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Abs t rac t .  We give a decision procedure to determine whether or n o t  

the transduction of a functional transducer can be realized by a deter- 
ministic (resp. reduced deterministic) transducer. In case this is possible 
we exhibit a general construction to build this transducer. 

0 I n t r o d u c t i o n  

A (finite-state bo t tom-up)  tree transducer is a finite state device. While tra- 
versing an input tree it produces an output tree in a bo t tom-up fashion. It is 
called functional iff there is at most one output  tree for every input. 

In practice, the concept of tree transducers is used, e.g., by tools for gener- 
ating code selectors from formal descriptions of target machine languages (cf. 
[4]). Given a (regular) tree grammar which specifies the semantics of machine 
instructions in terms of operators of the intermediate representation language, a 
(typically non-deterministic) tree transducer is generated. The accepting com- 
putations describe all sequences of target machine code possibly generated for a 
given piece of program. Taking into account that different instructions may have 
different costs (e.g., need more or less processor cycles) a functional transducer 
is constructed which produces a cheapest instruction sequence. 

Our main concern in this paper is the implementation of such functional 
transducers. Usually, this is done in two passes. The first one traverses the input 
tree to compute an overview over all possible computations from which the 
second one constructs an accepting computation and produces the output for 
it. We would like to avoid this second pass and produce output immediately. 
This can be done provided the corresponding tree transducer is deterministic. 
Ilowever, simple examples show that it is not always possible to construct an 
equivalent deterministic transducer. Therefore, the natural question arises: When 

can the transduction of a functional transducer be realized by a deterministic one? 

Also, one would like to produce output  only for subcomputations which 
finally is part of the resulting output.  This can be guaranteed provided the 
tree transducer is reduced deterministic. Again, it is not always possible to con- 
struct even for a deterministic transducer an equivalent reduced deterministic 
transducer. Therefore, we also have to deal with the question: When can the 
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transduction of a functional transducer be realized by a reduced deterministic 
o n e  ~. 

Corresponding results for word transducers are known at least since [2]. Ex- 
plicit constructions are described in [7] and [10]. 

So far, for tree transducers no related results are known. Several papers deal 
with deterministic or functional transducers, but they are mainly concerned with 
the equivalence problem. In [11] Zachar showed that for deterministic transducers 
equivalence is decidable. In [3] Engelfriet showed that it is decidable whether 
or not a tree transducer is functional. In [9] it was shown by the author that 
this problem is decidable even in polynomial time. As a. corollary it follows 
that  also equivalence of functional tree transducers is decidable in polynomial 
t ime provided the transducers agree in their domains. Especially, equivalence of 
unambiguous or deterministic transducers is decidable in polynomial time. 

The present paper answers the question whether or not the transduction of 
a functional transducer can be realized by a deterministic or even reduced de- 
terministic transducer. It is organized as follows. In Section 1~ we provide some 
basic definitions. In Section 2, we introduce tree transducers. Especially, we allow 
these transducers to produce a final pattern after having reached a final state 
at the root of the input tree. This extension does not enlarge the power of a 
non-deterministic transducer; in case of a deterministic transducer this notion 
corresponds to the well-known class or "subsequential transducers" [2, 7, 10] for 
words. Section 3 shows that,  for every functional transducer we can construct an 
unambiguous transducer realizing the same transduction. Then we investigate 
deterministic transducers. Sections 4 and 5 present necessary conditions (DO), 
(D1) and (D2) (resp. (wD0), (D1) and (D2)) on a transducer for its transduc- 
tion to be reduced deterministic (resp. deterministic). Our Main Theorems are 
presented in Section 6. Provided Properties (DO), (D1) and (D2) (resp. (wD0), 
(D1) and (D2)) hold for a functional reduced tree transducer M we construct 
an equivalent reduced deterministic (resp. deterministic) transducer. 

Because of space limitations most details of the proofs are omitted. They can 
be found in the full paper. 

1 T r e e s  

In this section we give basic definitions and state some fundamental properties 
about  trees. Moreover, we present some technical propositions which will be used 
in the sequel. 

A ranked alphabet or signature is a pair (~,  p) where ~ is a finite alphabet 
and p : K ---* No is a function mapping symbols to their rank. Usually, if p is 
understood we write Z for short and define Zj = p - l ( j ) .  T~ denotes the free Z-  
algebra of (finite ordered Z-labeled) trees, i.e., Tx is the smallest set T satisfying 
(i) Z0 C_ T ,  and (ii) i ra  E ~,~ and t t , . . . , t ~  E T, then a(t l , . . . , t ,~)  ~ T. Note: 
(i) can be viewed as the subcase of (ii) where m = 0. 

