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Abstract. Thispaperis the first of a series which are intended to contribute to tractable 
development methods for concurrent programs by exploring ways in which object- 
based language concepts can be used to provide a compositional devalopment method 
for concurrent programs. The property of a (formal) development method which gives 
the developmentprocess the potential for productivity is compositionality; interference 
is what makes it difficult to find compositional development methods for concurrent 
systems. This paper shows how object-based concepts can be used to provide a designer 
with control over interference; it also proposes a transformational style of development 
(for systems with limited interference) in which concurrency is introduced only in the 
final stages of design. The essential idea here is to show that certain object graphs limit 
interference. 
A companion paper discusses the problems of interference more fully and shows how 
a suitable logic can be used to reason about those systems where interference plays 
an essential role. There again, concepts are used in the design notation which are 
taken from object-oriented languages since they offer control of granularity and way 
of pinpointing interference. A third paper is in preparation which defines the semantics 
of the object-based design notation. 

1 Introduction 

The most difficult aspect of finding tractable development methods for concurrent systems 
is to provide a useful notion of compositionality which facilitates the division of work. 
Compositionality can be defined as follows (adapted from [Zwi88]) 

A development method is compositionalifthe fact that a design step satisfies a given 
specification can be justified on the basis of the specifications of any constituent 
components without knowledge of their construction 

Earlier work on shared-variable concurrency (see [Jon83] which is significantly extended 
in [St090, Str la, St09 lb]) used rely and guarantee conditionsboth to describe and to reason 
about interference. The fixed format of these specifications was rejected in [Jon91] in favour 
of a logic with operators which use predicates of pairs of states (this is similar to Lmnport's 
TLA [Lam90, Lam91]). But the proofs in [Jon91] remain long-winded and earlier work has 
been dogged by issues like atomicity (granularity) and questions about where invariants etc. 
are supposed to hold. 

In common with many others, the current author sees language restrictions as a way 
of constraining concurrency; in particular, the aim here is to reduce the number of proof 
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obligations in development. The current approach uses concepts of object-oriented languages 
in order to constrain interference and fix a level of granularity, i It is not, however, the aim to 
add yet one more language to those claiming to be object-oriented; the development method 
envisaged here ought to be usable for programs in languages such as ABCL [Yon90], 
Modula-3 [Nel91], Beta [KMMN91] or UFO [Sar92]. The claim is that some carefully 
chosen subset of object-oriented concepts makes the design of  concurrent programs more 
tractable than in arbitrary shared-variable languages (or even languages like CSP). The move 
to an object-based language has not made the interference logic redundant it has only reduced 
the need for interference arguments; [Jon93b] explores the situation where interference is 
essential. 

The design notation used in this paper is heavily influenced by the programming language 
'POOL' (see Section 4 for references and some comparative notes); it also reflects discus- 
sions with colleagues at Manchester University. Most of the features of  the language are 
presented by examples. Points of interest include the following. Classes have methods only 
one of  which may be active at any one time (for a particular instance); invocation of methods 
is synchronous but methods can return before they complete and this releases the invok- 
ing process from the rendezvous. Consider Figure 1: this can be read as an object-oriented 
program (which is actually developed from a specification in Section 2). The programming 
task which is considered concerns sorting: a priority queue delivers - and removes - its 
smallest value via a remove method (rem); new values can be added by another method 
(add). Programs obtain a reference to (an instance of) a priority queue with a new Priq 
statement. In fact, the created queue can be a linked list of instances of  Priq but the using 
program would have no way of detecting this. Each instance has two variables containing a 
value and a link (possibly nil) to the next element. 

