
Specifications Can Make Programs Run Faster

Mark T. Vandevoorde

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Email: mtv@lcs.mit.edu

Abs t rac t . This paper describes a strategy for using the information con-
tained in formal specifications to enhance a compiler's ability to perform
optimizations. Because specifications are simpler than code and because
they abstract away irrelevant implementation details, a compiler with ac-
cess to specifications can determine that an optimization is safe more often
than compilers that analyze only code. Furthermore, formal specifications
can be used to allow programmers to define new optimizations.

Our strategy has been implemented in a prototype compiler that incor-
porates theorem proving technology. The compiler identifies opportunities
to perform conventional and programmer-defined optimizations.

1 Introduct ion

Many approaches to programming emphasize the use of abstractions. The basic
idea is to make it easier to understand programs by achieving a separation of
concerns. The client of an abstraction looks at its specification and writes code
that uses the abstraction. He need not concern himself with how the specified
behavior is achieved. The implementor's job is to provide an implementation
that satisfies the specification. Often, the implementation is substantially more
complex than the specification, e.g., for reasons of efficiency, so the specification
allows the client to reason about the abstraction at a simpler level.

Although programmers benefit from abstraction and specification when rea-
soning about programs, existing compilers do not. Compilers should be able to
make good use of the information in specifications when optimizing programs,
since determining if an optimization is safe requires reasoning about programs.

In this paper, we investigate how to exploit formal specifications to enhance
optimization. We use specifications in three ways:

1. to allow programmers to define new optimizations that make abstractions
more efficient to use,

2. to relax the preconditions for performing conventional optimizations, and

3. to improve a compiler's ability to recognize that the precondition for per-
forming an optimization is satisfied.

216

Ultimately, the aim of this research is to make programs built using abstraction
and specification more efficient.

Our approach has been implemented in a prototype compiler that incorpo-
rates theorem-i~roving technology to optimize programs written in a strongly
typed, imperative language. Early experience with the compiler is encouraging.
Performance improvements were obtained in parts of mature programs, and the
compiler is able to detect opportunities for optimization that cannot be detected
without looking at specifications.

In Section 2 we discuss how specifications can enhance three kinds of opti-
mizations and then briefly discuss related work. In Section 3 we describe the
specifications used in Speckle, the source language for our compiler, and we give
proof rules for Speckle programs. In Section 4 we describe how our prototype
compiler uses the proof rules to identify safe optimizations. Finally, in Section 5
we discuss how our approach fits in the context of software development and
report on a case-study of optimizing a program.

2 O p t i m i z a t i o n s

2.1 Special ized Procedures

Specialized procedures are one kind of programmer-defined optimization for
making general procedures run faster in special cases. The basic idea is that
a procedure presents one simple specification but has multiple implementations.
One implementation is general enough to work in any context, while the others
are more efficient but work in fewer contexts. The compiler substitutes one of
the faster implementations for the general one when it can prove (using specifi-
cations) that a calling context satisfies the stronger pre-condition of the faster
implementation.

For example, consider the specification in Fig. 1 for Table_Enter, which
enters the value for a key into a table. Suppose that the specifications in Fig. 1
are implemented using an unsorted list of key-value pairs with the invariant
that no key appears more than once. Thus, Table_.Enter must in general check
whether k appears in the list. However, we would like to specialize Table_Enter
to avoid this check in contexts where k cannot appear in the list, e.g., in Fig. 2.

Our approach is to have the programmer write the dual implementation for
Table_Enter shown in Fig. 3. The "specialize when" construct directs the com-
piler to use the second implementation of Table_Enter when it can discharge the
pre-condition n o t (d e f i n e d (t ' , k)) . Specifications are required both to express
the pre-condition and to discharge it in contexts like that in Fig. 1.