Let N _C Z0. The N-depth of a tree t E Tz,  depthN(t), is defined 
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{ - c ~ i f t c S 0 \ N  if t C So, and depthN(t  ) = 1 + 
by dep thN( t  ) = 0 i f t  E N 

m a x { d e p t h N ( t l ) , . . .  , depthN(t ,~)} if t = a ( t l , . . .  ,tin) for some a E ~,~, m > 0. 
If  N = Z0 we omi t  the index N;  also, if N = {x} contains just  one element we 
also write depth;(_)  instead of depth{x}(_ ). 

m 
The size of t , It], is defined by It[ = 1 if t E G0, and Itl = 1 + Ej=I ]t~l if 

t = a ( t l , . . . , t m )  for some a E Z , ~ , m  > 0. 
Let X denote a set of  variables of rank 0. Define T x ( X )  = T x u x .  We use 

this different no ta t ion  in order to indicate which variables are to be subst i tuted.  
(Clearly, Tx G TE (X).)  t C Tx (X) is called X-proper  iff every x E X occurs in 
t exact ly once. I f  X = {x} we write x -p rope r  instead of {x}-proper ,  and if X is 

unders tood  we skip the prefix X.  
Every map  0 : X --+ T x ( X )  can be extended to a map 0 : T x ( X )  --+ 

T x ( X )  by tO = x0 i f t  = x, and tO = a(tlO,. . . , t ,~O) i f t  = a ( t l , . . . , t m )  with 
a E Z.  0 is called X-subst i tut ion or s imply subst i tut ion if X is understood.  If  
X = { x l , . . . , x ~ }  and xiO = ti, we denote tO also by t [ t l , . . . , t ,~] .  Of special 
impor tance  is the case where the set X of  variables which are to be subst i tuted 
consists of  jus t  one element x. Assume xO = t2 and t I E rX(X) = TX({X}). Then  
we write t~O = tit2 �9 The set Tx(x)  is a monoid  w.r.t, x-subs t i tu t ion .  (The 
neutra l  element is x). T~(x)  is not  a free monoid.  Especially, tit2 = tl  if t l  does 
not  contain an occurrence of  x. 

Let 2#~(x) denote the submonoid  of  Tx(x)  consisting of  all trees t which 
contain at least one occurrence of x. Note tha t  trees in 2#2(x) may  contain not 
only one occurrence of  x but  also two occurrences or more. Call a tree t C Tx(x )  
x-irreducible ifft  # x and t = uv implies either u = x or v = x. If  x is unders tood 
we also skip the prefix x. So for example,  t = a(x, b(x)) is irreducible whereas 
t' = a(b(x), b(x)) = a(x, x)b(x) is not. Also, trees a(x,t)  or a(t, x) for all trees 
t E Tx are irreducible. Let Ix(x)  denote the set of irreducible trees in Tx(x) .  
Note tha t  I x ( x )  is infinite whenever Zj  r 0 for some j > 1. 

In [9] the following theorem was proven. 

T h e o r e m l .  As a monoid, T~(x) is freely generated from lx (x ) ,  i.e., Tx(x )  = 
+ . [ ]  

Consider for example  the tree t = a(a(b(x), b(x)), c) for a, b, c C X. Then  t = 
UlU2U3 for irreducible trees ui where 111 = a ( x ,  c);  It 2 = a ( x ,  x )  a n d  ua = b(x). 

Theorem 1 allows to define the x-length [tl~ of a tree t C 2Px(x): It[~ = n 
iff t = u ~ . . . u ~  for irreducible trees uj. Observe tha t  [t[~ < depths( t ) ,  and 

Itl. = depths ( t )  whenever t is x - p r o p e r  If t = r  then is called 
an x-prefix of t. Accordingly,  u2 is called x-suffix of t. 

2 B o t t o m - u p  F i n i t e  S t a t e  T r e e  T r a n s d u c e r s  

In this section we in~roduce finite tree a u t o m a t a  (FTAs for short) and b o t t o m  
up finite s tate  tree t ransducers  (FSTs for short).  Similar to [9] we define an 
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FST M as a pair (A, T) where A is the finite tree automaton underlying M 
and T is the output  function. Moreover, we recall the notion of reducedness of 
a transducer from [8, 9] which turns out to be useful in this context as well. 

In the sequel, X denotes the fix denumerable set {xil i E N} of variables and 
for m >_ 0, X~  = { X l , . . . ,  Xrn). 

A finite tree automaton (FTA for short) is a 4-tuple A = (Q, Z,  8, QF) where 
Q is a finite set of states, QF c_ Q is the set of final states, Z is the signature of 
input tree.~, 8 C_ Urn>0 Q x zm x Qm is the set of transitions of A; the transitions 
in 6 N U,~>0{q} x ~ x Qm are also called q-transitions. 

Let t = a ( t l , . . . , t , ~ )  E T z ( X k )  and q, q l , . . . , q~  E Q. A (q, q l . . . q ~ ) -  
computation r of A for t starts at variables xj in states qj and consists of 
(pj, ql �9 �9 qk)-computations of A for the subtrees t j ,  j = 1 , . . . ,  m, together with 
a transition (q, a,pl  . . .pm)  E 5 for the root. We write the state at the root to the 
left of the states at the variable leafs. This convention is chosen in accordance 
with our prefix notation of trees and the left- to-right order of substitutions. For- 
mally, we represent r as a tree over signature 5 and set of variables Xk as follows. 
If t = xj and q = qj then r = xj. If t = a ( t l , . . . , t ,  0 then r = r ( r 1 6 2  
where v = (q ,a ,p l . . .Pro)  E 5 for suitable states P l , . . . , p r n  E Q and 8j is a 
(pj, q l . . .  q~)-computation for tj ,  j = 1 , . . . ,  m. Overloading the symbol 5, we 
write (q, t, q l . . .  qk) E 5 iff there exists a (q, q~. . .  qk)-computation of A for t. 

