
Directed Column-Convex Polyominoes by
Recurrence Relations

Elena Barcucci Renzo Pinzani Renzo Sprugnoli

Dipartimento di Sistemi e Informatica
Firenze, Italy

Abs t rac t . In the literature most counting problems for directed column-
convex po!yominoes are solved by using Schutzenberger's method. In this
paper, we use the traditional recurrence relation approach in order to
count the number of directed column-convex polyominoes with a given
area, the number of their columns and the number of directed column-
convex polyominoes having at most k cells in the first column. This
approach allows us to state a very simple algorithm for the random gen-
eration of directed column-convex polyominoes. Furthermore, directed
column-convex polyominoes are considered to be structures for storing
and retrieving information in a computer, and their average internal path
length is then evaluated.

1 Introduction

In the vast literature concerning polyominoes, at tention has been given to the
so-called directed column-convex polyominoes, dcc-polyominoes or dec-animals
for short. Many counting problems (see Viennot [7] for an exhaustive survey)
for these structures were solved by Delest and Dulucq [4] and by Barcucci,
Pinzani, Rodella and Sprugnoli [1]. In the general setting of polyominoes, the
qualification directed column-convex refers to the following characteristics: i)
they are direcled in the sense that they can be built by starting with a single
cell (the origin) and then by adding new cells on the right or on the top of an
existing cell; ii) in this construction, every column must be formed by
contiguous cells.

The area of a dcc-polyomino is the number of its cells. In fig. 1 all the
dcc-polyominoes having area n = 1, 2, 3, 4 are shown.

Undoubtedly, the dcc-polyominoes are one of the simplest and easiest
subclasses of polyominoes to study. They are also an interesting combinatorial
object and their study can constitute a first step in the analysis of many
properties of polyominoes. Furthermore, they can serve as a structure for
storing and retrieving information in a computer. The above-mentioned
authors used Schutzcnberger's method; this consists in looking for an
unambiguous, context-free language, whose words have a 1 -1 correspondence
with dcc-polyominoes; it is then possible to derive their counting generating
functions from the formal grammar. For n-area dcc-polyominocs, a very simple

283

language can be defined by:
A : : = e [aA
B : : - e [bB
C ::= AcB
M ::= e I CM
P ::= MaA

It is a simple mat ter to show that the language L(P) has a 1 -1
correspondence with the set of dcc-polyominoes. Every column in a dcc-
polyomino (except the last one) corresponds to a (possibly empty) sequence of
a, followed by a c, followed by a (possibly empty) sequence of b. Every letter
corresponds to a cell and the letter c denotes the cell from which the next
column starts. The last column is only composed by a. Therefore, the 13 dcc-
polyominoes of area 4 correspond to the words {aaaa, cbba, acba, aaca, cbaa,
acaa, cbca, acca, caaa, ccba, caca, ccaa, ccca} (according to the ordering in
Fig. 1). From this grammar, several counting problems can be easily solved.

D

D
U

V-f-]

I l l l l

Fig. 1 - Dcc-polyominoes wi th area n = 1, 2, 3, 4.

In this paper, we follow a different approach. We only deal with dcc-
polyominoes of a given area and derive recurrence relations in order to solve
our problems. In particular these relations allow us to state a very simple
linear time random generation algorithm for this kind of polyominoes. This
algorithm is much simpler and more direct than the ones which can be
obtained by the general algorithm proposed for regular grammars [5] or by the

284

methods of [2, 3]. The first two results are already known, but all the others
seem to be new. In Section 1, we find recurrence relations for the number of
dec-polyominoes, for the number of their columns and for the number of dcc-
polyominoes having area n and k columns. In Section 2, we find the number of
dcc-polyominoes having area n and k cells in the first column; this allows us to
state a simple algorithm to generate random dcc-polyominoes in linear time.
Finally in Section 3, we find the average internal path length of the dcc-
polyominoes with area n.

