
From 7c-calculus to Higher-Order 7r-calculus
and back

Davide Sangiorgi 1

Abs t r ac t . We compare the first-order and the higher-order paradigms
for the representation of mobility in process algebras. The prototypical
calculus in the first-order paradigm is the ~r-caleulus. By generalising its
sort mechanism we derive an w-order extension, called Higher-Order ~r-
calculus. We give examples of its use, including the encoding of)~-calculus.
Surprisingly, we show that such an extension does not add expressiveness:
Higher-order processes can be faithfully represented at first order. We
conclude that the first-order paradigm, which enjoys a simpler and more
intuitive theory, should be taken as basic. Nevertheless, the study of the
),-calculus encodings shows that a higher-order calculus can be very useful
for reasoning at a more abstract level.

1 I n t r o d u c t i o n

A mobile system is a system with a dynamically changing communicat ion topo-
logy. Examples from operating systems are a resource which has a single owner at
any t ime but whose ownership can be changed as t ime passes, or process migra-
tion, in which tasks or processes can be exchanged among processors to optimise
their load balance.

There are two approaches to represent mobili ty in process algebra. In the
higher-order paradigm mobili ty is achieved by allowing agents to be passed as val-
ues in a communication; Thomsen 's Plain CHOCS [19] and Boudol 's V-calculus [8]
belong to this category. In the first-order paradigm only ports can be t ransmit ted
(we shall use interchangeably the words port , name and channel). The ~r-calculus
is the prototypical first-order calculus. It was introduced by Milner, Parrow and
Walker in [15] and later refined by Milner [13] with the addition of sorts and
of communicat ion of tuples (polyadic 7r-calculus). The choice of the first-order
paradigm for ~r-calculus was mot ivated - - among other reasons - - by the be-
lief that reference passing is enough to represent more involved operations like
process passing. Our goal here is to validate this claim. To this end, we in-
troduce a new calculus, called Higher-Order ~r-calculus (HOTr), which enriches
the 7r-calculus with explicit higher-order communications. In the ttO~r not only
names, but also processes and parametr ised processes of arbitrarily high order,
can be t ransmit ted. In this sense, if the ordinary ~r-calculus is of first order and
Plain CHOCS is of second order, then ItOTr is of w order. We show that gOTr is
representable within ~r-calculus.

But what does it mean that a given source language is representable within
a given target language? Typically there are three phases:

1address: Dep. Comp. Science, Universtity Edinburgh, JCMB, Mayfield road, Edinburgh
EH9 3JZ, U.K. Emaih sad@dcs.ed.ac.uk. Work supported by the ESPRIT BRA project
"CONFER".

152

(1) Formal definition of the semantics of the two languages;
(2) Definition of the encoding from the source to the target language;
(3) Proof of the correctness of the encoding w.r.t, the semantics given.

The predominant approach to the semantics of concurrent systems is opera-
tional. The possible evolutions of processes are inductively described in terms of
transition systems which then are quotiented by equivalence relations to abstract
away from unwanted details. W. r . t . denotational semantics, the operational
method necessitates a different approach to translation-correctness, where beha-
viours rather than meanings are compared. The choice of the behavioural equi-
valence, besides being "interesting", should be uniform on the calculi. Moreover,
we want the encoding to be fully abstract, i.e. two source language terms should
be equivalent if and only if their translations are equivalent. But since this does
not reveal how this respectfulness is achieved, the result should be completed
with the operational correspondence between a term and its translation (i.e. the
connection between their transitions).

With the full abstraction demand, we have taken a strong point of view on
representability. Indeed, while soundness is a necessary property, one might
well consider milder forms of completeness, for instance by limiting the testing
on target terms to encodings of source contexts. We asked for full abstraction
because we wish to use the target terms in any contexts; and when two source
terms are indistinguishable, their encodings should always be interchangeable.
In other words, we want to be able to switch freely between the two calculi�9
In our case, where the source language is HO~r and the target language is ~r-
calculus, this allows us on the one hand to make use of the abstraction power of
HO~r, which comes from its w-order nature. On the other hand, to rely on the
more elementary and intuitive theory of ~r-calculus when reasoning over agents;
in virtue of the representability result this theory can be lifted up to HO~r.

This paper is an extract of the core of the author's Ph.D. thesis [18]. We
have tried to keep the presentation rather informal, often preferring examples
to meticulous technical details. We review ~r-calculus in Section 2 and introduce
HO~" in Section 3. The behavioural equivalence adopted is defined in Section 4; we
explain our choice and we outline the problem of defining a natural bisimulation
equivalence in a higher-order calculus. In Section 5 we present the compilation
from ttO~" to ~-calculus, whose correctness is examined in Section 6. In Section 7
we look at some uses of the compilation, in particular the study of Milner's
encodings of A-calculus into 7r-calculus. In Section 8 we survey related work and
directions for future research.