Priq class 
vats m: [R] *-- nil; h private ref(Priq) ,-- nil 
add(e: I~) method 

return 
if m = nil then (m *-- e; I *- new Prlq) 
eli| m < e then l!add(e) 
else (t!add(,.); , . . -  c) 
fi 

rein 0 method r: N 
return m 
if m # nil then m ,-- l!mm 0 

if m = nil t h e n  l ,--- nil 
fi 

fi 

Fig. 1. Exanlple roflA program: Priq 

1 The idea to use object-oriented languages was made more tempting by the positive experience 
of building a theorem proving assistant [JJLM91] in Smalhalk and more recent discussions about 
exploiting parallel hardware and tackling a multi-user version of mural. 
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In the class Prig, the new method is implicit; all that happens when an instance is 
created is that the instance variables (m and l) are initialized. Once created, there are two 
methods which can be invoked for an instance of the Priq class: add puts its argument into 
the queue and r6m - which takes no arguments - returns the smallest value contained in 
the queue. Methods are invoked by expressions like I! add(7) (where I is a reference to an 
instance of  Prig). The semantics dictates that only one method can be active at any time in a 
particular instance of  Prig.2 Notice that the return statements occur at the the beginning of  
the add and rem methods. This releases the user from the rendezvous and lets the remaining 
code of the method run in parallel with other activity of the invoking program. Furthermore, 
once - say - the call to the next add has been released, the method terminates and its 
instance is available for other tnethod calls. One can picture a whole sequence of add and 
rem methods rippling along the linked-list structure. The fact that the activity can never get 
out of  order is important and results from the object graph which is created. Marking the 
contained references as private makes it easier to establish results about the object graphs. 
Were ~r o/3,X a programming language, all sorts of concrete syntax details would have to be 
resolved - here, a rather relaxed syntax is used with line breaks playing a meaningful part. 
(The abstract syntax of the language used here is given in an appendix of [Jon92].) The 
reader should remember that 7roflA is intended as a design notation to be used to develop 
programs in a language where issues like parsing have received due attention. 

In addition to the return statement, there is a yield statement which provides a way 
of  delegating the responsibility to answer a method invocation. As in Figure 1, objects 
(instances of classes) are created by activating now for a class name; in 7rofl)~ explicit 
methods for now can be written; the language does not offer inheritance. 

In addition to the language presentation herein, it is to some extent true that the search 
for a development method has been driven by examples: the approach has been to find 
plausible development steps and then to look for formal rules which justify them. This 
is largely motivated by the experience which shows that the thing which makes formal 
development work like mathematics is finding the right steps of development; detailing 
the proofs of individual steps is less rewarding. One key insight was the realization that 
assertions (invariants etc.) about the object graphs created by object references are central 
to the explanation of many algorithms. This paper looks at two topologies in Sections 2 
and 3; both use decompositions which are justified by rules which support a 'promotion' of  
properties about instances to properties about collections of instances. This can be compared 
with the way in which an inference rule for a while statement can be used to infer results 
about a composite statement from properties of its components. The need - in the case of 
more general (DAG-like) topologies- to cope with interference is studied in [Jon93b]. 

There are at least two options for giving the semantics: mapping to Milner's Polyadic 
z-calculus [Mi192] or a resumption semantics which fits the way methods work here 
(cf. JAR89, ppl 11]; see also [Wo188, AR92]). Since the mapping to the ~r-calculus is quite 
far advanced (see [Jon93a]), the working name for the design notation is rrol3A. 

It can be useful to think of classes as blocks which can be multiply instantiated; each instance has 
local (instance) variables and procedures (methods); the instance variables can only bc accessed or 
changed by the methods; medmds arc called (invoked) by sending messages. 
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2 L i n k e d - l i s t s  o f  o b j e c t s  

The first development example in this paper illustrates the object-based nature of  the pro- 
gramming language and the role that this plays in developing programs. What follows is 
a step-wise development of a program which stores each element of  a queue as a local 
variable in an instance of an object; these objects are organized into a linked-list. Because 
the specifications are simpler, the first steps of development assume sequential execution 
within a queue (there might - however - be other concurrent threads); concurrency within 
a queue is considered in the final development step where its use is justified by arguing that 
it provides the same visible behaviour as the sequential implementation. 