Assume t E T2 (X~)  and t = to[tl , . . . , t~].  Assume 40 is a (q ,P l . . .P~) -  
computat ion for to, and r are (pi, q l . . .  q,0-computat ions  for ti , i = 1 , . . . ,  k. 
Then r162 Ck] is a (q, q l . . -qm)-computa t ion  r of A for t. Conversely, if 
to contains exactly one occurrence of any xj , j = 1 , . . . ,  k (i.e., is X~-proper), 
then every (q, q l . . .  qm)-computation r for t uniquely can be decomposed into 
a (q ,p~ . . .pk) -computa t ion  r for to, and (p~, q l . - .  q,~)-computations r for t~ 
(for suitable states p~) such that  r = r162 r r is called subcomputation 
of r on ti. 

A (q, Q-computat ion is also called q-computation. A q-computation is called 
accepting, iff q E QF. s  = {t r T~I there is an accepting computation of A 
for t} is the language accepted by A. 

A is called unambiguous iff there is at most one accepting computation for 
every input tree t E T2. A is called deterministic iff for every input symbol 
a ~ Z and sequence qL.. .qk E Q*, there is at most one state q E Q such that 
(q, a, q l . . .  qk) E 5. Clearly, every deterministic FTA is also unambiguous. 

The size of A, IAI, is defined by 

IAI = ~ (m + 2) 
(q,a,~l...q,~)e5 

A bottom-up finite state tree transducer (FST for short) is a pair M = (A, T). 
A = (Q, Z,  6, QF) is the FTA underlying M whereas T : 5 m QF --* Tz~(X) , the 
output function of M, maps transitions and accepting states to their output 
patterns. Transitions r = (q,a, q l . . .q ,~)  are mapped to trees T(v)  E Tz~(X,~), 
whereas states f E Q r  are mapped to trees T ( f )  E Tz~(xl). 
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Note that  an FST according to the definition in [9] is not allowed to produce 
output  depending on the final state after having processed the whole input tree. 
For non-determinist ic transducers, the additional feature does not increase the 
power of the corresponding device. For deterministic transducers it does. Here, 
it corresponds to the notion of "subsequential transducers" for words [2, 7, 10]. 

T is extended to computations as follows. Assume r is a (q, ql...q~)- 
computat ion of A. If r = xj for some j then T(r  = xj. If r = T( r  r 
then T(r  = T ( T ) [ T ( r  T(r T(r  is also called the output produced 
by r By this definition, T(r162 �9 �9 Ck]) = T ( r 1 6 2  T(r Overloading 
the symbol T, we also write (q,t, s, ql.. .q~) E T iff there exists a (q, q l . . .  qk)- 
computat ion r of A for t with T(r  = s. 

For some tree t G T~, TM(t) = {T(f)T(r162 accepting f -computa t ion  of d 
for t} denotes the set of outputs of M for t. g-(M) = {(t, s)lt E f.(A), s e "YM(t)} 
is the transduction realized by M. M is called functional iff ~TM(t) < 1 for every 
input tree t E T2.  M is called unambiguous or deterministic iff the underlying 
FTA is unambiguou,~ or deterministic respectively. Clearly, every deterministic 
FST is unambiguous; and every unambiguous FST is functional. 

The size ]M I of M is defined by 

]M[ = IAI + ~( ]T(r) ]  + 1) + ~ (IT(f)l + 1) 
rE6 ]EQF 

A state q E Q is called useful iff an accepting computation r exists that 
contains a q-transition. If this is not the case, q is called useless. Useless states 
can be removed without changing the "behavior" of A (and hence also M). An 
FTA A is called reduced iff A has no useless states. 

The rest of this section is concerned with a "reduction" of transducers. Out- 
puts for subcomputations which are not parts of the final output uniformly 
should equal a special output  tree, namely _k. _L is a new symbol (i.e., _k ~ A) 
of rank 0. Accordingly, we consider FSTs M = (A, T) where the range of T is 
contained in Ta(X)U {• However, we consider in fact only FSTs (A, T) where 
an output  tree • is always substituted for a variable xj which does not occur 
in the corresponding output pattern. Therefore, _L does not occur as the leaf of 
an output  tree s r l ,  i.e., the output  of every (q, ql �9 �9 �9 qk)-computation r of A 
either equals • or is in Ta(Xk) .  

The FST M = (A, T) is called reduced, iff A is reduced and there is some 
subset U(M) of states such that (1) and (2) hold: 

(1) For every v = (q,a, ql . . .qm) E 5, 
�9 q C U(M) iff T(T) = _1_; and 
�9 qj C U(M) iff xj does not occur in T(T). 

(2) f E QF N U(M) iff T(I)  E T,a. 

The states in U(M) are exactly those which are used by subcomputations r 
which produce _h If a subcomputation has reached some state not in U(M) we 
can be sure that  the output  for the corresponding subcomputation is part of the 
final output.  The proof of a corresponding proposition in [8] can be carried over 
to prove: 
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P r o p o s i t i o n 2 .  Assume M is an FST. Then a reduced FS T  3/L. can be con- 
structed in polynomial time such that 

- 7 ( M )  = ~-(M~),. 
- IM~I <_ 2 .  IMI. 

