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Abs t rac t .  In the literature most counting problems for directed column- 
convex po!yominoes are solved by using Schutzenberger's method. In this 
paper, we use the traditional recurrence relation approach in order to 
count the number of directed column-convex polyominoes with a given 
area, the number of their columns and the number of directed column- 
convex polyominoes having at most k cells in the first column. This 
approach allows us to state a very simple algorithm for the random gen- 
eration of directed column-convex polyominoes. Furthermore, directed 
column-convex polyominoes are considered to be structures for storing 
and retrieving information in a computer, and their average internal path 
length is then evaluated. 

1 Introduction 

In the vast literature concerning polyominoes, at tention has been given to the 
so-called directed column-convex polyominoes, dcc-polyominoes or dec-animals 
for short. Many counting problems (see Viennot [7] for an exhaustive survey) 
for these structures were solved by Delest and Dulucq [4] and by Barcucci, 
Pinzani, Rodella and Sprugnoli [1]. In the general setting of polyominoes, the 
qualification directed column-convex refers to the following characteristics: i) 
they are direcled in the sense that they  can be built by starting with a single 
cell (the origin) and then by adding new cells on the right or on the top of an 
existing cell; ii) in this construction, every column must be formed by 
contiguous cells. 

The area of a dcc-polyomino is the number of its cells. In fig. 1 all the 
dcc-polyominoes having area n = 1, 2, 3, 4 are shown. 

Undoubtedly, the dcc-polyominoes are one of the simplest and easiest 
subclasses of polyominoes to study. They are also an interesting combinatorial 
object and their study can constitute a first step in the analysis of many 
properties of polyominoes. Furthermore, they can serve as a structure for 
storing and retrieving information in a computer. The above-mentioned 
authors used Schutzcnberger's method; this consists in looking for an 
unambiguous, context-free language, whose words have a 1 -1  correspondence 
with dcc-polyominoes; it is then possible to derive their counting generating 
functions from the formal grammar.  For n-area dcc-polyominocs, a very simple 
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language can be defined by: 
A : : = e  [ aA 
B : : -  e [ bB 
C ::= AcB 
M ::= e I CM 
P ::= MaA 

It is a simple mat ter  to show that  the language L(P) has a 1 -1  
correspondence with the set of dcc-polyominoes. Every column in a dcc- 
polyomino (except the last one) corresponds to a (possibly empty) sequence of 
a, followed by a c, followed by a (possibly empty) sequence of b. Every letter 
corresponds to a cell and the letter c denotes the cell from which the next 
column starts. The last column is only composed by a. Therefore, the 13 dcc- 
polyominoes of area 4 correspond to the words {aaaa, cbba, acba, aaca, cbaa, 
acaa, cbca, acca, caaa, ccba, caca, ccaa, ccca} (according to the ordering in 
Fig. 1). From this grammar,  several counting problems can be easily solved. 

D 

D 
U 

V-f-] 

I l l l l  

Fig. 1 - Dcc-polyominoes wi th  area n = 1, 2, 3, 4. 

In this paper, we follow a different approach. We only deal with dcc- 
polyominoes of a given area and derive recurrence relations in order to solve 
our problems. In particular these relations allow us to state a very simple 
linear time random generation algorithm for this kind of polyominoes. This 
algorithm is much simpler and more direct than the ones which can be 
obtained by the general algorithm proposed for regular grammars [5] or by the 
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methods of [2, 3]. The first two results are already known, but  all the others 
seem to be new. In Section 1, we find recurrence relations for the number of 
dec-polyominoes, for the number of their columns and for the number of dcc- 
polyominoes having area n and k columns. In Section 2, we find the number of 
dcc-polyominoes having area n and k cells in the first column; this allows us to 
state a simple algorithm to generate random dcc-polyominoes in linear time. 
Finally in Section 3, we find the average internal path length of the dcc- 
polyominoes with area n. 

