 1 a constant) in order to avoid
passing a name to is-linked-list.

142

The invariant is considered to be true only between method invocations (rather than during
the execution of a method). The retrieve function is as follows.

relr : Ref ---* S ---* N-Bag

retr(p)(tr) A__ bagof(extract-seq(p,l, m)(tr))

It is now possible to specify Priq on the linked-lists. 6

Priq class
vats m: [N] ~ nil; h private ref(Priq) ~ nil
add(e: N) method

post let b = extracl-seq(self, l, m)('-E') in
let b = extracl-seq(self, l, m)(cr) in

3i ~ indsb , b(i) = e A del(b, i) = b
rein 0 method r: 1~

pro eztract-seq(self, I, m)(a) ~ []

post let b = extract-seq(self, l, m)("E') in
let b = extract-seq(self, l, m)(tr) in

r = h d b A b = t l b

Any user of a Priq would be unaware that the implementation involved multiple instances;
since the references are private (cannot be copied) they are invisible and free from danger
of interference. In order to state the pre- and post-conditions, the sequences are extracted
from the state with a reference to the current instance (self) providing the start of the list. A
simple generalization of standard refinement rules covers such reification steps.

Operat ion decompos i t ion

The next step of development is to look at code which satisfies the above specifications:
they are decomposed into executable statements.

6 Notice m can contain a VDM-like nil, for the Ref type, a nil value is a normal null reference; there
is a sort of pun here since a 'real' object-oriented language would anyway make all values into
objects.

143

Pr/q c l a s s
vats m: [1~1] *-- nil; h private ref(Priq) ,--- nil
add(e: 1~) method

if m = nil then (m *-- e; l *- n e w Priq)
elif m < e then lladd(e)
else (t!add(,.); , . , - - ~)
fi
return

rein 0 method r: 1~
~:1~
t ~-..,- nT,

if t -~ nil then m ~ llrem 0
if m = nil then l *- nil
fi

fi
return t

The inductive justification of this decomposition relies on rules which promote assumptions
on one instance of the class to collections of such instances; the linear reference topology
allows a structural induction argument about the recursive calls to methods. The base case
for add - which starts with b as the empty sequence - is straightforward (p and I are both
nil). The inductive step assumes that the recursive call to l !add(m) performs according to
specification. Notice that inv above implies that there can not be a loop in the reference
chain which is important since otherwise calls to add would deadlock. Notice also that it is
not necessary to rely on pre-rem: the implementation happens to deliver a nil result if the
method is used outside its intended domain.

E q u i v a l e n t c o d e

As mentioned above, the initial steps of this development have not employed concurrency
within a queue: in the preceding code, add and rein hold the invoking process in a rendezvous
until they complete and a method call at the head of the list does not complete until all
recursive calls terminate. (Recall that only one method can be active in each instance of a
method at any one time.) Parallelism can be achieved by lett ing- for example - rein return
the local m before it ripples through bringing up values as required; the invoking process
is released from the rendezvous and its subsequent code can run in parallel with the Priq
methods. Furthermore, this applies to instances of Priq within one queue: once rein has
obtained a value from the next element in the queue, it can terminate making it possible for
either of the methods of this instance to be invoked. Because of the linear reference topology
controlled by private refs, no other thread of control can interfere with the queue.

The argument for the correctness of this step follows from a transfom~ation which pernaits
moving statements

S;return e .~ return e ;S (1)

providing e is not affected by S and S only changes (other than its own state) states reachable
by private references. Thus the preceding code is equivalent to that in Figure 1 of Section 1.

This step uses algebraic laws to re-order code to give an observationally equivalent
parallel program to the one which was first specified. Apart from offering what is hopefully

144

an intuitive development route, this has obviated the need to write post-conditions for the
concurrent behaviour of the methods. It is not immediately obvious how to write such
post-conditions because at the point at which an execution of a method begins, methods on
other instances might still be active (such post-conditions appear to need something like
Lamport's 'prophesy variables').

The final code behaves in much the same way as B UBLA T (cf. [CLW79]) did in earlier
work On 'interference' proofs (e.g. [Str but there is much less 'mechanism' visible here
- further steps of development could bring in the extra variables of the earlier code if so
desired.