2 The polyadic 7r-calculus

2 .1 S y n t a x

The letters a , b , . . . , x , y , . . , stand for names, and P ,Q for processes. We add
a tilde to mean a possibly empty tuple. The class of ~--calculus processes is
built from names using the operators of prefixing, sum, parallel composition,

153

restriction, matching and constant application:

P :: ~ r ~ i . P i I P liP2 I z.'xP] [x=y]P [D('~}

a is called prefix and can be either an input or an output:

Each constant D has a defining equation of the form D %~ (5)P; the expression
(5)P is like a procedure, in which ~" represents the parameters. Therefore the
operators emulate those of CCS [12]; in addition, there is matching to test for
equality of names. We refer to [15, 13] for the intended interpretation of the
operators. Application has the highest precedence; sum and parallel composition
the lowest. In the sum, I represents a finite indexing set. When I is empty, we
get the inactive process, written as 0; sometimes we abbreviate a.0 as a. As
usual, + is taken to represent binary sum. As Milner does in [13], our sums
are guarded, i.e. the outermost operator of the summands is prefixing. Guarded
sums simplify the reduction semantics of Section 2.3 and smooth the comparison
between higher-order and first-order processes that we shall make in Section 5.

The operators a(b).P, (b)P and r, b P bind all free occurrences of the names
and b in P. These binders give rise in the expected way to the definitions of free
names of a term. The definitions of substitution and a-conversion are standard
too, with renaming possibly involved to avoid capture of free names.

Sometimes replication is included in u-calculus in place of constants [13]. The
replication ! P intuitively represents PIP. . . , i.e. an unbounded number of copies
of P in parallel. It is easy to code it up using constants; and if the number of
these is finite, the other way round holds too.

2 . 2 S o r t i n g

All realistic systems which have been described with the 7r-calculus seem to obey
some discipline in the use of names. The introduction of sorts and sortings into
the or-calculus [13] intends to make this name discipline explicit. In the polyadic
7r-calculus, sorts are also essential to avoid disagreement in the arities of tuples
carried by a given name, or to be used by a given constant.

Names are parti t ioned into a collection of subject sorts, each of which contains
an infinite number of names. We write x : s to mean that x belongs to the
subject sort s; this notation is extended to tuples componentwise. Then object
sorts, ranged over by S, are just sequences over subject sorts, such as (Sl, . . . , sn)
or (s). Finally, a sorting is a function Ob mapping each subject sort to an object
sort. We write s ~ (g) E Ob, if Ob assigns the object sort (g) to s; in this
case we say that (g) appears in Oh. By assigning the object sort (sl, s2) to the
subject sort s, one forces the object part of any name in s to be a pair whose first
component is a name of Sl and whose second component is a name of s2. CCS
and the monadic unsorted rr-calculus can be derived by imposing the sortings
{NAME ~-+ 0} and {NAME ~+ (NAME)} respectively, in which all names belong
to the same subject sort NAME.

154

If a : s ~-+ (sl, s2), then for a('~).P and -~(5).P to respect Ob, it must be that
= Xl,X2, for some x, : sl and x2 : s2. Moreover, in a matching [a = b], we

require that the tested names a and b belong to the same sort. Finally, we have
to guarantee the correctness of applications. To this end, we assign an object
sort to agents: Processes take the sort 0 , whereas if D ~* (5)P and ~ : g, then
D, and (Y)P take the sort (s-'). Now, the requirement on D(y~ is that ~" exists
s.t. ~ : ~" and D : (s-). To sum up, a term is well-sorted for Ob if all its prefixes
and applications obey the discipline given by Oh, as described above. We call an
expression of sort (s-"), for g non-empty, abstraction. Processes and abstractions
are agents. We use F, G to range over abstractions and A to range over agents.

2 . 3 O p e r a t i o n a l S e m a n t i c s

Following Milner [14, 13], we shall give the operational semantics of the language
in terms of a reduction system (as opposed to the "traditional" labelled transition
system). In this technique, inspired by Berry and Boudol's Chemical Abstract
Machine [6], axioms for a structural congruence relation are introduced prior to
the reduction rules, in order to break a rigid, geometrical vision of concurrency
and to allow for redexes as subterms. The interpretation of the operators of
the language comes out neatly with reduction semantics, due to the compelling
naturalness of each structural congruence and reduction rule.

Structural congruence, written _=, is the smallest congruence over the class of
~-caleulus agents which satisfies the rules below. (The symbol - should not be
confused with = , the latter meaning syntactic equality between processes.)

1. P - Q if P is a-convertible to Q;

2. abelian monoidlaws for +: P + Q - Q + P, P + (Q + R) = (P + Q) + R,
P + 0 - P ;

3. abelian monoidlaws for [: P [Q = Q [P , P [(Q [R) = (P [Q) [R , P] O = P ;

4. L, x 0 z - 0 , ~,xL, y P - , y ~ , x P , (v x p) l Q - L , x (P] Q) , i f x i s n o t f r e e
in Q;

5. [x = x]P =_ P;

6. ifD%~(~)P, then D = (E)P (or, if instead replication is used, !P = P I ! P) .