Specification 

As in a Larch [GHW85, GH93] 'interface language', the design notation is used here to 
provide a framework for the specification which is given as a class definition. The methods 
are specified by pre- and post-conditions in a style similar to that used in VDM [Jon90].3 
The separation of the assumptions that a developer can make into pre-conditions should 
be noted; this is mirrored by the separation of assumptions about interference in [Jon93b]. 
In post-conditions, hooked identifiers refer to the value of the instance variables before 
execution of the method and undecorated identifiers refer to the values after execution of 
the method. Thus 

b = b u { e }  

requires that the value of the instance variable b after an invocation of add is the bag union 
of the value of that variable before execution of the method with a unit bag containing 
the value of the parameter. Notice that rcm is a partial method and - as in VDM - the 
post-condition can be undefined if its pre-condition is not satisfied. (The external clauses 
from VDM operations are barely necessary in the context of a class but there are places 
where one really ought note that some variables are read-only.) Values of  type bag etc. and 
operators like U are part of the specification language. 

Priq class 
cars b: H-bag , -  { } 
add(c: 1~) method 

/ . - . . .  

postb= b U{e}  
rein 0 method r: I~ 

pre b ~ { } 

p o s t r = m i n ( b ) A b =  b - { r }  

Just as in VDM, 'satisfiability' proof obligations can be generated for each method specifi- 
cation. 

Straightforward data reification 

It is possible to represent the bag abstraction b by an ascending sequence. This step of  data 
reification is sketched here in order to afford comparison with the reification to a linked-list 
which follows. The objects concerned are 

3 The classes here can be compared with modules in VDM-SL [-BSI92, Daw91].. 
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AscSeq = 1~* 

inv(b) A is-ascending(b) 

The invariant is a restriction on the elements which are in the set AscSeq (is-ascending - 
and other simple functions- are taken to be obvious). 4 

The relationship between this representation and the abstract objects is defined 

retr : AscSeq ~ N-Bag 

retr(b) ~__ bagel(b) 

bagof : X* ---+ X-Bag 

bagoy(t) {e  eard{i E ind- t I t(i) = e} l e elemst} 

This representation is 'adequate' (there is at least one element of AscSeq which corresponds 
- under relr - to each element of l~-bag). The methods of  Priq can be specified on this 
representation as follows. 

Priq class 
vars b: AscSeq ~- [] 
add(e: 1~) method 

post 3i E inds b. b(i) = e A del(b, i) = b 
rem 0 method r: I~1 

pro b # [] 

p o s t r = h d  b A b = t l  b 

del( l , i )  A t ( 1 , . . . , i -  1 ) ' * t ( i +  1 , . . . , l e n t )  

The correctness of  such a step can be justified by further rules (operation domain/resul0 
of  [Jon90]. 

It is worth taking this opportunity to reflect on where the invariant must hold: a user 
would presumably accept an implementation of add which put new elements at the end of  a 
list and then sorted it. Thus an invariant does not have to be true mid-operation: it is really 
a way of abbreviating pre-/post-conditions. It would be possible to develop a sequential 
implementation - using decomposition rules to justify that the use of  while statements etc. 
- which satisfies this intermediate specification. 

Reification involv ing  class instances 

The main line of object-based development is now considered (i.e. the reification to A s cSeq 
is ignored and the reference point for this step is the initial specification in terms of a bag). 
Here again, the first design step focuses on the development of the data structure and finding 
an appropriate invadant is a key issue. This development step employs multiple instances of 
class Priq; they form a linked-list with the l variable in one instance pointing to the next; tile 
local variables (m) of  the instances collectively represent the bag b. The use of  references 

4 Throughout this paper, VDM notation [Jon90] is used for sequences, maps etc. 
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necessitates talking about a global state (or E S) .  This is viewed as a map from references 
to instances 