Pro@ We repeat the construction of M~ since we will refer to it in Section 6. 
Define 2~/ = (.4, T) where A = (Q ,X ,  5 , 0 r )  where 0 = Q x {0, 1}; Or  

consists of all pairs (f, i) where f E QF and i = 0 iff xl does not occur in T ( f ) .  
For such a final state (f, i) define 2P((f, i)) = T( f ) .  Finally, 5 and 2Plx are defined 
as follows. Assume r = (q, a, q l . - .  qk) E 5. 

Then (r, 0) = ((q, 0), a, (ql, 0 ) . . .  (qm, 0)), (T, 1} = ((q, 1), a, (ql, Q ) . - .  (qm, c,~)) 
are in ~ where ~j = 1 if x~ occurs in T(~) ,  and ~5 = 0 otherwise  <~, 11 and < ,  0) 
are the versions of T which are used in subcomputations whose output will be 
part resp. will not be part of the final output. Therefore, we put 2F((7", 1)) = T(r)  
and ~( ( , ,0 ) )=  i .  

Then, T (M)  = 7(57/) and ill satisfies (1) and (2) of the definition of reduced- 
hess with U(212 r) = Q x {0}. Now eliminate superfluous states and transitions. 
Note here that  by definition, every state of 2~/ is derivable; however, not every 
state is also accessible from Q~,s [] 

Prop. 2 is the justification that we always w.l.o.g, may assume that a func- 
tional tree transducer is reduced. However, if the tree transducer M was de- 
terministic it is not necessarily the case that the reduced tree transducer M,. 
constructed according to Prop. 2 is deterministic as well! 

3 U n a m b i g u o u s  T r a n s d u c e r s  

As for word transducers, for every functional transducer we can construct a 
reduced unambiguous transducer realizing the same transduction. We have: 

T h e o r e m  3. For every functional transducer M an unambiguous transducer Mu 
can be constructed such that 

1. 7 ( M )  = T(M~); 
2. ]M~I < [MI.31MI. 

Pro@ The idea is the following. First, we construct an FTA A0 whose states 
are pairs (D, B) of sets of states of A where D is the set of derivable states and 
B C D is the set of accessible states in D. Then we assume a natural ordering 
on the states of A. This ordering induces a lexicographical ordering on every 
subset of Qk, k _> 0. We want to produce output according to an accepting 
computation of A for the given input tree t which is determined by the following 
strategy: for every node of t we select a unique accessible and derivable state 
together with a transition in a topdown fashion as follows. We start at the 
root by selecting the smallest accepting state which is derivable. Now assume 
transition ~- = ((D, B), a, (D1, B I ) . . .  (D~, B~}) has been chosen at some node 
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o of the accepting computation r of A0 for the input tree t, and the selected 
state for node o is q. By construction, q E B. Let trans(2-, q) denote the set of 
q-transitions (q, a, q [ . . .  q~) of A such that  q} E Dj for all j .  By construction 
of Ao, trans(2-; q) is not empty. Then the transition of r for o is that element 
of trans(2-, q) for which the sequence q l . - .  qk of successor states is minimal, 
and select for j = l , . . . ,  k, state qj for the j - t h  successor node of o in t. By 
construction, r is a:a accepting computation of A for t. Finally, the output we 
produce for t is the output  of A for r 

To implement this idea we construct an FST M1 = (A1, T1) where A1 is ob- 
tained by adding a third component to the states of A0 holding the correspond- 
ing selected states. Formally, A1 = (Qt, Z,  61, Q1,F) where Q1 = {(D, B,q)lq E 
B C_ D} with Q1.F = {(D,B,q} E QllB = QF cl D,q E B minimal} where 
TI((D, B, q}) = T(q). The transition relation 61 is defined as follows. 

~- = ( ( D , B , q } , a  (D1,Bl ,q l} . . .<D~,Bk,qk})  E 61 iff 

- D = {p E DIVj-p i C Dj : ( p , a , p l . . . p k )  E 8}; 
- Bj = {pj E DjI-=]p E B,Vj'  ~s j3pj, E D i, : (p, a,pl . . .p~) C 6}; 
- a n d q l . . . q k  EB1 x . . . •  is minimal such that 2-o=(q,a ,  q l . . .q~)  E6.  

Moreover, Tl(2-) = T(T0). 
Finally, M~ is obtained from M1 by removing useless states and transitions 

from A1 and restrict;lag T1 accordingly. [] 

4 Cyclic Computations 

In this section we recall the notion of a pairing. The notion of a pairing was 
introduced in [9] to allow for an elegant description of pairs of computations of 
a transducer for the same input tree. We use it to state the necessary conditions 
(DO) (resp. (wD0)) and (D1) for an FST such that  T(M)  can be realized by a 
reduced deterministic (resp. deterministic) transducer. 

Given an FTA A = (Q ,Z ,  5, QF) we define the FTA A (2) as follows. 
Let fi~ = (~) ,~ ,5 ,  QF) be the FTA with (~ = Q2 and ~)F = Q2 where 
T = ({p,q),a,(pt,qt}...(p~,q~)) E 5 iff T'I = (p,a, pl . . .p~)  E 5 and 2-2 = 
(q, a, q l . . .  qk) E 3. In this case, we write ~- = @1, 2-2>. Accordingly, computa- 
tions of A are viewed as pairs of computations of A for the same input tree. 