2.2 C o m m o n Subexpression Elimination

Common subexpression elimination (CSE) is a standard optimization to avoid
recomputing an expression when its value is already available. For example, in
the code fragment

x := aEi]; ...: y := aEi]

217

Table_Enter = proc(t:Table,k:Key,v:Value)

modifies t
ensures t' = bind(t',k,v)

Table_Lookup = proc(t:Table,k:Key) returns(v:Value)

modifies --

ensures v = image(~,k)

except signals missing when not(defined(t',k))

Fig. h Table Specification

v: Value :: Table_Lookup(t,k)
except when missing:

v := Value_Create()
Table_Enter(t,k,v)

end

Fig. 2: A Context to Specialize Table_Enter

there is no need to recompute a [i] because its value is available, unless the code
between the two occurrences of a [i] changes a or i.

Although compilers are very good at eliminating expressions that use only
primitive operations like _ + _ and _ [_] , they are less effective at eliminating
procedures calls. The problem is that in imperative programs, a procedure may
perform a visible side effect, so eliminating a procedure call, even when its result
is available, may alter the program's behavior.

Specifications make it easier to eliminate procedure calls by explicitly stating
whether a procedure performs any visible side effects. For example, in Fig. 1
the specification of Table_Lookup states that Table_Lookup performs no visible
side effect. Thus, it is safe to eliminate calls to Table_Lookup, but it isn't safe
to eliminate calls to Table_Enter, which may modify its first argument.

Specifications also make it easier to recognize equal expressions that are not
syntactically identical. For example, in the code fragment

Table_Enter(t, k, v l)
v2 := Table_Lookup(t, k)

the call to Table_Lookup can be replaced by vl. Although it is impractical
to perform this optimization by analyzing the implementations of Table_Lookup
and Table_Enter, the optimization is easy to do given the specifications in Fig. 1
and the axiom about tables

Vt:Table, k:Key, v:Value [image(bind(t,k,v),k) == v]

Currently, compilers only eliminate an expression when an" equal value is
available. With specifications, it is possible to relax this condition. Consider,

218

Table_Enter = proc (t: Table, k: Key, v: Value)
p:pair := FindPair(t,k)

except when none:InsertPair(t,k,v)
return

end
p.val := v

specialize when n o t (d e f i n e d (t ' , k)) :
InsertPair(t, k, v)

end Table_Enter

Fig. 3: A Dual Implementation for Table_Enter

for example, the code

il := IntSet_Least(s)
i2 := IntSet_AnyElement(s)

where Le a s t is specified to return the smallest element of the set s while the
specification of AnyElement allows it to return any element. With the specifica-
tions, it is possible to recognize that the call to AnyElement can be replaced by
i l , even when AnyElement would have returned a different element. Without
the specifications, this optimization appears unsafe because it might alter the
value computed for i2.

2.3 Identifying Loop-Constant Expressions

When a compiler can determine that an expression is a loop constant, it can
optimize the loop to compute the expression once rather than once per iteration.

Most of the enhancements to common subexpression elimination also apply to
identifying loop-constant expressions. Expressions can be generalized to include
procedure calls that perform no visible side effects. Furthermore, the called
procedure may be non-deterministic: it need not compute the same value each
iteration, but the value returned for the first iteration must be substitutable
for the values returned on the other iterations. For example, it is safe to treat
AnyElement (s) as a loop "constant" when the body of loop does not modify s.

2.4 Side Effect Analysis

All of the optimizations discussed above require the compiler to reason about
side effects. For common subexpression elimination, it must determine that the
code executed between the expressions does not change their value. To identify
a loop constant expression, the compiler must determine if the body of the loop
affects the value of the expression. To call a specialized implementation, the
compiler must often determine that a pre-condition established at one point in
the program is still true at a later point, e.g., that in Fig. 2, the pre-condition
not(defined(t',k)) established when Table_Lookup signals missing is not in-
validated by a side effect of Value_Create.

219

Specifications improve the analysis of side effects. Only specifications can
distinguish between side effects that are visible to the client's code from those
that are invisible. E.g., a procedure might cache previously computed results in
a private data structure--changes to this data structure are invisible to clients.

Specifications of data abstractions also make some side effects invisible be-
cause they abstract away parts of data structures used to implement values of a
data type. E.g., if tables are represented as lists of key-value pairs, an operation
of the table type might sort the list. This side effect is invisible to clients.