2 H o w to C o u n t D c c - P o l y o m i n o e s

As we shall see, the number of dcc-polyominoes and many other related
quantities are strictly connected to the Fibonacci numbers {0, 1, 1, 2, 3, 5,
8, . . .}. We denote by F n the n th Fibonacci number whose generating function
is:

O{Fn } = F(0 _ t
1--l-t 2

Note that by applying the bisection rules we find:

1 - t
- ~ g{F2~+l} 1 -3 ~+t 2 g{F2n} 1 -3 t+ t 2

The basic result of Delest and Dulucq [4] concerns the number V n of dec-
polyominoes with area n. We get the same result by using the following
recurrence relation:

Theorem 2.1: The number V n of dcc-polyominoes with area n is given by the
recurrence relation:

~-1 k V,~. k V n = l b k=l

having the initial condition V 0 -- 1, given by the empty polyomino. Hence, we
obtain the generating function:

and the closed formula V n

V(t) -- 1 - 2 l
1 -3 t + l 2

= F 2 n _ l , for every n > O.

Proof: Since it is obvious that V 1 = 1, let us suppose that n > 1. There is
only one dcc-polyomino having a single column with n cells. For every
1 _~ k < n, let k be the number of cells in the first column. The other n - k cells
constitute a dcc-polyomino which can be attached to every cell in the first
column. Therefore, we have:

~-1 k V~. k Y n : l - [- k = l

285

dcc-polyominoes, and this is our recurrence. The sum can be extended from 0
to n, provided we subtract the n resulting from k = n (and hence Vn_k = 170=1).
So we have:

~ _ '~ k Vn.k - n V n = l + }-=-o

and for the generating functions:

t Y(O t v(o = F-t + (1_02 (l_t)2

This can be solved in V(t)
V(t) - 1 - 2 t

1 - 3 t+ t 2

Finally, we observe that l l t- l~{F2n+l} : V(t) and this means that

V n = F2n_l , for every n > 0. []

In much the same way we can count the number of dcc-polyominoes
having area n and k columns:
Theorem 2.2: The number of n-area dcc-polyominoes having exactly k columns
is:

Proof: The numbers { Vn, k [n, k E N, k < n} constitute a triangle:

nlk 0 1 2 3 4

1

0 1

0 1 1

0 1 3 1

0 1 6 5 1

~

If Vk(t) denotes the generating function of column k, we obviously have

Vo(t) = 1 and VI(t) - t (l - l) " As in the proof of Theorem 2.1, we can now

show tha t for k > 0:

Vn, k+l = Z n-1 n j=l j v,,.j,k = ~ j = o y v~_j,~

286

In terms of generating functions, this is equivalent to:

= t
vk+ (t) (1_02 Yk(0

B y using Vl(t) and the induction principle, we easily find:

_ t k

Vk(l) (1_02k-1

Finally, we can extract the coefficient of in:

/ - 2 k + l \ ~-k
, - -

In fact, this formula is valid for any n, k E N, except when n = 1, k = 0. []

I t is worth noting tha t Theorems 2.1 and 2.2 imply z..,k=l\ n-k] = F2~-l;

hence, by first setting h = k-1 and then m = n- l , we obtain a combinatorial
proof of the identity:

htm-hS = F2 +1

As it will be illustrated in the next section, an impor tant quant i ty is the
average number of columns in the n-area polyominoes. To find this value, let
us begin by counting the total number of columns in all the n-area
polyominoes.

L e m m a 2.3: The total number D n of columns in all the n-area polyominoes is
defined by the recurrence:

n-1
Dn= 1 "[" Ek=lk(Dn_k§ Vn.k)

having the initial condition D O = 0. Hence, we have the generating function:

and the closed formula:

D(O= t(1-03
(1 - 3 t+t2) 2

2n-1 F n-5
Dn= 5 2n'= 5 F2n-1

Proofi It is obvious that D O = 0 and D 1 = 1. Since there is only one dcc-
polyomino with a single column of n cells for n > 1, let us consider the dcc-
polyominoes with the first column of k cells, for 1 < k < n. We can a t tach a
dcc-polyomino of area n-k to every cell of the first column, for a total of

287

kDn_ k columns. The contribution of the first column is k V~.k, and so we
obtain the recurrence:

Dn= I + E n-1 k=l (k Dn-k 4-k Vn-k)

As in Theorem 2.1, we can extend the sum from 0 to n, provided we take into
account the extra quantities we introduce. So we have:

E E n kDn. k,4- kV=. k - n - 5 = o D n = i + k=o k=o

and for the generating functions:

D(l) = l_~ 4- ~ D (t) 4- (l t_t)2 g(t) t 1
(1 - 0 2

Since V(t) is known, we obtain:

D (t) -
t(1-0 3

(1 - 3 / + t 2) 2

and by means of very simple computations or by using a computer algebra
system:

n 5 4 - _ m D= = -~F2=+2 4- (n - l) F2= -4- 8F2~ - F2~. 2 _ 2 n-15 F2n n--55 F2n-1