2 H o w  to  C o u n t  D c c - P o l y o m i n o e s  

As we shall see, the number of dcc-polyominoes and many other related 
quantities are strictly connected to the Fibonacci numbers {0, 1, 1, 2, 3, 5, 
8, . . .}. We denote by F n the n th Fibonacci number whose generating function 
is: 

O{Fn } = F( 0 _ t 
1--l-t  2 

Note that  by applying the bisection rules we find: 

1 - t  
- ~ g{F2~+l} 1 -3  ~+t 2 g{F2n} 1 -3  t+ t  2 

The basic result of Delest and Dulucq [4] concerns the number V n of dec- 
polyominoes with area n. We get the same result by using the following 
recurrence relation: 

Theorem 2.1: The number V n of dcc-polyominoes with area n is given by the 
recurrence relation: 

~-1 k V,~. k V n = l b  k=l 

having the initial condition V 0 -- 1, given by the empty polyomino. Hence, we 
obtain the generating function: 

and the closed formula V n 

V(t) -- 1 - 2 l  
1 -3  t + l  2 

= F 2 n _ l  , for every n > O. 

Proof: Since it is obvious that  V 1 = 1, let us suppose that  n > 1. There is 
only one dcc-polyomino having a single column with n cells. For every 
1 _~ k < n, let k be the number of cells in the first column. The other n - k  cells 
constitute a dcc-polyomino which can be attached to every cell in the first 
column. Therefore, we have: 

~-1 k V~. k Y n : l - [ -  k = l  
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dcc-polyominoes, and this is our recurrence. The sum can be extended from 0 
to n, provided we subtract  the n resulting from k = n (and hence Vn_k = 170=1 ). 
So we have: 

~ _  '~ k Vn.k - n V n =  l + }-=-o 

and for the generating functions: 

t Y(O t v(o = F-t + (1_02 (l_t)2 

This can be solved in V(t) 
V(t) - 1 - 2  t 

1 - 3  t+  t 2 

Finally, we observe that  l l t- l~{F2n+l} : V(t) and this means that  

V n = F2n_l , for every n > 0. [] 

In much the same way we can count the number  of dcc-polyominoes 
having area n and k columns: 
Theorem 2.2: The number  of n-area dcc-polyominoes having exactly k columns 
is: 

Proof: The numbers  { Vn, k [ n, k E N, k < n} constitute a triangle: 

nlk 0 1 2 3 4 

1 

0 1 

0 1 1 

0 1 3 1 

0 1 6 5 1 

~  

If  Vk(t ) denotes the generating function of column k, we obviously have 

Vo(t ) = 1 and VI( t  ) - t ( l - l ) "  As in the proof of Theorem 2.1, we can now 

show tha t  for k > 0: 

Vn, k+l = Z n-1 n j=l j v,,.j,k = ~ j = o  y v~_j,~ 
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In terms of generating functions, this is equivalent to: 

= t 
vk+ (t) (1_02 Yk(0 

B y  using Vl(t ) and the induction principle, we easily find: 

_ t k 

Vk(l) (1_02k-1 

Finally, we can extract the coefficient of in: 

/ - 2  k + l \  ~-k 
, -  - 

In fact, this formula is valid for any n, k E N, except when n = 1, k = 0. [] 

I t  is worth noting tha t  Theorems 2.1 and 2.2 imply z..,k=l\ n-k  ] = F2~-l; 

hence, by first setting h = k-1 and then m = n- l ,  we obtain a combinatorial  
proof of the identity: 

htm-hS = F2 +1 

As it will be illustrated in the next section, an impor tant  quant i ty  is the 
average number  of columns in the n-area polyominoes. To find this value, let 
us begin by counting the total  number  of columns in all the n-area 
polyominoes. 

L e m m a  2.3: The total  number  D n of columns in all the n-area polyominoes is 
defined by the recurrence: 

n-1 
Dn= 1 "[" Ek=lk(Dn_k§ Vn.k) 

having the initial condition D O = 0. Hence, we have the generating function: 

and the closed formula: 

D(O= t(1-03 
( 1 - 3  t+t2) 2 

2n-1  F n-5 
Dn= 5 2n'= 5 F2n-1 

Proofi It is obvious that  D O = 0 and D 1 = 1. Since there is only one dcc- 
polyomino with a single column of n cells for n > 1, let us consider the dcc- 
polyominoes with the first column of k cells, for 1 < k < n. We can a t tach  a 
dcc-polyomino of area n-k  to every cell of the first column, for a total  of 
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kDn_ k columns. The contribution of the first column is k V~.k, and so we 
obtain the recurrence: 

Dn= I + E n-1 k=l ( k Dn-k 4-k Vn-k) 

As in Theorem 2.1, we can extend the sum from 0 to n, provided we take into 
account the extra quantities we introduce. So we have: 