Alternatives

A couple of general observations can be made even after this simple example. There is a
reliance above on the fact that the values (in 1~) are immutable; while this is taken for granted
in non-OO-languages, it is not the norm in the OO-world (cf. open issue 2 in Section 4). If
the element values could change, such changes would need to be constrained by interference
assertions like those used in [Jon93b].

It must be conceded that- thus far - it would be possible to use a development method
in which objects can be guarded from interference by encapsulation and then to have a
compiler generate the actual class instances. The reason for taking the approach of creating
the instances and reasoning about (non-)interference is that it prepares for the more general
approach in [Jon93b]. It is - for example - interesting to consider what would go wrong
with the above development if a 'fast path' vector of pointers to every tenth element in the
list existed. The sharing of pointers which would result would undermine the transformation
shown in Equation I and observational equivalence would not be guaranteed. Extensions to
reason about such interference would need extra variables in which counts of readers and
writers could be maintained.

3 Tree-structured topologies

The programming task specified below is similar to that in the preceding section but it shows
that references defming a tree-like object graph can be used as a basis for reasoning; the
developed program also introduces a new statement of the language.

Specification

The example of building a simple symbol table is used in [Ame89]; its specification is very
simple.

Symtab class

vats st: (Key ,n Data) <--- { }
insert(k: Key, d: Data) method

post st = s t ~ { k ~-~ d}
search(k: Key) method res: Data

pre k E dora st
post res = st(k)

145

Reification

The first design idea is to represent the map as a binary tree.

Tree :: mk ": [Key]
md : [Data]
1 : [Tree]
r :[Tree]

inv (ink-Tree(ink, md, l, r)) A__
(i n k = n i l r md = nil) A (mk = nil ~ l = r = n i l)

Over which an invarjant might be defined

is-ordered-tree : Tree ---+ I~

is-ordered-tree(mk-. Tree(mk, rod, l, r)) A_
if mk = nil
then true
else (Vlk E colt(i), lk < ink) ^ (Vrk E col t (r) , mk < rk) A

(1 :fi nil =e,, is-ordered-tree(l)) A (r r nil ~ is-ordered-lree(r))
fi

where the cell function simply collects the set of Keys

cell : [Tree] --.* Key-set

coil(t) ~_
cases t of
nil - , { },
ink-Tree(nil, rod, l, r) -* { },
mk- Tree(~k, rod, l, r)-~ coU(1) U {~k} U coil(r)
end

Nested objects like Tree have, in ~ro/%~, to be represented by structures built with
references. An invariant must specify that the reference structure forms a genuine tree
(is-linked-tree) and that the Tree obtained by using extract-tree on the instances satisfies
is-ordered-tree.

inv : R e f ~ S ~]~

inv(p)(o') A
is-linked-tree(p, l, r)((r) ^ is-ordered-tree(eztract-tree(p , l, r, mk) (c~))

The functions is- linked- tree and extra el- t tee can be defined in a similar way to is- link e d- Its t
above, r The retrieve function follows.

reir : I lef --~ ~ --* (Key m Data)

retrO,)(o-) ~ r~tr.=(~tract-tr~e(p, l, r, km)(~))

z It might, however, be worth passing lambda expressions rather than names to define the link tracing.

146

retrm : [Tree] - , (Key ~ Data)

retr=(O
c a s e s t of
nil --* { },
mk- Tree(nil, rod, t, r) ---* { },
mk- Tree(mk, rod, l, r)--+ retrm(t) U {ink ~-+ rod} U retrm(r)
end

The methods are re.specified as follows.

Sgmtab class
vars mk: Key ~ nil; rod: Data *--- nil;

h private ref(Symtab) ~ nil; r: private ref(Symtab) ~-- nil
insert(k: Key, d: Data) method

post retr(e tract4ree(se,, l, r, mk)(o-)) =
felt(extract-tree(self, l, r, mk)("E')) f { k ~ d}

search(k: Key) method res: Data
pro k E dora felt(extract-tree(self, I, r, mk)(a))
post res = (retr(eztract-tree(self, l, r, mk)(a)))(k)

Operat ion decomposit ion

It is straightforward to provide code which satisfies the specifications above.