Now the reduction rules, expressing the notion of interaction:

coM: (. . . + . (v D . P) I (- + ~(~D.Q) ~ P{~/~ I Q

p --~ p, p ~ p,
P A R : R E S :

P I Q - - - - ~ P , IQ L, x P ~z, x P ,

Q = p p ~ p, pl=_Qi
S T R U C T : Q ~ Q,

155

3 H i g h e r O r d e r -calculus

3 . 1 E x a m p l e s

In the ~r-calculus only object sorts of the form (s-') are allowed. The sortings so
obtained are first order, as indicated by the level of bracket nesting, which is
limited to one. The Higher-Order 7c-calculus (HO~r) is essentially derived by
dropping this limitation. Thus one may enforce processes to be communicated
along a name x by declaring x : s ~ (0) . Then an "executer", which receives
a process at x and executes it, can be written as x (X) .X ; when put in parallel
with ~(P}.Q, it gives rise to the interaction

~(P) .Q I x (X) . X) Q [P

Before formally defining the syntax and the semantics, let us look at more inter-
esting examples.

N u m e r a l s . In [13], Milner shows how to encode numbers in the ~r-calculus. If
- - n
y represents the sequence ~ ~ of length n, and y, z : s ~ 0, then the natural
number n is encoded as follows:

[n] (y, z : (s, s)

We want now to write an agent Plus capable of performing the sum of two
numbers. Consider the process , x ([hi(y, x)]x . [m](y ,z)) : If we abstract from
possible internal rednctions, this behaves exactly like In + m](y, z}. Accordingly,
if X and Y are variables of the same sort as numerals, we can define

Plus x Y(y,z))): ((s, s), (s,s),s,s)

Plus is a higher-order abstraction, because it abstracts on agent-variables (to be
precise Plus is a second-order abstraction). This is also indicated by the bracket
nesting in the definition of Plus, which is greater than one. The machinery can
be iterated, for instance by defining abstractions on variables of the same sort as
Plus and so forth, progressively increasing the order of the resulting agents.

An adder which repeatedly takes two numbers at ports al, a2 and outputs
their sum at a3 can be represented as:

Add dr (X) (Y) (Pl (XY}} = al .a2 .-53 us , .Add

E n c o d i n g o f t h e A-calculus. The idea common to all various at tempts at
embedding A-calculus into a process calculus [8, 14, 19] is to view functional
application as a particular parallel combination of two agents, the function and its
argument, and ,2-reduction as a particular case of communication. Our encoding
into HOTr makes very transparent this idea. For convenience, a variable x of the
A-calculus is mapped into its upper-case variable X in HO~'. We take for granted
the basic concepts of A-calculus. As evaluation strategy, we adopt the one of

156

Abramsky's lazy A-calculus [1] in which reductions occur only at the extreme left
of a term.

7-I[[Ax.M~ %' (p)p(X, q).7"l[[M]](q}

U[MN~ do~ (p)r,q (Tt~M](q) l'q(Tt[N],p))

If s is the sort of the names p,q, then the translation of a A-term is an
abstraction of sort (s). This abstracted name will be the only access to that
agent and will be used to interact with the appropriate A-term. Thus ~l[i~x.M~ (p}
receives at p its A-argument and the name q which will give access to M. In the
translation of application, the restriction on q prevents interferences from other
processes.

The higher-order features of HOTr allow us a simpler encoding than Milner's
into ~v-calculus [14]. Indeed, there is a one-to-one correspondence between reduc-
tions in A-terms and in their HO~ counterparts. Therefore, following Boudol's
terminology [8], we can claim that lazy)~-calculus is a subcalculus of ttO~.

Proposition 3.1 (o p e r a t i o n a l c o r r e s p o n d e n c e fo r ~)
Let M and M ~ be closed ~-terms:

1. If M ~ M', then 7-/~M](p}) 7tiM'S(p), and conversely,
2. if Tt[M]](p) ~ Q, then 3M' s.t. Q =_ 7t~M'](p) and M > M'. []

3 . 2 T h e s y n t a x o f H O ~ r

We shall maintain the notation introduced in Section 2. Furthermore, we need a
set of agent-variables, ranged over by X, Y. There are two modifications to bring
into the syntax of the 7r-calculus. First, variable application should be allowed
too, so that an abstraction received as input can be provided with the appropriate
arguments. Secondly, tuples in prefixing, applications and abstractions may also
contain agents or agent-variables. To simplify the notation, in the grammar we
use K to stand for an agent or a name and U to stand for a variable or a name.

P :: ~iElOli.Pi [PI[P2] v x P [[x = y] P I D(K) [X(K)

Remember that K may be an agent; hence it may be a process, but also an
abstraction of arbitrary high order. An open agent is an agent possibly contain-
ing free variables. It is worth pointing out that we do not lose expressiveness by
having application only with variables and constants. In fact, every well-sorted
expression A(K} can be put into this form by "executing" the applications it con-
tains; for instance from ((X)Y (X)) (P) , we get Y(P}. This makes the definition
of substitution more elaborated but facilitates the proofs in the calculus.

3 . 3 S o r t i n g a n d operational semantics
In the HOTr the need for sorts is even more compelling than in 1r-calculus. It
is not only now a question of arities, but we have also to avoid any confusion

157

between instantiat ion to names and to agents as well as instantiation to agents
of different order.