E E n kDn. k,4- kV=. k -  n - 5 = o  D n = i + k=o k=o 

and for the generating functions: 

D(l) = l_~ 4- ~ D ( t )  4- (l t_t)2 g(t) t 1 
( 1 - 0  2 

Since V(t) is known, we obtain: 

D ( t )  - 
t(1-0 3 

( 1 - 3 / + t 2 )  2 

and by means of very simple computations or by using a computer algebra 
system: 

n 5 4 - _ m  D= = -~F2=+2 4- ( n - l )  F2= -4- 8F2~ - F2~. 2 _ 2 n-15 F2n n--55 F2n-1 

This is the closed formula for Dn. [] 

Finally, the average number of columns is given by the following: 

Theorem 2.4: The average number d= of columns in the 
polyominoes is: 

d= -~ n 4- 10 

Proof." For n > 0, we have: 

n-area dcc- 

d ~ = ~ =  F~.I ~ 

where r = (q-5+1)/2 is the golden ratio. [] 

The value is accurate for a small n, too. For example, for n = 4 the true 
value is d 4 = 32/13 = 2.46153846 and the approximate value is 2.46524758, 
with an error of 0.15%. 
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3 T h e  R a n d o m  G e n e r a t i o n  of  D c c - P o l y o m i n o e s  

The aim of this section is to find a method of generating a random dec- 
polyomino in linear time. In other words, we wish to find out an algorithm 
which receives an integer n as input and gives a dcc-polyomino of area n, 
selected at random (with probability 1/Vn) among all the possible n-area dcc- 
polyominoes, as output. We begin by counting the number of n-area dcc- 
polyominoes with the first column containing at most k cells. 

Theorem 3.1: The number of n-area dcc-polyominoes whose first column 
contains exactly k cells is cn, k = k Vn. k for k = 1, 2, . . . , n -1  and cn,~ = 1. 
The number of n-area dcc-polyominoes whose first column contains at most k 
cells is: 

Gn, k = V n -- Vn.k. 1 --(k+l)F2n_2k_ 2 

for k =  1, 2 , . . . ,  n -1  and Fn, n =  V n. 

Proof: The first part is obvious, since, as we have already observed, if the first 
column contains k (k < n) cells, we can attach a dec-polyomino of area n - k  
to every one of these cells and thus obtain a total of k V~. k different n-area 
dcc-polyominoes. For the second part, we have: 

k . k , 7Z 

Gn, k "~" E j k l C n ,  k E j = I 3 V n ' j  = E j - O  3 _  Vn-j= E j _ n _ k ( n - - j )  Vj - - _  

n ~-~ n-k-1 ~ n-k-1 , 
= E j = o  (n- j )  V j -  n ~ j = o  V j +  ~ j = o  )Vj 

We can now evaluate these three sums by using partial fraction expansion: 

n t 1-2  t [#] ((_~t) 2 E j = o ( n - j )  V j=  It ] (--~-/)2 1_3 t+/2 - _ 

= V n + n + l - 2 =  V n + n - 1  

n-k-1 ( 1 t 2) Y'"-k-1 1 1 - 2 l  [l ] + = 1 + F2.-2k-2 
~--" j=o Vj = 1 - t  1-3  t+t 2 - ~ 1-3 t+t 

12_t + 1 - 2 t  "~ 
1-3 t+t 2] = 

~-k-1. [tn-k-1] t d 1 - 2 t  [#-k-l] t - 2 t 2 + 2 t  3 
jvj= l _ l  d t l _ 3 l + L 2 -  (1_0 (1_3 t+12)2 = 

:[ln-k-1](.l_l t 1--2/ + t(1--t2) ~ 
1-3 t+t 2 (1-3 l+12) 2] = 1 - Vn . k_ l+  (n-k-l) ff2n-2k-2 
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In the last sum, we used the fact that: 

O{kF2k } = t _  d t / ( l - t 2 )  
d t 1-3 l + t  2 - (1-3 t+t2) 2 

By putting everything together, we eventually find: 

Gn, k = V n - [ - n - l - n - n  F2n_2k_2...]-l- Vn_k_l + ( n - k - 1 )  F2n_2k_ 2 = 

= V,- V,+l- (k+l)  F2, 2 2 

For k = n, we obviously have Gn, n = V n = ff2n-1 (n > 0) [] 

It is easy for us to go from frequencies to probabilities: 