27 = R e f  ,n Inst  

and variable names are applied as selectors to objects of htst  (e.g. if  p is a reference to an 
instance of  Priq,  then m(tr(p))  is a natural number). The state is a Curried argument to 
functions which depend on the global state. The predicate is-linked-list(p, l)(~r) is true if 
the instance pointed to by p (in ~,) is the start of a linked-list via the references contained in 
the I variables of  each instance. Although the objective here is to talk about linked-lists etc. 
without needing to th.ink at the reference level, this predicate can be defined in terms of  S 
as follows. 5 

is-linked-list : l~ef x Name  .--+ 27 ---+ IB 

is-linked-list(p, l)(cr) A 
3pl E Ref* �9 

pl(1) = p ^ l (~(pl0on pl)))  = ~il ^ 
Vi E { 1 , . . . , I o n p l -  1 } - p l ( i  + 1) = l (u(p l ( i ) ) )  

Similarly, a function to extract a sequence from a linked list is e~tract-seq(p, 1, n) which 
generates a sequence of the (non-nil) n values from instances linked by the I references. 

eztract-seq : R e f  x Name  x Name  ~ S ~ X*  

eztract-seq(p, l ,n)(cr)  A 
it p = nil thon [] 
elif n(cr(p)) = nil then extract-seq(l(~r(p)), I, n)(cr) 

~l~e [nC~CP))l ~ e~t,aet-sedl(~(p)), l, n)Ca) 
fi 

This can be used to define the set of references which can be reached from a reference. 

reach : R e f  x Name  ---+ S ~ X*  

reach(p, I)(~r) A elems eztvact-seq(p, l, l ) (a)  

The data type invariant can then be defined as follows. 

inv : R e f  ~ 27 ~ 

inv(p)(~) & 
is-linked-list (p, l)(~) ^ is- asccnding(e~tract-seq (p, t, ,n)(~)) ^ 
Vr E reach(p, l)(cr) . l (~(r ) )  = ni l  r162 m(cr(r)) = ni l  

s It would be possible to pass a lambda expression (or simply make 1 a constant) in order to avoid 
passing a name to is-linked-list. 
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The invariant is considered to be true only between method invocations (rather than during 
the execution of a method). The retrieve function is as follows. 

relr : Ref  ---* S ---* N-Bag 

retr(p)(tr) A__ bagof(extract-seq(p,l, m)(tr)) 

It is now possible to specify Priq on the linked-lists. 6 

Priq class 
vats m: [N] ~ nil; h private ref(Priq) ~ nil 
add(e: N) method 

post let b = extracl-seq(self, l, m)('-E') in 
let b = extracl-seq(self, l, m)(cr) in 

3i  ~ indsb ,  b(i) = e A del(b, i) = b 
rein 0 method r: 1~ 

pro eztract-seq(self, I, m)(a) ~ [] 

post let b = extract-seq(self, l, m)("E') in 
let b = extract-seq(self, l, m)(tr) in 

r = h d  b A b = t l  b 

Any user of a Priq would be unaware that the implementation involved multiple instances; 
since the references are private (cannot be copied) they are invisible and free from danger 
of interference. In order to state the pre- and post-conditions, the sequences are extracted 
from the state with a reference to the current instance (self) providing the start of  the list. A 
simple generalization of standard refinement rules covers such reification steps. 

Operat ion decompos i t ion  

The next step of development is to look at code which satisfies the above specifications: 
they are decomposed into executable statements. 

6 Notice m can contain a VDM-like nil, for the Ref type, a nil value is a normal null reference; there 
is a sort of pun here since a 'real' object-oriented language would anyway make all values into 
objects. 
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Pr/q c l a s s  
vats m: [1~1] *-- nil; h private ref(Priq) ,--- nil 
add(e: 1~) method 

if m = nil then (m *-- e; l *- n e w  Priq) 
elif m < e then lladd(e) 
else (t!add(,.); , .  , - -  ~) 
fi 
return 

rein 0 method r: 1~ 
~:1~ 
t ~-..,- nT, 

if t -~ nil then m ~ llrem 0 
if m = nil then l *- nil 
fi 

fi 
return t 

The inductive justification of this decomposition relies on rules which promote assumptions 
on one instance of the class to collections of such instances; the linear reference topology 
allows a structural induction argument about the recursive calls to methods. The base case 
for add - which starts with b as the empty sequence - is straightforward (p and I are both 
nil). The inductive step assumes that the recursive call to l !add(m) performs according to 
specification. Notice that inv above implies that there can not be a loop in the reference 
chain which is important since otherwise calls to add would deadlock. Notice also that it is 
not necessary to rely on pre-rem: the implementation happens to deliver a nil result if the 
method is used outside its intended domain. 