W.r. t . the Tr-calculus sorts, the difference is that the sequences representing
object sorts do not have to be made only of subject sorts; but object sorts
themselves can appear too. Therefore, using El for a subject or an object sort,
the g r a m m a r for sorts becomes:

E1 :: s I S

s :: (El) I 0

For each object sort S we suppose the existence of an infinite number of variables
of sort S. The definition of well-sorted agent is easy and we leave it to the
reader. The special case of second-order sorting {NAME ~ (0)} corresponds to
Thomsen ' s Plain CHOCS.

As an aside, let us point out an alternative notat ion for sorts which seems
fairly effective in HO~r. Consider the abstract ion G ~f (X)F, for X : S ' , F : S.
I t represents a function which takes an argument of sort S I and gives back an
argument of sort S. From a function-theoretic point of view, G has type S / > S.
Fbllowing such intuition, we could explicitly introduce the arrow-sort and say that
G:S ' ~S.

As regards the operational semantics, no modification is necessary in the rules
for structural congruence. In the reduction rules only the COM rule is affected;
since values exchanged do not have to be only names, it becomes:

COM: (..-+ I("' + ~ P{K/U} I Q

4 B e h a v i o u r a l e q u i v a l e n c e

We concentrate on bisimulation, probably the most studied behavioural equival-
ence in process algebra. Both in 7r-calculus and in HOrr we adopt the congruence
induced by barbed bisimulation [16, 18]. There are three main reasons for the
interest in barbed bisimulation.

1. It allows us to recover from reduction semantics the well-known bisimulation-
based equivalences which are defined on the labelled transition system;

2. It can be defined uniformly in different calculi and thus provides us with a
fundamenta l tool for comparing them, the kind of issue on which this paper
is mainly concerned;

3. I t gives us a natural bisimulation equivalence for higher-order calculi.

Some further comment on (3) is worthwhile. The definition of a natural
bisimulation equivalence in a higher-order calculus is not straightforward. The
habitual definition of bisimulation, based on the labelled transition system, re-
quires that an action be matched by another only if they have identical labels.

158

This also works for n--calculus if we concede c~-convertibility. But it does not in a
higher-order calculus. Obvious algebraic laws such as the commutativity of par-
allel composition are lost: For instance, the processes ~(PIQ).0 and ~(Q IP).0
are distinguished since the agents emitted in their respective outputs are syn-
tactically different.

The approach taken by Astesiano, Boudol and Thomsen [4, 8, 19], is to require
bisimilarity rather than identity of the processes emitted in a higher-order output
action. But this gives rise to counterintuitive equalities when restriction is a
formal binder. The problems are due to the fact that the object part and the
continuation are examined separately, thus preventing a satisfactory treatment
of the channels private to the two. See [18] for precise examples.

Barbed bisimulation focuses on the reduction or interaction relation, a concept
common to different calculi. It goes a little further though, since the reduction
relation by itself is not enough to yield the desired discriminanting power. The
choice in [18] was to introduce, for each name a, an observation predicate ~ which
detects the possibility of performing a communication with the environment along
a. A simple syntactic condition is enough to know whether P 1~ holds: there
must be in P a prefix a(~) or ~(~) which is not underneath another prefix and
not in the scope of a restriction on a. For example, If P is (v c) (~ . b I d .a) , then
P ~a, but not P ~ , P ;b or P ~d.

De f in i t i on 4.1 Strong barbed bisimulation, written ~ , is the largest symmet-
rical relation on the class of processes of the language s.t. P ~ Q implies:

1. whenever P ~ pt then Q ~ QI and pi 2~ QI;
2. for each channel a, if P ~ then Q ~a. []

The weak version of the equivalence, in which one abstracts away from the
length of the reductions in two matching actions, is obtained in the standard
way: If ~ is the reflexive and transitive closure of ~ and ~a is ~ + a . (t h e
composition of the two relations), then weak barbed bisimulation, written ~ , is
defined by replacing the transition Q ~ Q' with Q ~ Qt and the predicate
Q +a with Q 5~.

By itself, barbed bisimulation is rather weak (it is not even preserved by
parallel composition). By parametrisation over contexts, we get a finer relation.

De f in i t i on 4.2 Two processes P and Q are strong barbed-congruent, written
p ,,c Q, if for each context C[.], it holds that C[P] ,L C[Q] . []

To obtain weak barbed congruence, written ~r replace ~ with ~ . The
reader familiar with process algebra might remark that most of the common
weak bisimulations of labelled transition systems are not preserved by dynamic
operators, i.e. operators like sum and prefix which are discharged when an action
is produced. To recover them, one can parametrise barbed bisimulation over the
subclass of contexts which are built by composing the hole [-] and the processes
by means of only non-dynamic operators. The resulting equivalence is called
barbed equivalence.

159

To test the discriminatory power of barbed bisimulation, we have proved in
[18] that in the strong and in the weak case barbed equivalence and congruence
coincide in CCS and 7r-calculus with the ordinary bisimulation-based equival-
ences. We have also obtained fairly simple direct characterisations of barbed
equivalence and congruence in HOrr. In this paper, we shall only deal explicitly
with weak barbed congruence; however all results stated hold for weak barbed
equivalence too.