P~,k = 1 V'~k-a (k+l )  F2~-2k-2 1 < k < n 
v .  v .  - - 

and Pn,o : O, Pn, n : 1. This is the probability that an n-area dcc-polyomino's 
first column contains k or less cells. This result suggests a simple algorithm 
for generating random dcc-polyominoes. We begin by extracting a uniformly 
distributed random number p in the range [0, 1), and decide that the first 
column of the dcc-polyomino to be generated contains exactly k cells iff 
Pn, k-1 <- P <- Pn, k" If k = n, we have finished; otherwise, we extract a random 
integer number a such that 1 _< a _< k, and this is the cell which the rest of 
the dcc-polyomino has to be attached to. We go on to apply the same 
procedure recursively to generate a random dcc-polyomino having area n - k .  
Obviously, the dcc-polyomino is uniquely determined by the list of pairs 
{(el, gl), (c2, g2), �9 �9 �9 , (cb-1, gb-1), (cb, 0)}, where c i is the number of cells in 
the i-th column, and gi is the cell which the next column is attached to minus 
1. In Fig. 2, we show a random dcc-polyomino with area 30 generated by the 
algorithm and corresponding to the list {(2, 0), (2, 0), (2, 0), (1, 0), (1, 0), 
(1, 0), (3, 2), (1, 0), (2, 1), (3, 1), (3, 0), (1, 0), (3, 0), (1, 0), (2, 1), (2, 0)}. 

Fig. 2 - A random dcc-polyomino with area 30 

To be more precise, we formulate the algorithm as a pseudo-Pascal 



290 

procedure, to be called column(n) if we want to generate a random dcc- 
polyomino having area n: 

procedure column (n: integer); 
v a r  g, c: integer; p: real; 
begin p := random; 

c := findlevel (n, p); 
if  (c = n) or (c = 1) then append (c, O) 

g := random (c); append (c, g) end; 
i f  c < n then column (n-c) 

end {column}; 

In most Pascal compilers there is a random function which generates 
uniformly distributed pseudo-random numbers in the interval [0, 1); the same 
function, called with an integer argument k, generates a random integer in the 
range 0 . . k-1.  The procedure append is a simple routine which appends the 
pair formed by its arguments to a global list; the list will eventually contain 
the result of our generation and is to be initialized before calling column for 
the first time. Finally, the findlevel function is used for finding the number of 
cells in the column to be generated. A possible formulation is as follows: 

function findlevel (n: integer; p: real): integer; 
v a t  v ,  z: real; k: integer; 
begin if n = 1 then k := 1 else begin 

v := dccpoly (n); q := v.p; k := 0; 
repeat k := k+ 1; 

if k = n then z := v else 
z := v-dccpoly (n-k-1)-(k+l)*fibo ( 2 * n -2 * k -2 )  

u n t i l z  > q end; 
findlevel := k 

end {findlevel} ; 

Obviously, the fibo and dccpoly functions compute the n th Fibonacci number 
and the number of the n-area dcc-polyominoes, resPectively. Actually, dccpoly 
is reduced to a call to fibo, except for n = 0 when the result is 1. 

We now want to show that  this program generates a dcc-polyomino in 
O(n) time. We must study the number of calls to three routines: random, 
append and fibo, which are all executed in constant time, say tr, ta, t] t ime 
units, respectively. Let us observe that: 

this takes a long time compared to random and append, but when we have 
fixed the precision, the evaluation time does not depend on "n. If the three 
routine are called Ar, Aa, A I times during the generation of a dcc-polyomino, 
then the total t ime will be: 
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T =  Ar t r+  A~t~ + Airy+ C 

where C is the t ime taken by housekeeping operations and tr, t~, If may  
embody the time for loop control execution if necessary. 