Data abstractions are also useful because they introduce new types that, in
a strongly typed language, can be used to bound side effects. For example, sup-
pose a user defines the types In tSe t , Intqueue, I n t S t a c k and implements each
one using integer arrays. Because a user-defined type must guarantee that the
representation of a value is never directly accessible outside of the implementa-
tion of the type, the compiler can assume that a procedure that can only access
an I n t S e t cannot modify an IntQueue even though both are represented using
the same type.

Finally, a data abstraction may specify that the data type is immutable,
i.e., that no visible side effect is possible on instances of the data type. 1 This
eliminates the need to analyze side effects for instances of the type.

2.5 R e l a t e d W o r k

The idea of allowing programmers to define new optimizations has been sug-
gested before. In [15], Scherlis allows programmers to enhance performance by
writing "expression procedures" for a functional language of recursive equations.
In [8], Hisgen presents an unimplemented design of a language where the author
of a module provides transformation rules used to restructure the program for
efficiency. However, his approach is not modular since, in general, the user must
consider how procedures from different modules interact.

Our extensions to standard optimizations are not intended to replace tra-
ditional compilation techniques that deal with register allocation and other
machine-level issues. The extensions are complementary to code analysis [3],
which can perform standard optimizations that span procedure boundaries, e.g.,
identifying redundant code in different procedures. However, even interproce-
dural code analysis techniques like [2, 10] can be foiled by invisible side effects
that are concealed by specifications in our approach. Furthermore, many code
analysis techniques simplify the problem of estimating side effects by either not
supporting procedures, not supporting pointers, or restricting pointers to one
level of indirection [1, 9, 13, 14, 16]. Because specifications contain information
that is useful for bounding side effects, we do not need to make such restrictions.
Our handling of side effects is more like the FX language, which augments an im-
perative dialect of LISP with specifications describing side effects [12]. However,
FX specifications cannot express user-defined optimizations.

1For example, integers and bignums are immutable in Common LISP, }out cons cells are
mutable,

220

3 S p e c k l e

Speckle is a strongly typed, imperative programming language based on CLU [11]
and designed to experiment with specification-based optimization. We chose
CLU as a starting point because it has many of the features of modern program-
ruing languages, including data abstraction, exceptions, and (implicit) pointers.
Speckle programs are specified using Larch [7], which uses first order predicate
logic. To simplify reasoning about programs, some features of CLU are omit-
ted: polymorphism and non-local variables. 2 We also omit first class procedures
(procedures as data) because they are difficult to specify in first-order logic.

First, we describe Speckle specifications. Next, we give inference rules, based
on specifications, that will be used to prove that optimizations are safe.

3.1 L a r c h / S p e c k l e Specif icat ions

Larch is a two-tiered specification language. The Larch Shared Language (LSL)
is used to define useful mathematical functions in a fragment of multisorted,
first-order logic. Functions and sorts defined in LSL are independent of any
programming language.

The semantics of LSL defines a first-order t heory - -an infinite set of formulae--
for LSL specifications. The theory is the consequence closure of the specification's
axioms and inference rules, which include the normal inference rules of predicate
logic. For our purposes, it suffices that LSL specifications provide useful axioms
in the form of equations.

The Larch/Speckle interface language is the glue between a Speckle program
and LSL. Larch/Speckle formalizes the notion of a program state and provides
a language for specifying data type and procedure interfaces. These interfaces
refer to LSL sorts and functions, e.g., Fig. 1 refers to the LSL functions image
and bind.

A Speckle program state consists of an environment and a store:

Prog State -- E n v X Store
E n v - Ident --* (I m m Value + Loc)

S tore = Loc -~ M u t V a l u e

aE~v denotes the environment of program state ~r, and (r s" denotes its store.
Values are divided into three domains. ImmValues are used to represent

values of immutable types, and MutValues are used for values of mutable types.
A Loc represents the location (address) of a mutable data structure. A procedure

S t r S t r modi s a Loc t if %re(0 # %ost(0'

: C L U does not have fully global variables, but it has "own" variables. A module 's "own"
variables are accessible by any procedure in the module but are inaccessible outside the module.