5 The compilation from HOTc to or-calculus

We present the c0mpilation into ~--calculus on a subclass of the ttO~r agents. We
make two simplifications. The first regards the arities of the sorts: we allow one
only value - - a name or an abstraction - - to be transmitted, and we only allow
unary abstractions. This is purely for convenience in the definition of the com-
pilation and of the operational correspondence for it - - the generalisation to the
calculus with arbitrary arities does not give problems. The second simplification
is that we compile into ~r-calculus only those HOTr agents whose definition use
a finite number of constants (from a practical point of view, this is a perfectly
reasonable assumption). Moreover, since as mentioned in Section 2.1, a finite
number of constants can be coded up using replication, we shall adopt replica-
tion in place of constants; replication is useful in the definition of the compilation
and facilitates the reasoning by structural induction in the proofs. We keep ' %5,
as abbreviation mechanism, to assign names to expressions to which we want to
refer later.

We use P {m := F} to stand for v m (P [!m(U) .F(U)) , where U is a name
or a variable, depending upon the sort. We chose curly brackets for this notation
because under a certain condition on the use of m in P and F, m acts in P as
a pointer to F and {m := F} as a "local environment" for P. We shall allow
ourselves a free use of this abbreviation. Formally, since only guarded sums are
admit ted in the language, it is not legal to use it in a context like [.] +Q. However
there are obvious transformations which convert any misuse of this into a correct
process expression, and we leave them implicit.

Intuitively, the compilation g replaces the communication of an agent with
the communication of the access to that agent. Thus P1 ~ -d (F} .Q is replaced

by P2 ~ ' (~(m).Q) {m := F}. Whereas an agent interacting with P1 may use F
directly with, say, argument b, an agent interacting with P2 uses m to activate
F and provide it with the argument b. The name m is called name-trigger.

The compilation has also to modify the sorting Oh. We suppose that Ob is
downward-closed, that is if s ~-* (S) E Oh, then s' exists s.t. s ~ ~-+ S E Oh. If
Ob is not already downward-closed, then it can easily be extended to make it
so. The downward-closed property is used to select a subsorting SOb of Ob from
which to draw the name-triggers. There might be different ways of defining SOb:
Our sole requirement is that SOb has one and only one subject sort with object
sort S, for each object sort S which appears in Ob; we use SObs to denote this
subject sort. The compilation shall replace agents of sort S with names of sort

c[x

c[x(r)]
elPIQ]

160

ao,= { c[(Y)x(Y)]
C~(a)X(a)]] otherwise

I
(-d(m).C[P]]) {m := C~F~} if o~ = g (F)

d~e f a(x).C~r~ if c~ = a(X)

c~.C[P] otherwise

w o) {m := c N } C[X(b> O
%' c~P]]IC~Q]

~ [a = b] e~P~

if X is a higher-order abstraction

C[vaP vaC[P I

Table 1: The compilation C

SObs; indeed, if A : S = (El), then a trigger which has to convey the argument
for A carries values of sort El, i.e. its object sort is precisely (El). Therefore we
have:

C[Ob] = {s ~ (s') ~ Ob} U {s ~ (SObs) : s ~ (S) ~ Ob}.

The behaviour o f t on agents is described in Table 1. To respect the definition
on the sorting, we assume that if X is a variable of sort S, then its lower case
letter x is a name from SObs. Moreover, both this name x and the name-trigger
m are taken to be fresh, i.e. not occurring in the source agent.

Besides the above sketched t rea tment of higher-order outputs, the other in-
teresting rules of Table 1 are those for application and for variable. Consider
the application X (K) : When X is instantiated to an agent G, it becomes G{K).
Translat ing it, we expect to receive just a name-trigger to G, and we are expected
to use it to activate G with its argument K. This is legal when K is a name
(and leads to our rule for for first-order application), but it is not when K is an
agent, since we cannot pass it at first order. As in the rule for outputs, this is
resolved by sending a name-tr igger for K. In the rule for higher-order variable
(and for uniformity, also in the rule for first-order variable) an ~/-conversion is
employed. This is to make explicit all possible applications and hence introduce
all necessary name-triggers; we shall see later, discussing tentative optimisations
for C, that the use of full triggered forms is necessary to get soundness. Note
that in this rule the distinction between first-order and higher-order variables
introduces a dependency from the sorting. Moreover the latter, for which the
sort of Y must be "smaller" than the sort of X, guarantees that C is well-defined.
The compilation acts as an homomorphism in all other cases.

Let us illustrate how C works on reductions. There are two dimensions at
which the number of interactions is expanded. One is horizontal. If a t ransmit ted
agent F is used by its recipient n times, n interactions are required at first-order
to activate the copies of F.