Let us begin by determining A], the number of calls to the routine fibo. 
According to the findlevel program above, the variable v is computed once for 
every column in the resulting dcc-polyomino. The variable z, instead, is 
computed once for every cell in a column, and then for every cell in the dcc- 
polyomino. So if the generated dcc-polyomino has area n and c columns, we 
have A] = c+2 n. Note that  when the last column has only one cell, there is no 
call to fibo because of the initial condition in findlevel. The number Vtn of n- 
area dcc-polyominoes with the last column containing a single cell is easily 
evaluated. Since w i thou t t h i s  last cell we have a dcc-polyomino of area n - l ,  
we find V~n = V n-  Vn_ 1. By means of these facts and Lemma 2.3, we obtain 
the total number  of calls to fibo for generating all the V n dcc-polyominoes of 
area n: Dn+2 n V n -  Vn+ Vn_ 1. Therefore, we have: 

Theorem 3.2: The average number H I of calls to the routine fibo to generate a 
random n-area dce-polyomino is 

,~ n 2 +  x[~ 1 ( 
Proof: By using the expression for D n found in Lemma 2.3 and dividing by Vn, 
we find: 

1 ..T l - 2 - ~ - - - - - - J r  

The constant multiplying n is about 2.4472135955. [] 

Theorem 3.3: The average number X a of calls to the routine append to 
generate a random n-area dcc-polyomino is: 

A-~ ,,~ n +  10 

Proof: The append routine is exactly called once for every column in the 
generated dce-polyomino. Therefore, we have A-a = dn and the result follows 
from Theorem 2.4. [] 

Let us now determine the value of At, the number of calls to the routine 
random. The evaluation of the variable p in column is made once for every 
column in the generated dcc-polyomino. However, the evaluation of g is 
performed only when the eolumn is not the last one and contains at least two 
cells. As a result, we have to determine the number Itn, k of the k-cell columns 
in all the n-area dcc-polyominoes. We have the infinite triangle 
{H.,kl n, k N, k_< n}: 
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1 2 3 4 5 

1 

2 1 

6 3 1 

18 9 4 1 

53 28 12 5 

In order to determine a recurrence relation for //=,k (k < n), let us 
consider for j = 1, 2, . . . ,  n the n-area dcc-polyominoes having j cells in the 

n . -1  . first column. We find a total of ~j=rlH=_j,k columns containing k cells; when 

j = k, we also have to count the first columns, which contribute for a total of 
k V,~.k. Hence: 

"/~-1 . 

Hn, k = E j=IJ H=.j,k + k V=.k 

This completely defines the above triangle but we are only interested in the 
one cell columns: 

Lemma 3.4: The total number H n of one-cell columns in all the n-area dcc- 
polyominoes is: 

Hn 3 ~ - 4  F 2 n - 4  n--10F 
- -  5 2 n - 1  

Proof: By setting k = l, the above recurrence becomes 

n - 1  �9 

Hn = ~ j=lJ Hn_j + Vn_ 1 

Since H 0 = 0, the sum can be extended to j = 0 through n and we can go on 
to the generating functions: 

H( 0 _ t H( 0 + t V(0 
( 1 - 0 2  

By solving in H(t) and using partial fraction expansion: 

H(t) t ( 1 - t ) 2 ( 1 - 2  t) t (  17-10 t (4-11  t ) ( 3 - 2  t)'~ 
= 2 = J 

By extracting the coefficient of t ~, after some easy computations, we find: 
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17 F 4 ~ ( n _ l )  F2,~ 3n-4F2,~ 4 n - 1 0  F H n - T  2n-2F2n-2--5 nF2n+2§ - -  5 5 2n-1 

[] 

We are now able to give the value for At: 

Theorem 3.5: The average number Ar of calls to the random routine for 
generating a random n-area dcc-polyomino is: 

~ nr  2__r162 _ 1 
5 r 

Proof: As we have already observed, the total number of calls to random for 
generating all the ~ n-area dcc-polyominoes is given by D~+(Dn-H=-Vn_I). 
In fact, H a is the total number of one-cell columns and Vn_ 1 represents the 
number of the last columns containing at least two cells. We divide by V n and 
for n > 0wef ind :  

2n -10  3 n - 4  4 n - 1 0  1 _ n r  2 2r 1 
Ar ~ 4n5-2r 5 5 r  r - - +  5 r [] 

Obviously, the quantities lr, ta, t] and C depend on the particular 
implementation of the algorithm, but we have now proved that  the execution 
time is O(n) and most time is spent in computing Fibonacci numbers. Some 
improvements can be easily conceived of. For example as predefined lists, we 
can code all the dcc-polyominoes having an area less than or equal to n o = 5 
(say) and extract a random list whenever column is called with n < n o. This 
and other "tricks" of the same kind, however, go beyond the aim of the 
present paper. 