E q u i v a l e n t  c o d e  

As mentioned above, the initial steps of  this development have not employed concurrency 
within a queue: in the preceding code, add and rein hold the invoking process in a rendezvous 
until they complete and a method call at the head of the list does not complete until all 
recursive calls terminate. (Recall that only one method can be active in each instance of a 
method at any one time.) Parallelism can be achieved by lett ing- for example - rein return 
the local m before it ripples through bringing up values as required; the invoking process 
is released from the rendezvous and its subsequent code can run in parallel with the Priq 
methods. Furthermore, this applies to instances of Priq within one queue: once rein has 
obtained a value from the next element in the queue, it can terminate making it possible for 
either of the methods of  this instance to be invoked. Because of  the linear reference topology 
controlled by private refs, no other thread of control can interfere with the queue. 

The argument for the correctness of this step follows from a transfom~ation which pernaits 
moving statements 

S;return e .~ return e ;S  (1) 

providing e is not affected by S and S only changes (other than its own state) states reachable 
by private references. Thus the preceding code is equivalent to that in Figure 1 of Section 1. 

This step uses algebraic laws to re-order code to give an observationally equivalent 
parallel program to the one which was first specified. Apart from offering what is hopefully 
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an intuitive development route, this has obviated the need to write post-conditions for the 
concurrent behaviour of the methods. It is not immediately obvious how to write such 
post-conditions because at the point at which an execution of a method begins, methods on 
other instances might still be active (such post-conditions appear to need something like 
Lamport's 'prophesy variables'). 

The final code behaves in much the same way as B UBLA T (cf. [CLW79]) did in earlier 
work On 'interference' proofs (e.g. [Str but there is much less 'mechanism' visible here 
- further steps of development could bring in the extra variables of the earlier code if so 
desired. 

Alternatives 

A couple of general observations can be made even after this simple example. There is a 
reliance above on the fact that the values (in 1~) are immutable; while this is taken for granted 
in non-OO-languages, it is not the norm in the OO-world (cf. open issue 2 in Section 4). If 
the element values could change, such changes would need to be constrained by interference 
assertions like those used in [Jon93b]. 

It must be conceded that-  thus far - it would be possible to use a development method 
in which objects can be guarded from interference by encapsulation and then to have a 
compiler generate the actual class instances. The reason for taking the approach of creating 
the instances and reasoning about (non-)interference is that it prepares for the more general 
approach in [Jon93b]. It is - for example - interesting to consider what would go wrong 
with the above development if a 'fast path' vector of pointers to every tenth element in the 
list existed. The sharing of pointers which would result would undermine the transformation 
shown in Equation I and observational equivalence would not be guaranteed. Extensions to 
reason about such interference would need extra variables in which counts of readers and 
writers could be maintained. 

3 Tree-structured topologies 

The programming task specified below is similar to that in the preceding section but it shows 
that references defming a tree-like object graph can be used as a basis for reasoning; the 
developed program also introduces a new statement of the language. 

Specification 

The example of building a simple symbol table is used in [Ame89]; its specification is very 
simple. 

Symtab class 

vats st: (Key ,n Data) <--- { } 
insert(k: Key,  d: Data) method 

post st = s t  ~ { k ~-~ d} 
search(k: Key) method res: Data 

pre k E dora st 
post res = st(k)  
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Reification 

The first design idea is to represent the map as a binary tree. 