In the absence of procedure variables, techniques based on interprocedural code analysis
could effectively bound the set of global variables read or written by a Speckle procedure, e.g.,
[1]. These variables would be treated like addit ionalarguments to the procedure. Alternatively,
Speckle could require the user to list any global variable that a procedure could read or write,
e.g., in a fashion similar to Euclid and Modula.

221

V Crpre, O'post: Prog State, t: TableLoc, k: Key, v: Value

Tabl e_Ent er:

Norm(o-pre ,st, o-postSt', t, k, v) .~.~- o-post(t)Str = blnd(o-pre(t)," Str k, V)
S~r S i r A V h Tablenoc [1 # t ~ o-post(1) = Crpre(l)]

Tabl e_Lookup:

st~ t, k, v) = = v -- lmage(o-pre(t), k, v) A o-post -- Crpre Norm(o-pre ' O.postSt~, ' st~ Str st~

S t r Excpt(o-pre, s . t, k) = = s,, s,, o -pos t , o-post = o-pre

Guard(o- 'r , t, k) = = not(deaned(o- 'r (t), k))

Fig. 4: Procedure Predicates

There may be several aliases for a given Loc I. For example, the environment
may map any number of Idents to I. Also, any MutValue in the range of the store
or any ImmValue in the range of the environment may contain I. For example, a
value for an array of mutable data contains the Loc of each (mutable) element.
Similarly, a record value contains the Loc of each mutable field.

Aliasing is not possible for Idents because ImmValues and MutValues may
not contain Idents.

Data T y p e I n t e r f a c e s . A data type interface names an LSL sort used to rep-
resent values of the type and indicates whether the type is mutable-- th is deter-
mines whether the sort is an ImmValue or a MutValue. When a type is specified
as mutable, a location sort is implicitly defined for the type, e.g., TableLoc for
locations of Tables. In procedure specifications, a term 1 denoting a location
may be suffixed by " to denote o-~;;(1) or by ' to denote o-~,~t(l). A formal pa-
rameter whose type is mutable denotes a location; a formal parameter whose
type is immutable denotes an ImmValue.

P r o c e d u r e I n t e r f a c e s . Specifications of procedures, which may signal excep-
tions, are written as pre- and post-conditions in a stylized fashion. The r e q u i r e s
clause defines the pre-condition, Req (if any). The m o d i f i e s clause restricts the
side-effects of the procedure by defining the set of locations that the procedure
is allowed to modify; this restriction is part of every post-condition. The post-
condition for a normal return, Norm, is further specified by the en su re s clause,
which typically defines the results in terms of the arguments. All procedures are
assumed to terminate.

For the sake of brevity, here we allow at most one exception. The when
clause defines a second condition on the pre-state, Guard. The procedure must
signal the exception exactly when Guard is true. The post-condition for an
exceptional return, Excpt, is defined by the m o d i f i e s clause and an optional
e n s u r i n g clause.

222

Fig. 4 lists the result of translating the interface specifications of Fig. 1 into
predicates when Table is the only mutable type used by the program. For ev-

S t r S t r ~ cry other mutable type T, the assertion "V I: T n o c [Crpost(l) = O'pre(I)] would
be added as a conjunct to the post-conditions of Table_Enter. Note that the
post-conditions constrain only the store; the environment is defined by the se-
mantics of the programming language. Pre- and post-conditions may not refer
to environments because Speckle does not allow global variables.

3.2 P r o o f Rules for Speckle Programs

Hoare rules are a standard way of defining proof rules for programs in the form
of a parse tree. However, in language with exceptions, it is awkward to use parse
trees for the same reason that it is hard to give Hoare rules for statements like
break and cont inue . Therefore, we use Floyd's approach [4] and define proof
rules for Speckle programs that are in the form of a control flow graph (CFG).
The proof rules have not been checked against a language semantics.