4 T h e  A v e r a g e  I n t e r n a l  P a t h  L e n g t h  

Yuba and Hoshi [8] proposed directed polyominoes under the name of Binary 
Search Networks (BSN) as a structure for storing and retrieving information in 
a computer. The idea was to use VLSI hardware for searching in parallel along 
the directed, linear paths of the structure in order to minimize retrieval time. 
Parallelism is essential because in a traditional serial computer, BSN's cannot 
favourably compare with other well-known structures, such as binary search 
trees, with which BSN's share a common retrieving methodology. It is well- 
known (see, e.g., Knuth [6]) that binary search trees have an average retrieval 
time of order O(log n), if n is the total number of data  contained in the tree. 
It is evident that  for BSN's, the average retrieval time is much worse and is 
situated somewhere between O(~'-~) and O(n). As far as we know, nobody has 
been able to find out the exact order, but computer experiments [2] show that  
it is about O(n~ In the case of dcc-polyominoes, we are able to give the 
exact value of the average retrieval time when all the dcc-polyominoes are 
considered as equally probable. This value, however, cannot be extrapolated to 
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all directed polyominoes. 
We use the common terminology for binary search trees and define the 

internal path length (IPL) of a cell in a dcc-polyomino as the minimal number 
of steps necessary for reaching the cell starting at the origin and going from 
one cell to any one of the two adjacent cells. It is easy to show that  there are 
several minimal paths of this kind, but every path contains the same number 
of steps. In Fig. 3, we give an example with the internal path length of every 
cell in the dcc-polyomino. 

3 5 6 7 

2 4 

1 2 3 

Fig. 3 - The internal path length in a dcc-polyomino 

It is not very difficult to find a recurrence relation for the total IPL 
relative to all the n-area dcc-polyominoes. Let Pn be this quantity. By Fig. 1, 
we can easily find the first values: P1 = l, P2 = 6, P3 = 29, P4 = 122 and 
state the following: 

Theorem 4.1: The total internal path length Pn of all the V n 
polyominoes satisfies the recurrence relation: 

Ek_lkPn'k E n ( n + l )  P~ = ~-~ + n  ~-~ k(k+l )  V~_k + 
_ k = l  2 2 

and then it is defined by the generating function: 

P(t) =- t 2 t 2 3 / 3 - 2  l 4 
(1 -  0 (1-3 t+t  2) + ( l - t ) ( 1 - 3  t+t2) 2 + ( l - t )  (1-3  t-~-t2) 3 

n-area dec- 

Proof." First, let us observe that if the dcc-polyomino is reduced to a single 
column, then its total internal path length is n(n-4-1)/2. Let us assume that  
the first column contains kce l l swi th  1 < k < n, and let r (1  < r < k) be 
the position of the cell which the rest of the dcc-polyomino is attached to. 
Therefore: 

i) the first column contributes for k(k+l)/2 to the total IPL of all the dcc- 
polyominoes, and it must be taken into account for each of the Vn_ k dcc- 
polyominoes making up the rest of our dcc-polyomino; 

ii) these Vn_ k dce-polyominoes have a total internal path length equal to 
Pn-k; 

iii) since every one of them is attached to the cell in position r, the IPL of 
each of their cells is increased by r, for a total contribution of r(n-k) V=. k. 
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Pn - n(n+l)2 + Ek=ln-1 E r_:_i ( _ _ _ _ ~ . _ k  k(k+l) Vn.k + Pn-k + r (n -k )  Vn_k) = 

n (n-{-1)2 "4- E}.= In-1 (kPn_k + k2(k+1)2 

n(n-4-1) n-1 n,-1 k(k+l) V~.k 
- 2 + E  k P . . ~ + . ~  --V-- k = l  k=l 

and this is the recurrence we are looking for. Obviously, Po = O. At this point, 
it is not difficult to extend the sums from 0 through n, recalling that V o = 1. 
By adding and subtracting suitable quantities, we find: 

E n  ~ n  k(k~l) Vn_k + ( n - 1 ) n ( n + l )  
Pn = kPn.k + U - k=o k= 2 

We can now go on to generating functions. We observe that: 

~{2 k"--~ = 0 : ~  P(0 

n k+l t 2 /2(1-2t) 
~ k--0(2 ) Vn'k} -- (1-/)3 V(l) : (1_t)3 (1 -3 /+ t  2) 

12 
(1-r 

/(1+2 l)(1-2 l) 
---: (1_/)4(1_3 t+t 2) 

t2(1-2 t+2 t 2) 
+ (1_/)3(1_3/+t2) 2 

/2 

and these relations imply: 