This is the closed formula for Dn. []

Finally, the average number of columns is given by the following:

Theorem 2.4: The average number d= of columns in the
polyominoes is:

d= -~ n 4- 10

Proof." For n > 0, we have:

n-area dcc-

d ~ = ~ = F~.I ~

where r = (q-5+1)/2 is the golden ratio. []

The value is accurate for a small n, too. For example, for n = 4 the true
value is d 4 = 32/13 = 2.46153846 and the approximate value is 2.46524758,
with an error of 0.15%.

288

3 T h e R a n d o m G e n e r a t i o n of D c c - P o l y o m i n o e s

The aim of this section is to find a method of generating a random dec-
polyomino in linear time. In other words, we wish to find out an algorithm
which receives an integer n as input and gives a dcc-polyomino of area n,
selected at random (with probability 1/Vn) among all the possible n-area dcc-
polyominoes, as output. We begin by counting the number of n-area dcc-
polyominoes with the first column containing at most k cells.

Theorem 3.1: The number of n-area dcc-polyominoes whose first column
contains exactly k cells is cn, k = k Vn. k for k = 1, 2, . . . , n -1 and cn,~ = 1.
The number of n-area dcc-polyominoes whose first column contains at most k
cells is:

Gn, k = V n -- Vn.k. 1 --(k+l)F2n_2k_ 2

for k = 1, 2 , . . . , n -1 and Fn, n = V n.

Proof: The first part is obvious, since, as we have already observed, if the first
column contains k (k < n) cells, we can attach a dec-polyomino of area n - k
to every one of these cells and thus obtain a total of k V~. k different n-area
dcc-polyominoes. For the second part, we have:

k . k , 7Z

Gn, k "~" E j k l C n , k E j = I 3 V n ' j = E j - O 3 _ Vn-j= E j _ n _ k (n - - j) Vj - - _

n ~-~ n-k-1 ~ n-k-1 ,
= E j = o (n- j) V j - n ~ j = o V j + ~ j = o)Vj

We can now evaluate these three sums by using partial fraction expansion:

n t 1-2 t [#] ((_~t) 2 E j = o (n - j) V j= It] (--~-/)2 1_3 t+/2 - _

= V n + n + l - 2 = V n + n - 1

n-k-1 (1 t 2) Y'"-k-1 1 1 - 2 l [l] + = 1 + F2.-2k-2
~--" j=o Vj = 1 - t 1-3 t+t 2 - ~ 1-3 t+t

12_t + 1 - 2 t "~
1-3 t+t 2] =

~-k-1. [tn-k-1] t d 1 - 2 t [#-k-l] t - 2 t 2 + 2 t 3
jvj= l _ l d t l _ 3 l + L 2 - (1_0 (1_3 t+12)2 =

:[ln-k-1](.l_l t 1--2/ + t(1--t2) ~
1-3 t+t 2 (1-3 l+12) 2] = 1 - Vn . k_ l+ (n-k-l) ff2n-2k-2

289

In the last sum, we used the fact that:

O{kF2k } = t _ d t / (l - t 2)
d t 1-3 l + t 2 - (1-3 t+t2) 2

By putting everything together, we eventually find:

Gn, k = V n - [- n - l - n - n F2n_2k_2...]-l- Vn_k_l + (n - k - 1) F2n_2k_ 2 =

= V,- V,+l- (k+l) F2, 2 2

For k = n, we obviously have Gn, n = V n = ff2n-1 (n > 0) []

It is easy for us to go from frequencies to probabilities:

P~,k = 1 V'~k-a (k+l) F2~-2k-2 1 < k < n
v . v . - -

and Pn,o : O, Pn, n : 1. This is the probability that an n-area dcc-polyomino's
first column contains k or less cells. This result suggests a simple algorithm
for generating random dcc-polyominoes. We begin by extracting a uniformly
distributed random number p in the range [0, 1), and decide that the first
column of the dcc-polyomino to be generated contains exactly k cells iff
Pn, k-1 <- P <- Pn, k" If k = n, we have finished; otherwise, we extract a random
integer number a such that 1 _< a _< k, and this is the cell which the rest of
the dcc-polyomino has to be attached to. We go on to apply the same
procedure recursively to generate a random dcc-polyomino having area n - k .
Obviously, the dcc-polyomino is uniquely determined by the list of pairs
{(el, gl), (c2, g2), �9 �9 �9 , (cb-1, gb-1), (cb, 0)}, where c i is the number of cells in
the i-th column, and gi is the cell which the next column is attached to minus
1. In Fig. 2, we show a random dcc-polyomino with area 30 generated by the
algorithm and corresponding to the list {(2, 0), (2, 0), (2, 0), (1, 0), (1, 0),
(1, 0), (3, 2), (1, 0), (2, 1), (3, 1), (3, 0), (1, 0), (3, 0), (1, 0), (2, 1), (2, 0)}.