Each program has a unique entering edge labeled enter, one or more exiting
edges, and zero or more internal edges. A program is the body of a single pro-
cedure, and each exiting edge corresponds to either a normal return or signaling
an exception. There are four kinds of nodes: assignment, procedure call, merge,
and loop.

We assume that the pre-condition of the program ensures that the program
terminates, only calls procedures whose pre-conditions are satisfied, and uses no
uninitialized variables. We also assume that all specifications are correct, i.e.,
they accurately describe their implementations.

Associated with each CFG edge e is an LSL theory, ire. To prove that some
predicate P holds at the program point denoted by an edge e, one must prove
that the formula P(c%) = true is in T~. The relation E is used to define the
theories at each edge: F G T~ means that formula F is in theory T~. Proof
rules define G inductively, i.e., the theory of each internal and exiting edge is
determined by the structure of the CFG and the theory of the entering edge.

The theory T~nter of the entering edge comes from the specifications of of
procedures and data types used in the CFG. ~Tente r is the consequence closure of
the union of: the theories of all LSL specifications used; the theory of the program
state, and procedure predicates defined by Larch/Speckle; and the precondition
for entering the CFG specified by the user, if any.

Fig. 5 and Fig. 6 list the proof rules for Speckle. We extend the notation for
the hypothesis of a proof rule to include a template of a subgraph appearing in
the program. The first proof rule is that each theory is closed under the usual
inference rules of predicate logic.

The second proof rule is that the theory of an edge j is an extension of the
theories of each edge i that dominates j.3 This rule propagates the formulae
defining cq in ~ to 7j~ so it allows Tjj to define crj in terms of c~i. For example, if

3Edge i dominates edge j if every path from the entering edge to j must pass through i.
Every edge dominates itself. Edge i strictly dominates edge j if i dominates j and i ~ j.

223

F e ConsequenceClosure(Te)

F E %

F E Z
Edge i dominates edge j

Fe~

l pm

x : = y

l post

o-~ost ('X ') : O'er 7 ('y ~) e i/post
Env .__ Env Q~post Vw~: Id~,t[v~ r ' ~ ' ~ ~os~(~) %~(v~)] e

Str S t r o-pre O'post ~--- e il-post

l pre

[[
l l x vt

N~ o-nS~rrm, o-pre ('Y ~), ffnEorm ('X '))

Env Env Vv~r : Idel]t[v~r r 'x'=zzk o-norm(Vat) = o-pre (va/')]

Eicpt(e~)'r~, a~pt , o-pr7 ('Y 3)
Str Env ~

G H a r d (o - p r e , grpre (Y 9)

Env Env
o-excpt - - O'pre

e 'Tnorm

e 7 n o r l n

e T.orm

e ~excpt

E ~xcpt

e %sept

Fig. 5: Proof Rules for Speckle

1' 12

F/Oout ~-+ 0-1] ~ ~T1

F/~ou t ~ 0"2] ~ ~T2

224

i body ~l

F[0-entry ~-~ O'orig]

f ~ F[o'entry ~-~ 0-back]

F E "Tou t F E "~entry

"Torig

E 7back

Fig. 6: Proof Rules for Speckle, continued

i and j are the edges before and after the statement x := x+l, 0-js"V('x') can be
defined in terms of 0-~V('x').

The rule for an assignment states that the only variable affected by the
assignment is the one named on the left of ":=", so assignment to 'x' never
affects 'z'. Furthermore, the store is unchanged.

The rule for a procedure call node 4 uses the predicates from the procedure's
specification to define the post-state in terms of the pre-state. When the pro-
cedure returns normally, the only variable affected by a call is the one that is
assigned the result of the call. If the procedure signals an exception, the en-
vironment is unchanged. Note that the theories of the exiting edges contain
control-dependent information derived from the exception guard.

Because procedures can signal exceptions, a branch can be treated as a call
to a procedure that takes a boolean argument and signals an exception exactly
when the argument is true.

The merge and loop rule rules correspond to the familiar rules for proof-by-
cases and proof-by-induction. The notation F[ai~--~a] denotes F with 0- substi-
tuted for 0-i and with bound variables renamed to avoid capture.