Tree :: mk ": [Key] 
md : [Data] 
1 : [Tree]  
r :[Tree] 

inv (ink-Tree(ink, md, l, r) ) A__ 
( i n k = n i l  r md = nil) A (mk = nil ~ l = r = n i l )  

Over which an invarjant might be defined 

is-ordered-tree : Tree ---+ I~ 

is-ordered-tree(mk-. Tree(mk,  rod, l, r)) A_ 
if mk = nil 
then true 
else (Vlk E colt(i), lk < ink) ^ (Vrk E col t ( r ) ,  mk < rk) A 

(1 :fi nil =e,, is-ordered-tree(l)) A ( r  r nil ~ is-ordered-lree(r)) 
fi 

where the cell function simply collects the set of Keys 

cell : [Tree] --.* Key-set 

coil(t) ~_ 
cases t of 
nil - ,  { }, 
ink-Tree(nil, rod, l, r) -* { }, 
mk- Tree( ~k, rod, l, r)-~ coU(1) U {~k} U coil(r) 
end 

Nested objects like Tree have, in ~ro/%~, to be represented by structures built with 
references. An invariant must specify that the reference structure forms a genuine tree 
(is-linked-tree) and that the Tree obtained by using extract-tree on the instances satisfies 
is-ordered-tree. 

inv : R e f  ~ S ~ ]~ 

inv(p)(o') A 
is-linked-tree(p, l, r )( (r) ^ is-ordered-tree( eztract-tree(p , l, r, mk) (  c~) ) 

The functions is- linked- tree and extra el- t tee can be defined in a similar way to is- link e d- Its t 
above, r The retrieve function follows. 

reir : I lef  --~ ~ --* (Key m Data) 

retrO,)(o-) ~ r~tr.=(~tract-tr~e(p, l, r, km)(~)) 

z It might, however, be worth passing lambda expressions rather than names to define the link tracing. 
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retrm : [Tree] - ,  (Key ~ Data) 

retr=(O 
c a s e s  t of 
nil --* { }, 
mk- Tree(nil, rod, t, r) ---* { }, 
mk- Tree( mk, rod, l, r)--+ retrm( t) U {ink ~-+ rod} U retrm( r) 
end 

The methods are re.specified as follows. 

Sgmtab class 
vars mk: Key ~ nil; rod: Data *--- nil; 

h private ref(Symtab) ~ nil; r: private ref(Symtab) ~-- nil 
insert(k: Key, d: Data) method 

post retr(e tract4ree(se,, l, r, mk)(o-)) = 
felt(extract-tree(self, l, r, mk )("E') ) f { k ~ d} 

search(k: Key) method res: Data 
pro k E dora felt(extract-tree(self, I, r, mk )(a) ) 
post res = ( retr( eztract-tree(self, l, r, mk )(a) ) )( k ) 

Operat ion decomposit ion 

It is straightforward to provide code which satisfies the specifications above. 

Symtab class 
vars mk: Key *--- nil; md: Data *- nil; 

l: private ref(Symtab) ~ nil; r: private ref(Symtab) +-- nil 
insert(k: Key, d: Dala) method 

if m k =  nil then (mk ,--- k; md +-- d) 
elif m k =  k then md ~ d 
elif k < m k  then (if 1 -- nilthen l ,-- new Symlab fi llinsert(k, el)) 
else (if r = nil then r +-- new Symlab fi rlinserl(k, d)) 
fi 
return 

search(k: Key) method res: Data 
pre k E dom felt(self) 
if k = mk then return md 
elif k < m k  then return l!search(k) 
else return r]search(k) 
fi 

The argument that this code satisfies its specification uses structural induction over tile tree 
topology. 

Equivalent  code 

As in Section 3, the above code is sequential (within one instance of  a tree). The transfor- 
mation in Equation 1 can be used to justify moving the return to the beginning of  insert. 
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There is, however, a problem with re-ordering the statements of  search: no result can be 
returned until it has been found so the caller of  the method has to be held up. But an instance 
of  Sgmtab can be used by another process if the task of  delivering a result is delegated (to 
another instance), This is exactly the semantics of  the yield statement. The equivalence used 
is 

return I!m(3:) .~ yield/[m(~:) (2) 

providing I is a private reference and only references via private references. Thus the above 
code can be transformed into the following. 