.~ need not be reduced. Thus, A (2) is obtained from _~ by removing useless 
states and transitions. In A (2) every pair of states is accepting which jointly are 
derivable. 

A triple Lr = (A, T1,T2) is called pairing iff A is an FTA and both T1 and 
T2 are output  functions for A. In our applications here (A,T/) always will be 
functional. 

For M we define the pairing M(2) = (A(2),T1,T2) where Ti produce the 
output  according to the i - th  components of the transitions of 62 with T/(z') = xl 
for all z t  
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A proper (z ' ,z ' ) -computat ion ~5 is called cyclic iff both T1(r ~ { •  
and T2(r ~ { •  A state z' of A (2) is called cyclic iff a cyclic (z ' , z ' ) -  
computation exists. Cyclic computations play an essential role in our charac- 
terization of (reduced) deterministic transductions. Property (DO) says that a 
(z, z)-eomputat ion already is cyclic provided either the first or the second output 
for it is non-trivial: 

M has Property (DO) iff 

(DO) T1(r E {-L, xl"} iff Tu(r E { / , x l }  for every proper (z, z)-computation tb 
of A (2) . 

It turns out that although Property (DO) is always satisfied when T ( M )  
can be realized by a reduced deterministic transducer (cf. Prop. 4 (1)), it may 
not be satisfied when T ( M )  can be realized by a deterministic transducer only. 
Therefore, a weaker property (wD0) is needed. (wD0) limits the possibilities how 
M may violate (DO): 

M has Property (wD0) iff 

(wDO) The set of states of A(~) is the (disjoint) union of sets Qo, Q1, Q~ and Qa 
where 

�9 For every z' E Q0 and every proper (z', z')-computation ~b of A(2), 
T/(~b) E {• x,} for i = 1, 2. 

�9 For every z' E Q, the first output of every proper (z', z ' )-computation 
of A (2) is in {_1_, xl}, and some (z', z')-computation ~b of A(2) exists such 
that T2(~b) ~ {• xl}. 

�9 For every z' E Q2 the second output of every proper (z ~, z ' )-computat ion 
of A (2) is in {_L, xl}, and some (z', z')-computation ~b of A(2) exists such 
that 771(r ~ {_1_, xl}. 

�9 For every z' E Qa and every proper (z' ,z~)-computation ~ of A(2), 
TI(~) E {-L, xl} iff T2(~b) E {-l-,xl}, and some proper (z ' , z ' ) -  
computation ~b' of A(2) exists such that T~(r ~ {_1_, xl}. 

For these sets the following holds: 
1. If for some i E {1, 2, 3}, some state z2 of A (2) is reachable from some 

zl E Q~ then z2 E Q0 u Qi. 
2. If for some i E {1, 2, 3}, some state z2 E Qi is reachable from some zl of 

A(2) then zl E Q0 u Qi. 
3. Assume (z, a, z~. . .  z~) is a transition A (2) and for some i E {1, 2, 3} and 

j ,  some state of Qi is reachable from zj. Then every state reachable fi'om 
some zj,, j '  = 1 , . . . , k ,  is in Q0 u Qi. 

P r o p o s i t i o n 4 .  Assume M = (A, T) is a reduced FST. 

1. I f  T ( M )  can be realized by a reduced deterministic transducer then M has 
Property (DO), 

2. I f  7-(M) can be realized by a deterministic transducer then M has Property 
(~DO). 
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It can be decided in polynomial time whether or not M has Property (DO) or 
[] 

Property (D1) speaks on the difference between the produced outputs when 
reaching a cyclic state z. 

M has Property (D1) iff 

(D1) For every state z of A(~), every z-computation 4 and every cyclic (z, z)- 
computation r 

(1) rx, r2 E TA(zl) exist with x I ~ {rl, r2) with rlTl(r162 = r2T2(r for 
every k _> 0. 

For words, Property (DO) together with Property (D1) hold iff all pairs of states 
are twinned (cf. [2, 10]). Property (wD0) is without analogue in the word case. 
Assume M has Property (D1). Then also the following Properties hold: 

(2) ri is a prefix of T3_i(r t) for some 1 >__ 0 with depth(r~) < depth(T3_i(4)). 
(3) IT (r = 
(4) Assume r is another (z, z)-computation of A (2). Then also 

r l T l ( ( r  ) : r 2 T 2 ( ( ~ ' ) k s )  fo r  e v e r y  ]r ~ 0. 

(5) Assume 4' is another z-computation of A (2), and r~Tx(r ') = 
! ]c ! r~2T2(r r ) ibr every k > 0. Then for i 1,2, ' ' _ : r i8  i : r isk  for si,si E 

Ta(x l )  with xl E {s~, si}. 

Especially by (5), rl and r2 are uniquely determined. 

P ropos i t ion5 .  Assume for j = 1, 2, ej  is a cyclic ( Z j ,  Z j )  computation of A(2), 
r is a (Zl, z2)-computation and 42 is a z2-computation. 

I f  M has Propcr~y (1)1) then for every k > O, 

and also 

slTl(r = s2 2(C r 

for some si,r~ C TA(Xl) where both Xl G {Sl,S2} and Xl E {rl ,r2}.  