E x a m p l e 5.1 Let P~g(F).Qla(Y).(Y(b>[Y(c}). Then P) P'~QIF(b)IF(c).
In C[P]] this is s imulated Using three reductions:

161

CIP] ~=~ (g(m}.C[Q~) {m := C[F~} I a(y).(~(b) [~(c))

(C[Q]) := c H)
--~) (r]r ICEF](c)) {m : - - CgF]}

~r C[[Qll l C[F]I(b) I CI[Fll(c) = C[P']l

where the last equality holds because m is not free in the body. []

The other way to add interactions is vertical and takes its significance from
the w-order nature of H0~'. It arises with higher-order abstractions when, after
the abstraction itself, one has also to trigger its arguments. This may give rise to
interesting chains of activations. To see a simple case, take P %~'5(G) Ia(Y).Y(F),
where G is a second-order abstraction. We have P ~ G(F}. To achieve the
same effect C[P] requires two further interactions, one to activate a copy of G
and another to activate a copy of F.

6 Correctness of the compilation

Before tackling the question of the semantic correctness of the compilation C, we
have to check that its definition is syntactically meaningful by ensuring that it
returns first-order agents and that there is agreement between the definitions of C
on sorts and agents. The former is straightforward; the latter holds too because
all new names which are introduced (in the rule for application) or whose object
part is modified (in the rule for prefixing), respect the sorting C[Ob~.

T h e o r e m 6.1 For each open agent A, it holds that C~A] is a first-order agent
and well-sorted for C~Ob~. []

By contrast, the proof that C is faithful w.r.t. ~-f is not at all trivial. We
limit ourselves to summarising the schema used in [18], to which we refer for the
details. The compilation C is derived into two steps. The first is a mapping 7"
which transforms an agent into a triggered agent. These are "normalised" H0~-
agents in which every agent emitted in an output or "expected" in an input
has a very simplified form and the same functionality of name-triggers. Thus
higher-order communications have become homogeneous and have lost all their
potential richness and variety. This greatly simplifies the reasoning over agents.
Triggered agents have a few interesting properties, in particular a quite simple
characterisation of barbed congruence.

The agent 7"[A~ already has the same structure as C~A~. The real difference
is that 7" is an endo-encoding, that is, it remains within the same calculus.
This facilitates the correctness proof and prepares the way for the next step,
the mapping 2", which leads us down to first order. Syntactically, 2- is a fairly
simple transformation. But semantically it is more delicate because it modifies
the object sort of names. The correctness proofs of T and Y are obtained using
direct characterisations of barbed congruence on labelled transition systems plus
the "local environment" properties for {m := F}.

162

T h e o r e m 6.2 (ful l a b s t r a c t i o n fo r C) For each pair of open agents A1 and
A2, it holds that A1 ~r A2 iff C~AI~ ~r C[A2~. D

The definition of barbed congruence on abstractions and open agents is given
in the expected way, by requiring instantiation of variables and of abstracted
names with all agents or names of the right sort. Thus (X)P ~c (X)Q if for each
F of the same sort as X, P { F / X } ~r Q{F/X} .

A few considerations to emphasise the faithfulness of C are worthwhile. By
itself, Theorem 6.2 does not reveal anything about how closely C[[P]~ simulates
P; actually, nothing prevents us from obtaining the same result with a very
bizarre encoding! First of all, let us show the operational correspondence existing
between P and C[[P]]. We only look here at reductions; but a similar result holds
for the visible actions of the labelled transition system [18].

In clause (1) below, an interaction is first order (resp. higher order) if the
t ransmit ted value is a name (resp. an agent). In clause (2) an interaction is
converted if it comes from a communication along a name whose object sort has
been modified by C, i.e. a name which carries agents in Ob. In clauses (b), F
represents the abstraction which is exchanged in P and m the trigger which is
exchanged in C[P~.

P r o p o s i t i o n 6.3 (o p e r a t i o n a l c o r r e s p o n d e n c e for C)
Suppose m not free in P and C[P]:

1. (a) If P ~ P' is a first-order interaction, then C[P] ~ C~P'~;

(b) I f P > P' is a higher-order interaction, then there are'b, G, F s.t.

P' -- ~b(G(F)) and C[P~ > vb(C~G](m) {m := C~F~)).

2. the converse of (1), i.e:

(a) [f C[P~ P" is a non-converted interaction, then P' exists s.t.

P > P', and P" = C~P'~;

(b) IfC[P] ~ P" is a converted interaction, then there are'b,G,F s.t.

P) v"b(G(F)) and P " - vb(C[Gi (rn) {m := C[F]}) . []

Secondly, let us point out that by definitions of C, if P is a first-order process
then it is not modified by C, i.e.

c[P = P

Thirdly, suppose that P is an HOTr process which can only perform ilrst-order
actions. This does not imply that P is also a Tr-calculus process, as internally
P could perform communications of agents. But if we relax the definition of
well-sorted agent, then we can think of comparing directly P with C[P], and we
would get

cM P

163

O p t i m i s a t i o n s ? There are critical points in the definition of C on agents which
is worth indicating. We doubt that non-trivial improvements are possible without
loosing full abstraction. The first optimisation one might be tempted of, is on
the output of @eat-variables, defining

C[~(X).O] ~ ' ~(x).C[O] (*)

After all, since all communications of higher-order values are transformed by C
into communications of name-triggers, we already know that x will always be
instantiated with one of these; then it seems that the original rule, introducing
another name-trigger m is just adding a further level of indirection. But rule (*)
in general is not sound. Consider in fact