Note that the theory of edge e is inconsistent (true = false E q'e) precisely
when the edge is unreachable at run-time. E.g., if a procedure is called in a con-
text where it cannot signal an exception (-~Guard E Tpre), T~xcpt is inconsistent
because it contains both Guard and -,Guard. The second proof rule propagates
the inconsistency to each edge dominated by excpt, and this is correct: excpt is
unreachable, so any edge dominated by excpt is also unreachable.

4The rule shown is for a procedure with a single argument and result. We rely on the
reader's intuition to extend the rule for different numbers of arguments and results.

225

4 Prototype Compiler

We constructed a prototype compiler for Speckle that identifies optimizations
using the LP theorem-prover [5] and the proof rules from the previous section.
The compiler does not generate any code. LP is particularly well-suited for our
purpose because it was designed to work with LSL and because it fails quickly
when trying to prove a difficult conjecture rather than attempting expensive
proof strategies. ~[his is particularly important because many conjectures a
compiler wants to prove are false, e.g., most procedure calls cannot be eliminated.

In Section 2, we gave informal pre-conditions for performing various kinds
of optimizations. Each of these can be stated formally using the framework of
the previous section. For example, to replace a procedure call x := P(y) by an
assignment x := z, Lhe compiler must prove that the available value z satisfies
the post-condition cf P, i.e.,

Norm(er ;;, crony('z')) e %to

where Norm is the post-condition of P, pre is the edge entering the call node, and
post is the exiting edge for the normal return, and e is an edge that dominates
pre. 5 The compiler must also prove that the call does not signal an exception,
i.e.,

- Cuard(pro, e ":rpro

The Speckle compiler uses LP to discharge the proof obligations for opti-
mizations. LP is primarily based on conditional term rewriting, which it uses to
simplify terms to normal forms. To prove a conjecture by rewriting, one must
simplify it to the term true.

LP can automatically convert a set of assertions like those found in LSL
and Larch/Speckle specifications into a conditional term rewriting system. In
general, a rewriting system only approximates the consequence closure of a set of
assertions because a rewriting system is usually incomplete: it may not simplify
some formulae in :re to true.

The compiler uses LP to approximate each theory ~ by a conditional term
rewriting system 7~. The strategy is to simplify a term containing a program
state symbol ere into either a term that contains no program state symbols or
one that contains only program state symbols of edges that dominate e. The
net effect is to try to simplify a term into one expressed using at most (Tenter,
the program state symbol for the entering edge.

The first step in building the term rewriting systems is to construct 7~e.tr
the rewriting system for the entering edge. ~'~enter is derived mechanically from
the LSL specifications referenced by the program using the LSL Checker, which
automatically translates LSL specifications into LP input, which LP then converts
into a rewriting system. The compiler also adds assertions to axiomatize program
states, location sorts, and predicates derived from Larch/Speckle specifications
of procedure interfaces.

5If z is assigned between edge e and pre, the compiler mus t introduce a t e m p o r a r y variable
to s tore the available value,

226

The next step is to construct rewriting systems for the other edges in the
program in depth-first order. When edge e exiting node n is visited, 7~e is
constructed by extending the rewriting system of the edge entering no The
extensions are determined by n: if n is an assignment node, the conclusions
from the assignment rule in Fig. 3 are added to 7~e; if n is a procedure call node,
the procedure call rule is used. Nothing is added for merge or loop nodes.

Merge and loop nodes must be handled differently from the others because
the hypotheses of these rules include subgoals that must be discharged using the
theories of other edges. The basic strategy for proving F E ~e is to first simplify
F using 7~e; let t be the simplified form of F. If t contains a program state
symbol for an edge that exits a merge or loop node, the compiler automatically
a t tempts proof-by-cases or proof-by-induction. 6

4.1 A n E x a m p l e

Fig. 7 is an example that illustrates our strategy. Procedure RemoveDupl icates
uses two user-defined data types: I n t S e t , a type for mutable integer sets, and
I n t A r r a y , a type for integer arrays that can grow and shrink dynamically.
The syntactic expressions a . low, a [• and a [j] : are shorthands for calls
to the procedures IntArray_GetLow, In tArray_Fetch , and In tAr ray_S to re .
In tArray_Tr im takes an array, a starting index, and an element count and dis-
cards all other elements.