Propos i t ion6 .  Let M be a reduced FST. If  T ( M )  can be realized by a deter- 
ministic transducer then M has Property (i)1). [] 

It turns out that Property (D1) together with Property (DO) (or (wD0)) 
neither characterizes determinism nor reduced determinism. 
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5 B o u n d e d  D i f f e r e n c e  

In this section we introduce Property (D2) which completes the set of proper- 
ties necessary to characterize deterministic resp. reduced deterministic transduc- 
tions. Property (D2) has no counterpart in the word case. Together Properties 
(DO), ( m )  and (D2) (resp. (wD0), (D1) and (D2)) allow to prove that M is of 
bounded difference (bd) (resp. weakly bounded difference (wbd)). In the next 
section we will construct an equivalent reduced deterministic transducer for M 
whenever M is of bounded difference thus showing that Property (bd) (and hence 
jointly Properties (DO), (D1) and (D2)) is also sufficient for reduced determin- 
ism. A corresponding result holds for determinism as well where Properties (DO) 
and (bd) are replaced by Properties (wD0) and (wbd) respectively. 

M has Property (D2) iff for every transition r = (z, a, z~. . .  z~) and z j -  
computations t j  of A (2), j = 1 , . . . ,  k, the following holds. 

(D2) Let J denote the set of all xj where t j  = r162162 for proper computa- 
tions t j i  where r is cyclic. Let Yi = Ti(r)[vii , . . . ,vik] where vii = xj 
whenever xj C J and vq = Ti(r otherwise. Assume # J  > 1. Consider 

r ' where ri is the maximal xl-prefix of yi- Then the decompositions yi = ~Yi 
J-substi tut ions 0i exit such that  for every j E J, 
1. xj C {XjOl,Xj02}; 

~0 ~0 2. Yl 2=Y2 l; 
3. = for e ery _> 0. 

Analogously to Prop. 5 we have: 

P r o p o s i t i o n T .  Let M be a reduced FST satisfying properties (1)1) and (D2). 
Assume the assumptions of Property (D2) hold, and additionally a cyclic (z', z ' ) -  
computation r exists for some state z ~ together with a proper (z ~, z)-computation 
r Then some si E Ta(x l )  exist with xl  C {sl, s2} such that s lTl ( (~ ' )mr = 
S T. ll~ for every m > O. 2 2~kq ~ )  ~] 2 

Note especially, that  in the situation of Prop. 7, either rl is a suffix of r2 or 
vice versa. 

P r o p o s i t l o n 8 .  Let M be a reduced FST. If T ( M )  can be realized by a deter- 
ministic transducer then M has Property (D2). [] 

For the following always assume that A has n > 0 states. The reduced FST 
M is of bounded difference (bd) iff the following holds: 

(1) For 
1. 
2. 

every z-computation r of A (2) one of the following statements hold: 
depth T/(r < n- [M]  for both i = 1 and i = 2; 
T/(r = via for some u E T~a and v~ e 2V~(xl) such that for i = 1,2, 
depthxl(vi ) < n �9 IM] and vi does not contain subtrees in T,a of depth 
at least (n + 1)-IMI- 
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(2) For every transition v -= (z, a, z l . . .  zk) and zj-computations ej of A (2) the 
following holds. Let Ji denote the set of all xj where depth(T/ (r )) > n.  IMI 
for i = 1,2, and J = gl U J~. Let yi = T/(v)[vll , . . . ,vki] where vii = xj 
whenever xj E o r and vji = T/(r otherwise. Assume ~ J  > 1. Consider 
the decompositions yi = ziy~ where zi is the maximal xl-prefix of y/. Then 
J substitutions 0i, i = 1,2, exist such that for every j E J,  

1. e c_ 
2. i Y201, Y102 -= ~ " 
3. (xjO1)Tl(r = (xjO2)T2(r 

M is of weakly bounded difference (wbd) iff for every z-computation r of A (2), 
statement (1) must only hold provided depth T/(r > n.  [M] for both i e {1, 2}; 
and statement (2) only provided dl 7 ! 0 7 ! Jz. 

6 C h a r a c t e r i z a t i o n s  

This section presents the main theorems of this paper. Theorem 9 states that 
the transduction of a reduced functional transducer M can be realized by a 
reduced deterministic one iff M has Properties (DO), (D1) and (D2). Theorem 
10 is the corresponding version for realization by deterministic transducers. Here, 
the characterization only differs in that  Property (DO) is replaced by Property 
(wDO). 

T h e o r e m  9. Assume M is a reduced functional FST. Then the following three 
statements are equivalent: 

(1) ~ ( M )  can be realized by a reduced deterministic transducer. 
(2) M has Properties (DO), (m)  and (D2). 
(3) M is of bounded difference. 

It can be decided wLether or not the transduction of an FS T  can be realized by 
a reduced deterministic one. 

Proof. Let M = (A, T) be a reduced functional FST where A = (Q, Z,  5, QF) 
and n = ~ Q  > 0. We only give the construction showing that (3) implies (1). 
Assume that  M is of bounded difference. We construct a reduced deterministic 
FST Mid realizing "/-(M). 

Let A0 = (Q0, Z,  50, Q0,g) be the standard subset automaton for A, i.e., 
Q0 = 2Q; Q0,F = {B C Q]B N QF 5s 0}; and 5o consists of all transitions 
(B,a ,  B 1 . . . B k )  where B = {q C Q[Vj3qj E By : (q,a, q l . . .q~)  e 5). 