= v a ~(F)[a(X). X>. X

O ~~ (< >i ()b< >b< >) = ~ , a - d F a X . F . F

Clearly P and Q are equivalent (they are strong barbed-congruent). But adopting
rule (*) their translation are not[In fact we have

C[P]] a~ ua(g<m> {m := F}]a(x).-b<x>.b<x>)

C[Q] ao~ va(~(m> {m::F}]a(x).(b(ml>.b(m2>{m2 :--F}){ml ::F})

which can be distinguished since after the initial interaction, C[Q] can perform
two outputs of private (and hence distinct) names at b, whereas in C[[P]] the two
outputs at b communicate the same name. For similar reasons, the optimisation

C[X(Y>~ ~' ~<y>.O

is not sound. For this, take the ItOTr processes c(X).u a (a(Y).(X(Y> IX(Y>)ra<F>)
and c(X).v a (a(Y).(X<E) I X<F)) I They are equivalent, but their 7r-
calculus translations would be distinguished by reasoning similarly as above.

There are however situations when the above optimisations are indeed sound;
we leave for future work more precise answers to this issue.

7 S o m e uses of the c o m p i l a t i o n

We have given the faithfulness of C only w.r.t, barbed congruence. But we believe
that C respects most of the well-known weak equivalences which admit a uniform
definition over higher-order and first-order calculi, such as ~esting equivalence [10],
or refusal equivalence [17]. The reason is the close operational correspondence
between source and target agents of g.

Indeed C might even be used to define equivalences in HOrr. Take for instance
trace semantics [11], or causal bisimulation [9]. These, originally proposed for
calculi without mobility, can easily be adapted to ~r-calculus. More delicate is
their extension to a higher-order calculus; as usual, it is not obvious the condition
to impose on higher-order outputs. However, if P and Q are HO~r processes and
<<>> is weak trace equivalence or weak causal bisimulation, we might define:

P <<>> Q if C[[P]] <<>> C[[Q]]

164

and then look for a direct characterisation (i.e. not mentioning C) of <<>>.
A nice application of Theorem 6.2 comes from the study of the A-calculus

encodings. We presented the encoding into HO~r in Section 3 (for the lazy A-
calculus). By applying compilation C we can turn this into a ~r-calculus encoding.
The outcome is precisely Mitner's [14]. This commutativity strengthens the nat-
uralness of the translations involved. It means also that we can infer for Milner's
encoding all results we can prove working with HOTr. We have used this in [18] to
show that both encodings give rise to a A-model in which a weak form of exten-
sionality holds, and to obtain a direct characterisation of the equivalence induced
on the A-terms by the behavioural equivalence adopted on the process terms.

ItOTr has been useful also to understand Milner's encoding of call-by-value
A-calculus into ~r-calculus. In his original work [14] two encodings were given,
and it was not obvious which one should be preferred. When we tried to see
if they factor through C and an encoding into HOTr, the relationship between
the two became clear: We could pass from the first to the second encoding
using the "false" optimisation (*) in section 6. Building on this and on the non-
soundness of (*), we have been able to prove that fl reduction is not valid for
the second encoding (i.e. the encodings of a term and of a/3-derivative of its are
not equivalent), which fairly reduces its importance. We doubt we could have
obtained the rather sophisticated counterexample without going through HO:r.

8 R e l a t e d work a n d d irec t ions for fu ture research

The first a t tempt at encoding a higher-order process calculus into 7r-calculus was
made by Thomsen. For this, he used Plain CHOCS (PC) which, as mentioned in
Section 3.3, is a subcalculus of HO~" for the sorting { N a m e ~ (0)}. Thomsen's
study acted as stimulus and basis for our work. When applied to PC, our com-
pilation C coincides with Thomsen's translation and in this sense can be seen as
an extension of it. Recently, Thomsen's work has been resumed by Amadio [5],
which adopts a different equivalence on PC. Our analysis, however, strengthens
and completes both Amadio's and Thomsen's in various aspects. First, PC is
a special case of a second-order language, whereas HOTr is of w order. Second,
to establish an operational correspondence between PC processes and their 7r-
calculus encodings, they have to modify the semantics of the calculi; this seems
rather arbitrary and obscures the meaning of the results obtained. Thirdly they
do not get a full abstraction result, as we did in Theorem 6.2.

Expressiveness of Tr-ealeulus. Our study on the translation of HO~r and
A-calculus into ~r-calculus may be seen as just one aspect of a more general
investigation into the expressiveness of 7r-calculus. For instance, it is not clear
to us at what extent the results for compilation C depend upon the choice of the
operators in HO~r and ~r-calculus. We think that in general we cannot remove
the restriction on guardness for the sum. But we do not see this as a strong
limitation. Besides yielding a simpler reduction semantics, guarded sums are
easier to implement. Furthermore, in process algebras guarded sums are usually
necessary to make a number of well-known equivalences, congruences w.r.t, the

165

sum operator. Last but not least, they are justified by practical applications,
which show that they give all needed expressiveness.