Symtab class
vars mk: Key *--- nil; md: Data *- nil;

l: private ref(Symtab) ~ nil; r: private ref(Symtab) +-- nil
insert(k: Key, d: Dala) method

if m k = nil then (mk ,--- k; md +-- d)
elif m k = k then md ~ d
elif k < m k then (if 1 -- nilthen l ,-- new Symlab fi llinsert(k, el))
else (if r = nil then r +-- new Symlab fi rlinserl(k, d))
fi
return

search(k: Key) method res: Data
pre k E dom felt(self)
if k = mk then return md
elif k < m k then return l!search(k)
else return r]search(k)
fi

The argument that this code satisfies its specification uses structural induction over tile tree
topology.

Equivalent code

As in Section 3, the above code is sequential (within one instance of a tree). The transfor-
mation in Equation 1 can be used to justify moving the return to the beginning of insert.

147

There is, however, a problem with re-ordering the statements of search: no result can be
returned until it has been found so the caller of the method has to be held up. But an instance
of Sgmtab can be used by another process if the task of delivering a result is delegated (to
another instance), This is exactly the semantics of the yield statement. The equivalence used
is

return I!m(3:) .~ yield/[m(~:) (2)

providing I is a private reference and only references via private references. Thus the above
code can be transformed into the following.

Sgmtab class
vats mk: Keg ~ nil; md: Data ,--- nil;

1: private ref(Sgmlab) ,-- nil; r: private ref(Sgmtab) ,--- nil
insert(k: Keg, d: Data)method

return
if mk= nil then (rak ~-- k; md ~ d)
elif m k = k then md ~ d
elif k < m k then (if t = nil then I ~ new Sgmtab fi l[insert(k, d))
else (if r = nil then r ~-- new Sgratab fi r[inserl(k, d))
fi

search(k: Key) method res: Data
if k = mk then return md
elif k < m k then yield l[search(k)
else yield r[search(k)
fi

4 R e l a t i o n s h i p o f 7ro/~,k t o P O O L

This section comments on the differences between roflA and the language which inspired
its creation. A useful overview of the work on POOL is [Ame89]. Pierre America and Jan
Rutten produced a combined doctoral thesis JAR89] which contains a collection of papers
(some published elsewhere) on the formal aspects of the POOL project including their work
on (metric) denotational semantics. A proof theory for a sequential version of POOL is given
in [Ame86], while [AdB90] addresses proofs about process creation in a language called P
which is more like CSP or CCS in the way that communication is a single event without any
way to return a value. A proof method for the full rendezvous mechanism of POOL is given
in [dB91]: but this multi-level approach is not compositional in a useful sense.

The main changes from POOL (see lame89, Ame91]) are:

1. In ~r o/~A, methods do not have a body (which, in POOL, is a statement which shows- for
instances of the class - when a rendezvous can occur as well as executing autonomous
code between method invocations); the examples here were longer with a body and
it rarely did anything interesting; one can simulate the effect of this body by code in
methods and switches etc.

2. The new message to a class can be defined by an explicit method in xoflA.
3. Methods in ~roflA which do not return a value are distinguished from those which do.
4. The yield statement is new in ~ro/~A.

148

5. The Parallel statement is also new but is an obvious extension.
6. References in ~ro/3A are typed.
7. POOL has a local call; this could easily be added to ~ro/~A.
8. Clearly, ~roflA needs some way of controlling conditional 'firing' of methods.

The development method presented here is not like any in the POOL literature. The ap-
proach illustrated in the current paper is the way that developments can first employ normal
sequential reasoning based on pre-/post-conditions and then use transformations to admit
concurrency (similar ideas are present in the works of Lipton [Lip75], Lenganer [Len82],
Zwiers [JPZ91], Xu/He [XH91, Xu92] and the well-known UNITY approach [CM88];
equivalence laws are given in [HHJ+87, RH86]; see leA91]).

Some open issues in 7r o/3)~ are:

1. Methods could be divided into those which have a side-effect and those which are purely
functional - this is done in lIFO [Sar92].

2. It is not clear whether it would be worth distinguishing mutable values from what are
constants in other languages - this affects the need for interference assertions (cf. the
infamous ordered-collection example).