The idea of the construction is the following. When starting the computation 
for some input tree t at the leaves, Md behaves like A0 but records for every 
accessible state q that  part of the output of some q-computation of which it is 
not yet certain whether it will be part of the final output or not. This is similar as 
in the word case. The new difficulty that  arises is to handle the start-up phase. 
Having accumulated sufficiently large possible output trees we have to find the 
right "end", i.e., that  subtree which safely can be produced and leave variables 
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at the right places. This choice is easy if for more than one of the subtrees at the 
present node large outputs can be produced (cf. Case 3). Otherwise, the size of 
the subtree's output  must be large enough such that it can be uniquely detected 
(el. Case 1). 

Formally, we construct Ma = (Ad, Td) with Ad = (Qd, •, 5d, Qd,F) as follows. 
Qd is some set of mappings /~ : B --+ Tn(x l )  U { / } ,  B E Q0 such that 

#(q) is a tree of depth less than (2n + 1) -IMI. Qr consists of all mappings 
# E Qd which are defined for some q E QF where Te(#) = T(q)#(q), and 
U(Me) = {# E Qdlrange(#) c_ T,~ U {2}}. 

The sets Qd and 5d are iteratively determined as the union of their "approx- 
imations", i.e., by 

~ >0  v > 0  

where Q(0) = (~ and 5@) = 0. The construction will be done such that the 
following invariant holds: 

(0) Assume (/l, u, s, c) ETa,  and B is the domain of p. Then (B,u, e) E 5o, and 
for every q E B, 

�9 (q, u, ~(q)s, 0 E T; 
�9 occurs in , ( q )  iff occurs in , ( q ' )  for every q' B; 
�9 If xl occurs in #(q) then depth(s) >_ (n + 1). [M I. Otherwise, s = 2.  

Assume u > 0 and the sets Q(~-I) and 5 ( ' -1)  already have been defined. Let 
P l , - . . , # k  E Q(U-O, Bj be the domains of #j , j = 1 , . . . , k ,  and (B,a, B1 . . .Bk)  
a transition of the subset automaton A0. We construct one map p : B ~ T~(xl )U 
{2} such that  # G Q(J) and ~- = (#,a,pl . . . l~k) E 5(J) and define Td(T). 

By definition of 50, for every q E B some Tq = (q,a,pq,i...pq,k) G ~ exists 
with pq,j E Bj for all j .  For q E B let Uq = T(Tq)[pl(pqj)xl,...,f~(pq,~)xk], 
and let dq denote the set of all j such that either ffj(pq,j) E T a ( x l )  or has depth 

Case 1: u,. E T~ for some r E/3. 
According to claim (0) for Q@-l),  uq ETA for all q E B. If depth(uq) < 

(2n + 1). IMI for all q e B then we define p(q) = uq and Td(r) = 2. 
Otherwise, some r E B exists with depth(u~) _> (2n + 1)-IMI. We claim that 

(1) v E T a  and wq E Tz~(xi) exist such that for all q E B, 
�9 Uq ~ WqV; 

�9 depth~i(wq) < n .  IMI; 
�9 wq does not contain subtrees from Tz~ of depth _> (n + 1). IMI; 
�9 the maximal common xi-suffix of wq, q E B, is xi. 

Under this assumption, we put r = wq and Td(r) = v. 
Case 2: ? j :  #j(Pr,j) E Zz~(xi) for some r E Q and Vq E B :  #Jq <_ 1. 
Then by claim (0) for Q@-i),  #j(pq,j) E Ta (x l )  for every q E B. Hence, 

Jq = {j}, and #j,(pq,j,) E Tz~ for all j' r j. Therefore, uq E Tz~(xj) for every 
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q E B. Moreover, uq does not contain subtrees in Ta of depth >_ (n + 1). IMI. 
Let uq = wqy where y is the maximal common xj-suffix of all uq. We claim that 

(2) For every q E/3, depth~(wq) < n .  IMI. 

Provided Claim (2) holds, we put #(q) = WqXl and Td(r) = Y. 

Case 3: 3j "#j(p,.,j) E T a ( x l )  and #J, .  > 1 for some r E B. 
Again by Claim (0) for Q(~-I), #j(pq,j) E T a ( z l )  for all q E B. We claim: 

(3) There exists exactly one s E T~(Xk)  such that the following holds: 
�9 for all q E B, Uq = vqs where vq E 2ra(xl) with depth~(Vq) < n .  IM[ 

such that  vq does not contain subtrees from T~ of depth >_ (n + 1). IMI; 
�9 s is maximal with this property. 

Provided Claim (3) holds, we define #(q) = Vq for every q E B, and put Td(r) = s. 
Observe that  zj occurs in s iff #j(pq,j) ~ Ta for some q. Therefore, (provided 
claim (0) for Q(,-1) holds) xj occurs in Td(r) iff #j ~ U(Md). 

This finishes the construction. In order to prove its correctness we claim: 

(4) Assume (B, u, e) E 50. Then (#, u, s, e) E Td for some # E Qd whose domain 
is B and where for every q C B, (q, u, #(q)s, e) E T. 

This claim together with claim (0) and the definition of Td[Q~,~ show that 
T ( M d )  = T ( M ) .  Since Md is reduced deterministic by construction we are done 
provided Claims (0) through (4) hold. 