Fig. 2 - A random dcc-polyomino with area 30

To be more precise, we formulate the algorithm as a pseudo-Pascal

290

procedure, to be called column(n) if we want to generate a random dcc-
polyomino having area n:

procedure column (n: integer);
v a r g, c: integer; p: real;
begin p := random;

c := findlevel (n, p);
if (c = n) or (c = 1) then append (c, O)

g := random (c); append (c, g) end;
i f c < n then column (n-c)

end {column};

In most Pascal compilers there is a random function which generates
uniformly distributed pseudo-random numbers in the interval [0, 1); the same
function, called with an integer argument k, generates a random integer in the
range 0 . . k-1. The procedure append is a simple routine which appends the
pair formed by its arguments to a global list; the list will eventually contain
the result of our generation and is to be initialized before calling column for
the first time. Finally, the findlevel function is used for finding the number of
cells in the column to be generated. A possible formulation is as follows:

function findlevel (n: integer; p: real): integer;
v a t v , z: real; k: integer;
begin if n = 1 then k := 1 else begin

v := dccpoly (n); q := v.p; k := 0;
repeat k := k+ 1;

if k = n then z := v else
z := v-dccpoly (n-k-1)-(k+l)*fibo (2 * n -2 * k -2)

u n t i l z > q end;
findlevel := k

end {findlevel} ;

Obviously, the fibo and dccpoly functions compute the n th Fibonacci number
and the number of the n-area dcc-polyominoes, resPectively. Actually, dccpoly
is reduced to a call to fibo, except for n = 0 when the result is 1.

We now want to show that this program generates a dcc-polyomino in
O(n) time. We must study the number of calls to three routines: random,
append and fibo, which are all executed in constant time, say tr, ta, t] t ime
units, respectively. Let us observe that:

this takes a long time compared to random and append, but when we have
fixed the precision, the evaluation time does not depend on "n. If the three
routine are called Ar, Aa, A I times during the generation of a dcc-polyomino,
then the total t ime will be:

291

T = Ar t r+ A~t~ + Airy+ C

where C is the t ime taken by housekeeping operations and tr, t~, If may
embody the time for loop control execution if necessary.

Let us begin by determining A], the number of calls to the routine fibo.
According to the findlevel program above, the variable v is computed once for
every column in the resulting dcc-polyomino. The variable z, instead, is
computed once for every cell in a column, and then for every cell in the dcc-
polyomino. So if the generated dcc-polyomino has area n and c columns, we
have A] = c+2 n. Note that when the last column has only one cell, there is no
call to fibo because of the initial condition in findlevel. The number Vtn of n-
area dcc-polyominoes with the last column containing a single cell is easily
evaluated. Since w i thou t t h i s last cell we have a dcc-polyomino of area n - l ,
we find V~n = V n- Vn_ 1. By means of these facts and Lemma 2.3, we obtain
the total number of calls to fibo for generating all the V n dcc-polyominoes of
area n: Dn+2 n V n - Vn+ Vn_ 1. Therefore, we have:

Theorem 3.2: The average number H I of calls to the routine fibo to generate a
random n-area dce-polyomino is

,~ n 2 + x[~ 1 (
Proof: By using the expression for D n found in Lemma 2.3 and dividing by Vn,
we find:

1 ..T l - 2 - ~ - - - - - - J r

The constant multiplying n is about 2.4472135955. []

Theorem 3.3: The average number X a of calls to the routine append to
generate a random n-area dcc-polyomino is:

A-~ ,,~ n + 10

Proof: The append routine is exactly called once for every column in the
generated dce-polyomino. Therefore, we have A-a = dn and the result follows
from Theorem 2.4. []