Sgmtab class 
vats mk: Keg ~ nil; md: Data ,--- nil; 

1: private ref(Sgmlab) ,-- nil; r: private ref(Sgmtab) ,--- nil 
insert(k: Keg, d: Data)method 

return 
if mk= nil then ( rak ~-- k; md ~ d) 
elif m k =  k then md ~ d 
elif k < m k  then (if t = nil then I ~ new Sgmtab fi l[insert(k, d)) 
else (if r = nil then r ~-- new Sgratab fi r[inserl(k, d)) 
fi 

search(k: Key) method res: Data 
if k = mk then return md 
elif k < m k  then yield l[search(k) 
else yield r[search(k) 
fi 

4 R e l a t i o n s h i p  o f  7ro/~,k t o  P O O L  

This section comments on the differences between roflA and the language which inspired 
its creation. A useful overview of the work on POOL is [Ame89]. Pierre America and Jan 
Rutten produced a combined doctoral thesis JAR89] which contains a collection of papers 
(some published elsewhere) on the formal aspects of the POOL project including their work 
on (metric) denotational semantics. A proof theory for a sequential version of  POOL is given 
in [Ame86], while [AdB90] addresses proofs about process creation in a language called P 
which is more like CSP or CCS in the way that communication is a single event without any 
way to return a value. A proof method for the full rendezvous mechanism of POOL is given 
in [dB91]: but this multi-level approach is not compositional in a useful sense. 

The main changes from POOL (see lame89, Ame91]) are: 

1. In ~r o/~A, methods do not have a body (which, in POOL, is a statement which shows-  for 
instances of the class - when a rendezvous can occur as well as executing autonomous 
code between method invocations); the examples here were longer with a body and 
it rarely did anything interesting; one can simulate the effect of this body by code in 
methods and switches etc. 

2. The new message to a class can be defined by an explicit method in xoflA. 
3. Methods in ~roflA which do not return a value are distinguished from those which do. 
4. The yield statement is new in ~ro/~A. 
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5. The Parallel statement is also new but is an obvious extension. 
6. References in ~ro/3A are typed. 
7. POOL has a local call; this could easily be added to ~ro/~A. 
8. Clearly, ~roflA needs some way of controlling conditional 'firing' of methods. 

The development method presented here is not like any in the POOL literature. The ap- 
proach illustrated in the current paper is the way that developments can first employ normal 
sequential reasoning based on pre-/post-conditions and then use transformations to admit 
concurrency (similar ideas are present in the works of Lipton [Lip75], Lenganer [Len82], 
Zwiers [JPZ91], Xu/He [XH91, Xu92] and the well-known UNITY approach [CM88]; 
equivalence laws are given in [HHJ+87, RH86]; see leA91]). 

Some open issues in 7r o/3)~ are: 

1. Methods could be divided into those which have a side-effect and those which are purely 
functional - this is done in lIFO [Sar92]. 

2. It is not clear whether it would be worth distinguishing mutable values from what are 
constants in other languages - this affects the need for interference assertions (cf. the 
infamous ordered-collection example). 

3. So far, ~roflA has not used the (ST) trick of defining operators (e.g. +, -~) as methods; 
since there are no 'block expressions' the option to do the same for while does not exist. 

4. Block statements and exceptions might be added (exceptions could be in the style of 
VDM's exit). 

5. The language has no inheritance yet (it is tempting to try something like 'theory mor- 
phisms' - cf. [JJLM91] - because inheritance is often used to solve too many problems 
at once). 

6. There is some case for adding constant (e.g. numeric) channel names (cf. [Jon93b]). 

5 Discussion 

Clearly there is much more work to be done. Apart from considering other examples, the 
major activity is to complete the companion paper which provides a semantics for ~roflA 
in terms of the r-calculus (this approach results from technical difficulties with a more 
conventional operational or denotational semantics which are discussed further in [Jon93a]). 
This will be the basis on which the proof obligations are to be justified. 
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