In general, it seems that the problems for the compilation mainly arise with
dynamic operators, to which sum belongs (another example of dynamic operator
is Lotos's disabling [7]).

Add ing da t a to HO~'. The study conducted with the A-calculus illustrates
the usefulness of the abstraction power of HO~- w.r.t, the ~'-calculus. Such ab-
straction power could be increased by adding some (simple) form of data, like
integers, booleans, or lists. Accordingly, the format of object sorts should be
enriched to allow for data communications. Data should be taken into account
also in the definition of the equivalences. The interesting thing is that g is easily
generalisable to the extended ttO~', since data can be encoded in the ~'-calculus
([13, 15]). Then the proof that the faithfulness of g is maintained would give us
confidence that what we are developing is sensible.

Semant ics of ob jec t -o r ien ted languages. Two interesting approaches to the
denotational semantics of parallel object-oriented languages are exhibited in [2]
and [20], using metric spaces and by translation into ~'-calculus, respectively.
In both cases the source language is POOL [3]. Let us point out here their
weaknesses. In the former, a heavy mathematical machinery, needed to ensure
the well-definedness of the semantics. In the latter, the "flatness": There is no
concept of type to give an overall idea of the use and the purpose of the various
agents defined; and since ~--calculus is "low-level", the protocols implementing
interactions among different components sometimes are burdensome.

We would like to see if it is possible to gain some benefit by using the HO~" as
target language. Higher-order sorts would play the role of types in [2]. The theory
developed for the HOTr could be employed to reason on the semantic objects. The
representation should he more succinct and readable than the one in [20], even
more if data are added to HO~ as suggested above. As for A-calculus, using g
the two translations could be compared to see if and where they are different.

Acknowledgements .

I am most grateful to Robin Milner. This material was developed through a series
of discussions with him. I wish to thank Matthew Hennessy, Benjamin Pierce
and Gordon Plotkin for insightful comments; and Jean-Jacques Levy for having
invited me to INRIA-Rocquencourt, where the paper has been written.

References

[1] Abramsky, S., The Lazy Lambda Calculus, Research Topics in Functional
Programming, pp65-116, Addison Wesley, 1989.

[2] America, P. and de Bakker, J. and Kok, J. and Rutten, J., Denotational
Semantics of a Parallel Object-Oriented Language, Information and Compu-
tation, 83(2), 1989.

166

[3] America, P., Issues in the Design of a Parallel Object-Oriented Language,
Formal Aspects of Computing, 1(4), pp366-411, 1989.

[4] Astesiano, E. and Giovini, A., Generalized Bisimulation in Relational Spe-
cifications, STACS 88, LNCS 294, pp207-226, 1988.

[5] Amadio, R., A Uniform Presentation of CHOCS and re-calculus, Rapport de
Recherche 1726, INRIA-Lorraine, Nancy, 1992.

[6] Berry, G. and Boudol, G., The Chemical Abstract Machine, 17th POPL, 1990.

[7] Bolognesi, T. and Brinksma, E., Introduction to the ISO Specification Lan-
guage LOTOS, in The Formal Description Technique LOTOS, North Hol-
land, 1989.

[8] Boudol, G., Towards a Lambda Calculus for Concurrent and Communicating
Systems, TAPSOFT 89, LNCS 351, pp149-161, 1989.

[9] Degano, P. and Darondeau, P., Causal Trees, 15th ICALP, LNCS 372, pp234-
248, 1989.

[10] De Nicola, R. and Hennessy, R., Testing Equivalences for Processes, Theor.
Comp. Sci. 34, pp83-133, 1984.

[11] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985.

[12] Milner, R., Communication and Concurrency, Prentice Hall, 1989.

[13] Milner, R., The polyadic ~r-calculus: a tutorial, Technical Report ECS-
LFCS-91-180, LFCS, Dept. of Comp. Sci. Edinburgh Univ., 1991.

[14] Milner, R., Functions as Processes, Technical Report 1154, INRIA Sofia-
Antipolis, 1990. Final version in Journal of Mathem. Structures in Computer
Science 2(2), ppllg-141, 1992.

[15] Milner, R. and Farrow, J. and Walker, D., A Calculus of Mobile Processes,
(Parts I and II), Information and Computation, 100, ppl-77, 1992.

[16] Milner, R. and Sangiorgi, D., Barbed Bisimulation, 19th ICALP, LNCS 623,
pp685-695, 1992.

[17] Phillips, I.C.C., Refusal Testings, Theor. Comp. Sci., 50, pp241-284, 1987.

[18] Sangiorgi, D. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms, PhD thesis, Edinburgh Univ., 1992, to appear.

[19] Thomsen, B., Calculi for Higher Order Communicating Systems, PhD thesis,
Dept. of Computing, Imperial College, 1990.

[20] Walker, D., re-calculus Semantics of Object-Oriented Programming Lan-
guages, Technical Report ECS-LFCS-90-122 LFCS, Dept. of Comp. Sci. Ed-
inburgh Univ., 1990. Also in Proc. Conference on Theoretical Aspects of Com-
puter Software, Tohoku University, Japan, Sept. 1991.