Let us now determine the value of At, the number of calls to the routine
random. The evaluation of the variable p in column is made once for every
column in the generated dcc-polyomino. However, the evaluation of g is
performed only when the eolumn is not the last one and contains at least two
cells. As a result, we have to determine the number Itn, k of the k-cell columns
in all the n-area dcc-polyominoes. We have the infinite triangle
{H.,kl n, k N, k_< n}:

292

1 2 3 4 5

1

2 1

6 3 1

18 9 4 1

53 28 12 5

In order to determine a recurrence relation for //=,k (k < n), let us
consider for j = 1, 2, . . . , n the n-area dcc-polyominoes having j cells in the

n . -1 . first column. We find a total of ~j=rlH=_j,k columns containing k cells; when

j = k, we also have to count the first columns, which contribute for a total of
k V,~.k. Hence:

"/~-1 .

Hn, k = E j=IJ H=.j,k + k V=.k

This completely defines the above triangle but we are only interested in the
one cell columns:

Lemma 3.4: The total number H n of one-cell columns in all the n-area dcc-
polyominoes is:

Hn 3 ~ - 4 F 2 n - 4 n--10F
- - 5 2 n - 1

Proof: By setting k = l, the above recurrence becomes

n - 1 �9

Hn = ~ j=lJ Hn_j + Vn_ 1

Since H 0 = 0, the sum can be extended to j = 0 through n and we can go on
to the generating functions:

H(0 _ t H(0 + t V(0
(1 - 0 2

By solving in H(t) and using partial fraction expansion:

H(t) t (1 - t) 2 (1 - 2 t) t (17-10 t (4-11 t) (3 - 2 t)'~
= 2 = J

By extracting the coefficient of t ~, after some easy computations, we find:

293

17 F 4 ~ (n _ l) F2,~ 3n-4F2,~ 4 n - 1 0 F H n - T 2n-2F2n-2--5 nF2n+2§ - - 5 5 2n-1

[]

We are now able to give the value for At:

Theorem 3.5: The average number Ar of calls to the random routine for
generating a random n-area dcc-polyomino is:

~ nr 2__r162 _ 1
5 r

Proof: As we have already observed, the total number of calls to random for
generating all the ~ n-area dcc-polyominoes is given by D~+(Dn-H=-Vn_I).
In fact, H a is the total number of one-cell columns and Vn_ 1 represents the
number of the last columns containing at least two cells. We divide by V n and
for n > 0wef ind :

2n -10 3 n - 4 4 n - 1 0 1 _ n r 2 2r 1
Ar ~ 4n5-2r 5 5 r r - - + 5 r []

Obviously, the quantities lr, ta, t] and C depend on the particular
implementation of the algorithm, but we have now proved that the execution
time is O(n) and most time is spent in computing Fibonacci numbers. Some
improvements can be easily conceived of. For example as predefined lists, we
can code all the dcc-polyominoes having an area less than or equal to n o = 5
(say) and extract a random list whenever column is called with n < n o. This
and other "tricks" of the same kind, however, go beyond the aim of the
present paper.

4 T h e A v e r a g e I n t e r n a l P a t h L e n g t h

Yuba and Hoshi [8] proposed directed polyominoes under the name of Binary
Search Networks (BSN) as a structure for storing and retrieving information in
a computer. The idea was to use VLSI hardware for searching in parallel along
the directed, linear paths of the structure in order to minimize retrieval time.
Parallelism is essential because in a traditional serial computer, BSN's cannot
favourably compare with other well-known structures, such as binary search
trees, with which BSN's share a common retrieving methodology. It is well-
known (see, e.g., Knuth [6]) that binary search trees have an average retrieval
time of order O(log n), if n is the total number of data contained in the tree.
It is evident that for BSN's, the average retrieval time is much worse and is
situated somewhere between O(~'-~) and O(n). As far as we know, nobody has
been able to find out the exact order, but computer experiments [2] show that
it is about O(n~ In the case of dcc-polyominoes, we are able to give the
exact value of the average retrieval time when all the dcc-polyominoes are
considered as equally probable. This value, however, cannot be extrapolated to

294

all directed polyominoes.
We use the common terminology for binary search trees and define the

internal path length (IPL) of a cell in a dcc-polyomino as the minimal number
of steps necessary for reaching the cell starting at the origin and going from
one cell to any one of the two adjacent cells. It is easy to show that there are
several minimal paths of this kind, but every path contains the same number
of steps. In Fig. 3, we give an example with the internal path length of every
cell in the dcc-polyomino.