Using formal specifications and specializations of I n t S e t and In tAr ray , the
compiler identifies the following optimizations automatically: 7

1. The expressions a [i] on lines 5 and 6 can be replaced by the value com-
puted for a [i] on line 4.

This optimization relies on the mod i f i e s clauses of Member and I n s e r t to
show that a is unchanged since the call to Fe t ch on line 4.

2. The call to I n s e r t need not check whether a [i] is in s. This is a special-
ization of I n s e r t .

This optimization relies on the semantics of i f , the m o d i f i e s clause of
F e t c h to show that s is unchanged, and the specification of Member.

3. The bounds checks for a[• on line 4 and for a [j] on line 6 are unnecessary.
These are specializations defined by Fe tch and S tore .

4. The two expressions a . low on line 10 can be replaced by the value com-
puted for a . l ow on line 1.

Optimizations 3 and 4 require proof-by-cases, proof-by-induction, and array
axioms to determine that the bounds of the array are invariant over the loop.

6If t con t a in s m o r e t h a n one such symbol , the one for the edge closest to e is h a n d l e d first.
7Many of t he a r r ay op t imiza t ions are s imi lar to those in [6]. However, the re the s e m a n t i c s

of a r r ays is f ixed by the compiler . Here, the s eman t i c s of d y n a m i c a r rays is def ined by t he
specifier.

227

RemoveDuplicates = proc (a: IntArray)

1 j:Int := a.low

2 s: IntSet := IntSet_Create()

3 for i: Int in IntArray_Indexes(a) do

4 if not IntSet_Member(s, a[i])

5 then IntSet_Insert(s, a[i])

6 aEj] := a [i]
7 j :=j+i
8 end

9 end

I0 IntArray_Trim(a, a.low, j - a.low)

end RemoveDuplicates

Fig. 7: Procedure RemoveDupllcates

5 D i s c u s s i o n

All of the optimizations that we have considered here can be hand-coded by the
user at the source level. Why, therefore, should one bother using specifications
to optimize programs? One reason is that other optimizations that are not
expressible at the source level could also benefit from specifications.

Another reason is that relying on the compiler to perform optimizations
makes programs easier to build, understand, and maintain. For example, to get
the benefit of specialized procedures without using an optimizer, one must intro-
duce a separate interface for each specialized implementation. Each client must
decide which interface is appropriate. If they choose an overly general interface,
they sacrifice performance, and if they choose an inappropriate specialized inter-
face, they introduce an error. Suppose that later in the life cycle of the program,
the reason for the specialized implementation disappears. (E.g., in the original
example of Fig. 3, suppose the representation for tables is changed to use binary
trees.) Either all interfaces will have to be maintained, or all client code will
have to be updated.

Ultimately, the question of whether to use specifications to optimize code
boils down to whether the costs of writing formal specifications and running the
optimizer justify the benefits of elegant and efficient code. To avoid the co~t
of writing formal specifications for the entire program, Speckle has features to
support partial or missing specifications [17]. This allows a user to amortize costs
by focusing on widely-used, lower-level abstractions. Currently, the prototype
compiler is too expensive to run outside a research lab; making it practical will
require more research.

To guage the potential benefits, we have applied our optimizer to pieces of
existing programs. Our initial experience is encouraging. In a study of a program
that performs AC-unification, we identified four different specializations whose

228

pre-conditions were discharged by our compiler in several contexts. Optimizing
these contexts resulted in an 11% improvement in speed.

5.1 D e b u g g i n g

All optimizing compilers complicate debugging because an optimized program
differs from the unoptimized one. The only new wrinkle added by our strategy is
that the optimized program sometimes calls specialized implementations whose
existence was unknown to client code.