Claims (0) through (4) must he proven together by induction on the depth of 
an input tree u. Note that  termination of the construction is due to the second 
parts of claims (1) and (2). [] 

Analogously to Theorem 9 we find: 

T h e o r e m  10. Assume M is a reduced functional FST. Then the following three 
statements are equivalent: 

(1) T ( M )  can be realized by a deterministic transducer. 
(2) M has Properties (wDO), (1)1) and (192). 
(3) M is of weakly bounded difference. 

It can be decided whether or not the transduction of an F S T  can be realized by 
a deterministic one. [] 

From Theorems 9 and Theorems 10 we conclude that the transduction of a 
deterministic transducer can be realized by a reduced deterministic one iff the 
corresponding reduced transducer has Property (DO). We have: 

C o r o l l a r y 1 1 .  Assume M is a deterministic FST. Let Mr be a reduced func- 
tional transducer with T ( M )  = T(M~).  Then the following two statements are 
equivalent: 
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(1) T ( M )  can be realized by a reduced deterministic transducer. 
(2) Mr has Property (DO). 

It can be decided in polynomial lime whether or not the transduclion of a deter- 
ministic FST can be realized by a reduced deterministic one. [] 

Proof. If T(Mr) can be realized by a reduced deterministic transducer then 
by Prop. 4, Mr has Property (DO). Conversely, assume M~ has Property (DO). 
Since 7"(Mr) can be realized by a deterministic transducer (namely M), Mr has 
Properties (D1) and (D2) by Prop. 6 and 8. But then by Theorem 9, T(M~) can 
be realized by a reduced deterministic transducer. 

However, the general construction of the equivalent reduced deterministic 
transducer given in the proof of Theorem 9 can be replaced by a simpler con- 
struction here. Let Mr = (Ar,Tr) be the reduced functional transducer with 
7-(Mr) = T ( M )  as constructed in the proof of 2. Since M was deterministic 
the set Dr(u) of states derivable by some input tree u (w.r.t. An) always is a 
subset of {(q, 0), (q, 1}} where (q, u, e) E 5. Therefore, if (q, 0} ~ Dr(u) we safely 
can produce output whereas as long as (q, 0} E Dr(u) we only produce 2_ and 
memorize a possible output provided (q, 1) C D,.(u). 

To implement this idea assume M = (A,T) with A = (Q, Z, 5, QF). We 
construct Md = (Ad, Td) with Ad = (Qd, X, 5d, Qd,r) as follows. Qd is some set 
of pairs O • ({2-} U Ta U {xl}) such that 

1. (q, • E Qd iff {q, 0) E Q~ but {q, 1} ~ Qr; i.e., the output for the presently 
processed subtree is irrelevant in all cases; 

2. (q, y) E Qa with y E Tax iff both (q, 0) E Q,. and (q, 1} E @;  i.e., the output 
t produced so far possibly is relevant; whereas 

3. (q, zl) E Qd iff {q,0) ~ Qr but (q,1} E Qr; i.e., the output is definitively 
relevant and already has been produced. 

Qa,F consists of all pairs (q, y) E Qa where q E Qr ,  and U(Ma) = Qd r~ (Q x 
({_L} u Tax)). 

The sets Qd and 5d are again iteratively defined as the union of their "ap- 
proximations", i.e., by 

Qd = U QU) and (1d : U (1u) 
u>O u>O 

where Q(O) = 0 and (f(0) = O. 
Assume u > 0 and (ql ,Yl ) , . . . ,  <qk,Yk) e Q(u-1). Let v = (q,a, ql . . .q~) e (1. 

We construct some y E {2-} U Tzx U {921} such that (q,y) E Q(") and rg = 
((q, y}, a, (qz, Y 0 ' "  (q~, yk)) E 5('), and define Td(rd). 

Case 1: (q,O} C Qr and (q, 1} ~ Qr. 
Note that then also for every j, (qj, O) E Q~ and (qj, 1) ~ Q,.. Hence, all 

yj E {2-} U Tax. Therefore, we put y = 2- and Td(re) = 2_. 
Case 2: (q, O) r Q~ and (q, 1) e Q~. 
Again, X E {J_}UTA for all j .  Moreover, X r 2_ whenever Xj o c c u r s  in T(r). 

Therefore, y = T(r)[y l , . . . ,  gk] in deed is in Tax. Finally, we put Td(rd) = 2_. 
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Case 3: (q,O) ~ Q~ and (q, 1) E Q~. 
This is the only case where we have to produce an output  pat tern  different 

f rom •  Define yj = xj if yj = xl and y~ = yj otherwise. Then  put  y = xx and 
= 

It  is easy to verify tha t  the construct ion terminates,  and that  this construc- 
t ion produces a reduced deterministic t ransducer  which is equivalent to M (or 
M~). Especially for every (q, y) C Qd, depth(y)  < # Q .  ]M[. 

7 C o n c l u s i o n  

We gave a character izat ion of functional  tree transducers whose t ransduct ion 
can be realized by determinist ic or even reduced deterministic transducers.  It  
remained open whether  or not  these two characterizations can be decided even 
in polynomia l  t ime. At least we were able to prove that  it can be decided in 
po lynomia l  t ime whether  or not  the t ransduct ion  of a deterministic t ransducer  
can be realized by a reduced deterministic one. 
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