3. So far, ~roflA has not used the (ST) trick of defining operators (e.g. +, -~) as methods;
since there are no 'block expressions' the option to do the same for while does not exist.

4. Block statements and exceptions might be added (exceptions could be in the style of
VDM's exit).

5. The language has no inheritance yet (it is tempting to try something like 'theory mor-
phisms' - cf. [JJLM91] - because inheritance is often used to solve too many problems
at once).

6. There is some case for adding constant (e.g. numeric) channel names (cf. [Jon93b]).

5 Discussion

Clearly there is much more work to be done. Apart from considering other examples, the
major activity is to complete the companion paper which provides a semantics for ~roflA
in terms of the r-calculus (this approach results from technical difficulties with a more
conventional operational or denotational semantics which are discussed further in [Jon93a]).
This will be the basis on which the proof obligations are to be justified.

A c k n o w l e d g e m e n t s

The author is grateful to Marie Wolczko, Carlos Figueiredo, Trevor Hopkins, John Sargeant,
Michael Fisher and John Gurd for stimulating discussions on topics related to the implemen-
tation of object-based languages and machine architectures. The incentive provided by the
discussions with the 'Object-Z' group at the University of Queensland is also remembered.
Ketil StOlen prompted the use of predicates like is-linked-list during an enjoyable visit to
Munich. Anders Ravn made useful comments on a draft of this paper and Kohei Honda
provided a detailed criticism of both content and presentation style. Feedback from the 1992
meeting of IFIP WG 2.3 was stimulating as were the questions on a trip to NWPC in Bergen
and at a seminar in Oslo. The support of a Senior Fellowship from the SERC is gratefully
acknowledged.

149

References

[AdB90]

[AmeS6]

[Ame89]

[Ame91]

[AR89]

JAR92]

P3F91]

[]3091]

[BJ90]

[BSI921

[CLW791

[CM88]

[Daw91]
[dB91]

[GH93]

[GHW85]

[HHJ + 87]

[JJLM91]

[Jon83]

[Jon90]

[Jon91]

[Jon92]

[Jon93a]

E America and E de Boer. A proof system for process creation. In [B J90], pages
303-332, 1990.
Pierre America. A proof theory for a sequential version of POOL. Technical Report
0188, Philips Research Laboratories, Philips Research Laboratories, Nederlandse Phllips
Bcdrijven, B.V., September 1986.
Pierre America. Issues in tile design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4), 1989.
P. America. Formal techniques for parallel object-oriented languages. In [BG91], pages
1-17, 1991.
Pierre America and Jan Rutten. A Parallel Object-Oriented Language: Design and
Semantic Foundations. PhD thesis, Free University of Amsterdam, 1989.
Pierre America and Jan Rutten. A layered semantics for a parallel object-oriented lan-
guage. Formal Aspects of Computing, 4(4):376--408, 1992.
J. A. Bergstxa and L. M. G. Feijs, editors. Algebraic Methods 1I: Theory Tools and
Applications, volume 490 of Lecture Notes in Computer Science. Spdnger-Verlag, 1991.
J. C. M. Baeten and J. F. Groote, editors. CONCUR'91 - Proceedings of the 2nd Inter.
national Conference on Concurrency Theory, volume 527 of Lecture Notes in Computer
Science. Spdnger-Verlag, 1991.
M. Broy and C. B. Jones, editors. Progrwnming Concepts and Methods. North-Holland,
1990.
B SI. VDM specification language protostandard. Technical Report N-231, BSI IST/5/19,
1992.
K. M. Chung, F. Luccio, and C. K. Wong. A new permutation algorithm for bubble
memories. Technical Report RC 7633, IBM Research Division, 1979.
K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.
J. Dawes. The VDM-SL ReferenceGuide. Pitman, 1991.
Frank S. de Boer. Reasoning about Dynamically EvolvingProcessStructure. PhD thesis,
Free University of Amsterdam, 1991.
J. V. Guttag and J. J. Homing. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.
J. V. Guttag, J. J. Homing, and J. M. Wing. Larch in five easy pieces. TechnicalReport 5,
DEC, SRC, July 1985.
C. A. R. Hoare, I. J. Hayes, He Jffeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Serensen, J. M. Spivey, and B. A. Sufi'in. The laws of programming. Communica-
tions of the ACM, 30(8):672-687, August 1987. see Corrigenda in Communications of
the ACM, 30(9): 770.
C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.
C. B. Jones. Specification and design of (parallel) programs. In Proceedings oflFIP'83,
pages 321-332. North-Holland, 1983.
C. B. Jones. Systematic Software Development using VDM. Prentice Hall/nternational,
second edition, 1990.
C. B. Jones. Interference resumed. In P. Bailes, editor, Engineering Safe Software, pages
31-56. Ausaralian Computer Society, 1991.
C. B. Jones. An object-based design method for concurrent programs. Technical Report
UMCS-92-12-1, Manchester University, 1992.
C. B. Jones. Giving semantics to an object-based design notation. In CONCUR'93,
Lecture Notes in Computer Science. Springer-Verlag, 1993.