A more difficult problem is how to identify bugs in specifications. Because
the compiler relies on specifications, bugs in specifications can lead to unsound
optimizations. One way to eliminate such errors is to verify the specifications,
but there are other possibilities too. The compiler could perform sanity checks
on specifications. For example, an interface cannot modify an immutable value.
Another possibility is for the user to supply code to check the pre-condition of
a specialization and for the debugger to insert this code wherever the optimizer
has "proved" that the pre-condition is satisfied. The compiler might list the
optimizations and/or the proof obligations that it discharges so that the user
could check the list for suspicious ones. Finally, the user could direct the compiler
to ignore suspect specifications and see if the problem disappears.

5.2 S ta tus

The Speckle compiler demonstrates that our strategy can improve the efficiency
of programs that use abstraction. The compiler detects optimizations that are
impossible to find without specifications as well as optimizations that, to our
knowledge, no other optimization technique discovers because the optimizations
are too difficult. The reason is that specifications conceal irrelevant implementa-
tion details, such as benevolent side effects and overly deterministic implemen-
tations, which foil techniques based only on code analysis.

Initial experience indicates that when our strategy for defining new opti-
mizations is used, the compiler is able to detect optimizations that improve the
performance of mature programs. We are continuing to test the compiler to mea-
sure how often it detects legal optimizations and how much the optimizations
impact efficiency.

A c k n o w l e d g e m e n t s

We thank John Guttag for his many useful suggestions for both improving this
work and improving this paper. We also thank William Weihl, Jeannette Wing,
the members of the MIT Systematic Program Development Group, and the ref-
erees for their comments on earlier drafts.

Support for this research has been provided in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by- the Office of Naval
Research Research under contract N00014-89-J-1988, and in part by the National
Science Foundation under grant 9115797-CCR.

229

[1] J. P. Banning. An efficient way to find the side effects of procedure calls
and the aliases of variables. In POPL, pages 29-41. ACM, January 1979.

[2] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and
structures. In PLDI, pages 296-310. ACM, June 1990.

[3] J. Ferrante, K. J. Ottenstein, and Ji D. Warren. The program dependence
graph and its use in optimization. ACM TOPLAS, 9(3):319-349, July 1987.

[4] R. W. Floyd. Assigning meanings to programs. In Proceedings of Symposia
in Applied Mathematics, volume 19, pages 19-31. AMS, 1967.

[5] S. Garland and J. Guttag. A guide to LP, The Larch Prover. TR 82, DEC
Systems Research Center, Palo Alto, CA, December 1991.

[6] R. Gupta. A fresh look at optimizing array bound checking. In PLD1, pages
272-282. ACM, June 1990.

[7] J. Guttag, J. Homing (eds.), with S. Garland, K. Jones, A. Modet, and
J. Wing. Larch: Languages and Tools for Formal Specification. Springer-
Verlag, 1993.

[8] A. Hisgen. Optimization of User-Defined Abstract Data Types: A Program
Transformation Approach. PhD thesis, Carnegie-Mellon University, 1985.

[9] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-
like structures. In Program Flow Analysis: Theory and Application, pages
102-131. Prentice-Hall, 1981.

[10] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure ac-
cesses. In PLDI, pages 21-34. ACM, June 1988.

[11] B. Liskov and J. Guttag. Abstraction and Specification in Program Devel-
opment. MIT Press, Cambridge, Ma, 1986.

[12] J. M. Lucassen. Types and effects: Towards the integration of functional
and imperative programming. MIT/LCS/TR 408, August 1987.

[13] A. Neirynck, P. Panangaden, and A. J. Demers. Computation of aliases
and support sets. In POPL. ACM, 1987.

[14] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In POPL. ACM, 1988.

[15] W. L. Scherlis. Program improvement by internal specialization. In POPL,
pages 41-49. ACM, 1981.

[16] B. Steffen, J. Knoop, and O. Riithing. Efficient code motion and an adap-
tion to strength reduction. In TAPSOFT '91 (LNCS ~9~), pages 394-415.
Springer-Verlag, April 1991.

[17] M. T. Vandevoorde. Optimizing programs with partial specifications. In
Proceedings of the 1992 Larch Workshop. Springer Verlag. To appear.