P( I) - t P( t) + 
(1 -0  2 

1(1-4/2) 
(1-04(1-3  l+l 2) 

/2(1-2 t+2 t2) 3 t 2 
+ ( l_03(1_3t+tu) 2 (1-04 

By solving in P(t) we find: 
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t ( 1 - 4  t 2) t2(1-2 t+2 t 2) 

P(t) = (1_t)2(1_3 t+t2)2 + ( l - t ) ( 1 - 3  t+t2) 3 - 

Now we use partial fraction expansions to obtain: 

3 t 2 
( 1 - 0  2 (1-3  t+ t  2) 

t - 4 t  3 5--12t 7 - 5 t  + 5 3 
( 1 - 0 2 ( 1 - 3  t+t2) 2 = (1--3 t+t2) 2 1-3 t+t 2 1- t  (1__t)2 

/2__2 t3+2/4 7-18 t 8+t  
( l - t )  (1-3  t+t2) 3 -- (1-3 t + ? )  3 (1-3 t+t2) 2 + - -  

2--t 1 
1-3  t+l 2 1--t 

3/2 3t 3 3 
( l _ t ) 2 ( l _ 3 t + t 2 ) -  l _ 3 t + t 2  (1_02 + 1 - t  

Finally, by putting all these together: 

__ 7-18 t 3413 t 5-_________L__t + 1 
P(t) (1-3 t+t2) 3 (1-3 t+t2) 2 - 1-3 t+t 2 1- t  

which is the generating function we were looking for. [] 

We can now extract the coefficient of t n from the generating function and 
thus obtain a closed form for the total IPL referring to all the n-area dec- 
polyominoes. For n > 0, the number of cells in all these polyominoes is 
nF2n_l , and by dividing by this quantity, we get the average IPL referring to 
n-area dce-polyominoes. 

Theorem 4.2: The total IPL relative to all the n-area dcc-polyominoes is: 

n 2 7 n 
Pn=--~(F2n+ 2F2n_l) + - ~ F 2 n -  F2n_l + 1 

and therefore the average internal path length is: 

~ 0 2 n  + 7r P~ "~ - -  TO-- 1 

Proof: The formula for Pn is a tedious exercise in coefficient extraction. In the 
proof of Lemma 2.3 we found: 

3--2 t (n+ l )  F2n+4 [tn] (1-3 t+t2) 2 - 

By differentiating, we obtain: 



297 

d 2 1 16-18 t+6 t 2 
d t 2 1-3  t+t  2 - (1-3  t+/2)3 

and therefore: 

[/,~] 16-18 t+6 t 2 
(1-3  t+t2) 3 -- ( n+ l )  (n+2) F2n+6 

By using these formulas, we can expand the terms of P(t) into partial fractions 
and extract the coefficients of ln: 

7-18 t 1 (7+18 t) (16-18 t+6 t2) 1 (9-24 t) (3 -2  l) 48 1 
(1-3 t+ t2 )  3 - 10 (1-3/+t2) 3 + 5 (1-3 t+t2) 2 5 1-3 t+ t  2 

and then 

_ 9 n ( n + l )  F2n+4 + 7-18 t 7 ( n + l ) ( n + 2 )  F2n+6 [In] (1--3/+/2)3 -- 1-0 

Analogously: 

or: 

_ 24 + 9 (n+l)F2n+4 "~- .F2n+2 - ? F2n+2 

3+13 i (7-9 t)(3-2 t) 18 
(1-3  t+t2) 2 - (1-3  t+t2) 2 1-3  t+t  2 

[t n] 3+13 t 
(1-3  t+t2) 2 - 7 (n+ l )  F2n+4 - 9 n F2n+2 - 18 F2n+2 

Finally, we have: 
[t,~] 5 - t  

1 - 3  t + t  2 - 5 F2~+2 - F2~ 

At this point, by putting everything together and repeatedly using the 
recurrence relation for Fibonacci numbers F n = Fn_ 1 + Fn_2, we easily obtain 
the formula for P~. The last formula is obtained dividing by n F2n_ 1 
considering that F2n/F2n_ 1 -~ r and by ignoring the lower order terms. [] 

For dcc-polyominoes, the IPL is linear in n, which is worse than for 
directed polyominoes in general. 
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