150

[Jon93b] C.B. Jones. Reasoning about interference in an object-based design method. In FME'93,
Lecture Notes in Computer Science. Springer-Verlag, 1993.

[JPZ91] W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the devel-
opment of parallel systems. In [BG91], pages 298-316, 1991.

[KMMN91] B. B. Kristensen, O. L. Madsen, B. Mr and K. Nygaard. Object oriented
programming in file Beta programming language. Technical report, University of Oslo
and others, September 1991.

[Lam90] L. Lamport. A temporal logic of actions. Technical Report 57, Digital Equipment Cor-
poration, Systems Research Center, 1990.

[Lam91] L. Lamport. The temporal logic of actions. Technical Report 79, Digital, SRC, 1991.
[Len82] C. Lengauer. A Methodology for Programming with Concurrency. PhD thesis, Computer

Systems Research Gr6up, University of Toronto, 1982.
[Lip75] R.J. Lipton. Reduction: A method of proving properties of parallel programs. Commu-

nications of the ACM, 12:717-721, 1975.
[Mi192] R. Milner. The polyadic re-calculus: A tutorial, In Logic andAlgebra of Speciflcation.

Springer-Verlag, 1992.
[Nel91] G. Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.
[OA91] E.-R. Olderog and K. R. Apt. Using Ixansformations to verify parallel programs. In

[BF911, pages 55-82, 1991.
[PT91] S. Prehn andW. J.Toetenel, editors. VDM'91-FormalSoftwareDevelopmentMethods.

Proceedings of the 4th International Symposium of VDM Europe, Noordwijkerhout, The
Netherlands, October 1991. Vol.l : Conference Contributions, volume 551 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.
A. W. Roscoe and C. A. R. Hoare. Laws of occam programming. Monograph PRG-
53, Oxford University Computing Laboratory, Programming Research Group, February
1986.
J. Sargeant. UFO - united functions and objects draft language description. Technical
Report UMCS-92-4-3, Manchester University, 1992.
K. StOlen. Development of Parallel Programs on Shared Data.Structures. PhD thesis,
Manchester University, 1990. available as UMCS-91-1-1.
K. Str A Method for the Development of Totally Correct Shared-State Parallel
Programs. In [BG91], pages 510-525, 1991.
K. StOlen. An Attempt to ReasonAbout Shared-State Concurrency in the Style of VDM.
In [PT91], pages 324-342, 1991.
Mario I. Wolczko. Semantics of Object-Oriented Languages. PhD thesis, Department of
Computer Science, University of Manchester, January 1988.
Qiwen Xu and Jifeng He. A theory of state-based parallel programming by refinement:
Part I. In J. Morris, editor, Proceedings of The Fourth BCS-FACS Refinelncnt Workshop.
Springer-Verlag, 1991.

[Xu92] Qiwen Xu. A Theory of State-based Parallel Programming. Phi) thesis, Oxford Univer-
sity, 1992.

[Yon90] Akinori Yonezawa, editor. ABCL: An Object-Or&nted Concurrent System. M1T Press,
1990.

[Zwi88] J. Zwiers. Compositionality, Concurrency and Partial Correctness: Proof theories for
networks of processes, and their cotmections. PhD thesis, Technical University Eind-
hoven, 1988. available as LNCS 321, Springer-Verlag.

[RH86]

[Sat921

[St090]

[Str

[Str

[Wo188]

[XH91I