3 5 6 7

2 4

1 2 3

Fig. 3 - The internal path length in a dcc-polyomino

It is not very difficult to find a recurrence relation for the total IPL
relative to all the n-area dcc-polyominoes. Let Pn be this quantity. By Fig. 1,
we can easily find the first values: P1 = l, P2 = 6, P3 = 29, P4 = 122 and
state the following:

Theorem 4.1: The total internal path length Pn of all the V n
polyominoes satisfies the recurrence relation:

Ek_lkPn'k E n (n + l) P~ = ~-~ + n ~-~ k(k+l) V~_k +
_ k = l 2 2

and then it is defined by the generating function:

P(t) =- t 2 t 2 3 / 3 - 2 l 4
(1 - 0 (1-3 t+t 2) + (l - t) (1 - 3 t+t2) 2 + (l - t) (1-3 t-~-t2) 3

n-area dec-

Proof." First, let us observe that if the dcc-polyomino is reduced to a single
column, then its total internal path length is n(n-4-1)/2. Let us assume that
the first column contains kce l l swi th 1 < k < n, and let r (1 < r < k) be
the position of the cell which the rest of the dcc-polyomino is attached to.
Therefore:

i) the first column contributes for k(k+l)/2 to the total IPL of all the dcc-
polyominoes, and it must be taken into account for each of the Vn_ k dcc-
polyominoes making up the rest of our dcc-polyomino;

ii) these Vn_ k dce-polyominoes have a total internal path length equal to
Pn-k;

iii) since every one of them is attached to the cell in position r, the IPL of
each of their cells is increased by r, for a total contribution of r(n-k) V=. k.

Therefore we have :

295

Pn - n(n+l)2 + Ek=ln-1 E r_:_i (_ _ _ _ ~ . _ k k(k+l) Vn.k + Pn-k + r (n -k) Vn_k) =

n (n-{-1)2 "4- E}.= In-1 (kPn_k + k2(k+1)2

n(n-4-1) n-1 n,-1 k(k+l) V~.k
- 2 + E k P . . ~ + . ~ --V-- k = l k=l

and this is the recurrence we are looking for. Obviously, Po = O. At this point,
it is not difficult to extend the sums from 0 through n, recalling that V o = 1.
By adding and subtracting suitable quantities, we find:

E n ~ n k(k~l) Vn_k + (n - 1) n (n + l)
Pn = kPn.k + U - k=o k= 2

We can now go on to generating functions. We observe that:

~{2 k"--~ = 0 : ~ P(0

n k+l t 2 /2(1-2t)
~ k--0(2) Vn'k} -- (1-/)3 V(l) : (1_t)3 (1 -3 /+ t 2)

12
(1-r

/(1+2 l)(1-2 l)
---: (1_/)4(1_3 t+t 2)

t2(1-2 t+2 t 2)
+ (1_/)3(1_3/+t2) 2

/2

and these relations imply:

P(I) - t P(t) +
(1 -0 2

1(1-4/2)
(1-04(1-3 l+l 2)

/2(1-2 t+2 t2) 3 t 2
+ (l_03(1_3t+tu) 2 (1-04

By solving in P(t) we find:

296

t (1 - 4 t 2) t2(1-2 t+2 t 2)

P(t) = (1_t)2(1_3 t+t2)2 + (l - t) (1 - 3 t+t2) 3 -

Now we use partial fraction expansions to obtain:

3 t 2
(1 - 0 2 (1-3 t+ t 2)

t - 4 t 3 5--12t 7 - 5 t + 5 3
(1 - 0 2 (1 - 3 t+t2) 2 = (1--3 t+t2) 2 1-3 t+t 2 1- t (1__t)2

/2__2 t3+2/4 7-18 t 8+t
(l - t) (1-3 t+t2) 3 -- (1-3 t + ?) 3 (1-3 t+t2) 2 + - -

2--t 1
1-3 t+l 2 1--t

3/2 3t 3 3
(l _ t) 2 (l _ 3 t + t 2) - l _ 3 t + t 2 (1_02 + 1 - t

Finally, by putting all these together:

__ 7-18 t 3413 t 5-_________L__t + 1
P(t) (1-3 t+t2) 3 (1-3 t+t2) 2 - 1-3 t+t 2 1- t

which is the generating function we were looking for. []

We can now extract the coefficient of t n from the generating function and
thus obtain a closed form for the total IPL referring to all the n-area dec-
polyominoes. For n > 0, the number of cells in all these polyominoes is
nF2n_l , and by dividing by this quantity, we get the average IPL referring to
n-area dce-polyominoes.

Theorem 4.2: The total IPL relative to all the n-area dcc-polyominoes is:

n 2 7 n
Pn=--~(F2n+ 2F2n_l) + - ~ F 2 n - F2n_l + 1

and therefore the average internal path length is:

~ 0 2 n + 7r P~ "~ - - TO-- 1

Proof: The formula for Pn is a tedious exercise in coefficient extraction. In the
proof of Lemma 2.3 we found:

3--2 t (n+ l) F2n+4 [tn] (1-3 t+t2) 2 -

By differentiating, we obtain:

297

d 2 1 16-18 t+6 t 2
d t 2 1-3 t+t 2 - (1-3 t+/2)3

and therefore:

[/,~] 16-18 t+6 t 2
(1-3 t+t2) 3 -- (n+ l) (n+2) F2n+6

By using these formulas, we can expand the terms of P(t) into partial fractions
and extract the coefficients of ln:

7-18 t 1 (7+18 t) (16-18 t+6 t2) 1 (9-24 t) (3 -2 l) 48 1
(1-3 t+ t2) 3 - 10 (1-3/+t2) 3 + 5 (1-3 t+t2) 2 5 1-3 t+ t 2

and then

_ 9 n (n + l) F2n+4 + 7-18 t 7 (n + l) (n + 2) F2n+6 [In] (1--3/+/2)3 -- 1-0

Analogously:

or:

_ 24 + 9 (n+l)F2n+4 "~- .F2n+2 - ? F2n+2

3+13 i (7-9 t)(3-2 t) 18
(1-3 t+t2) 2 - (1-3 t+t2) 2 1-3 t+t 2

[t n] 3+13 t
(1-3 t+t2) 2 - 7 (n+ l) F2n+4 - 9 n F2n+2 - 18 F2n+2

Finally, we have:
[t,~] 5 - t

1 - 3 t + t 2 - 5 F2~+2 - F2~

At this point, by putting everything together and repeatedly using the
recurrence relation for Fibonacci numbers F n = Fn_ 1 + Fn_2, we easily obtain
the formula for P~. The last formula is obtained dividing by n F2n_ 1
considering that F2n/F2n_ 1 -~ r and by ignoring the lower order terms. []

For dcc-polyominoes, the IPL is linear in n, which is worse than for
directed polyominoes in general.

298

References

1. E. Barcucci, R. Pinzani, E. Rodella, R. Sprugnoli: A Characterization of
Binary Search Networks. In: L. Budach (ed.): Foundamentals of
Computation Theory. Lecture Notes in Computer Science 529. Berlin:
Springer 1991, pp. 126-135

2. E. Barcucci, R. Pinzani, R. Sprugnoli: G~n~ration Al~atoire des Animaux
Dirig~s. In: J. Labelle, J.-G. Penaud (eds.): Atelier de Combinatoire
Franco-Qu~becois. Publications du LACIM. Montr4al 1991, pp.17-25

3. E. Barcucci, R. Pinzani, R. Sprugnoli: The Random Generation of
Underdiagonal Walks. In: P. Leroux, C. Reutenauer (eds.): S~ries
Formelles et Combinatoire Alg~brique. Publications du LACIM 11.
Montr6al 1992, pp. 17-32

4. M. P. Delest, S. Dulucq: Enumeration of Directed Column-convex
Animals with Given Perimeter and Area. Rapport LaBRI 87-15.
Universit~ de Bordeaux I 1987

5. T. Hickey, J. Cohen: Uniform Random Generation of Strings in a
Context-Free Language. SIAM J. Comput. 12, 645-655 (1983)

6. D. E. Knuth: The Art of Computer Programming, Vol. I-III. Addison-
Wesley, Reading, Ma, 1968-1973

7. X. G. Viennot: A Survey of Polyomino Enumeration. In: P. Leroux, C.
Reutenauer (eds.): S~ries Formelles et Combinatoire Alg~brique.
Publications du LACIM l l . Montreal 1992, pp. 399-420

8. T. Yuba, M. Hoshi: Binary Search Networks: a New Method for Key
Searching. Information Processing Letters 24, 59-65 (1987)

