
Object Organisation in
Software Environments for Formal Methods

Jun Han and Jim Welsh

Software Verification Research Centre
Department of Computer Science

University of Queensland, Qld 4072, Australia

Abst rac t . Software development by formal methods involves an over-
whelming amount of technical and managerial detail. Systematic organ-
isation of this information in a method's support environment is an im-
portant engineering concern. In this paper, we introduce a model for
object organisadon in software environments for formal methods, with
particular emphasis on easy construction, modification, review and reuse
of software objects. We demonstrate how the model can be instantiated
to individual methodologies to obtain the object organisation architec-
tures for their support environments.

1 I n t r o d u c t i o n

The value of formal methods in the development of reliable software systems
is increasingly recognised. Because of its complexity, software development by
formal methods requires computer-aided support. There have been many efforts
to develop computer-based support systems for software development by formal
methods. However, most of them concentrate on demonstrating the feasibility
of automated semantic support while providing limited clerical and syntactic
assistance. Few of them provide systematic support for software development
from the software engineering viewpoint.

One of the major engineering concerns in providing environment support for
software development by formal methods is the organisation of software objects.
In principle, these objects and their organisation should record the development
results, reflect the development process, and conform to the user's conceptual
model of software development in the given formal method. In this paper, we
introduce a model for object organisati0n in software environments for formal
methods, with particular emphasis on easy construction, modification, review
and reuse of software objects. This model provides an architectural framework for
developing environments supporting software development by formal methods.

The paper is organised as follows. Section 2 overviews our approach to
methodology modelling. Based on this approach, section 3 introduces our model
for object organisation. Sections 4 to 6 present examples of instantiating the
model to individual methodologies. Section 7 reviews related work. Finally, sec-
tion 8 concludes this paper with a few further remarks on environment support.

300

2 A n A p p r o a c h t o M e t h o d o l o g y M o d e l l i n g

Systematic software development requires that the software engineer follow well-
established methodologies. To facilitate environment support for such method-
ologies, methodology models are required to capture their support requirements.

A software development methodology concerns software products and the
software processes that produce these products. In modelling software develop-
ment methodologies, we adopt an object-oriented approach. A software product
is regarded as an object upon which various operations are performed in the
course of its development. In this sense, the process or sequence of development
operations permitted in the production of a software artifact is held to be in-
herent in the product itself. A software object is usually developed in a context
composed of a large number of other software objects. These software objects
are related to each other as the given methodology permits.

A software development environment supports the manipulation of the soft-
ware objects and their relations allowed by the supported methodology. A
methodology model defines the software objects, their relations and their ma-
nipulation as allowed by a range of methodologies.

Instantiating a model to a given methodology captures its requirements for
environment support. In the instantiation process, methodology-specific mean-
ings are assigned to the model features, and the constraints that the methodology
imposes on these features are recognised. The result is an environment support
architecture for the given methodology.

In our approach, environment support for methodologies' structural aspect
can be achieved in a generic fashion, i.e. the support provided by a generic system
according to the model can be specialised to meet the requirements of individual
methodologies. Environment support for their semantic aspect is provided by
additional methodology-specific tools.

3 A n O b j e c t O r g a n i s a t i o n M o d e l

Based on the above approach, we introduce a model for object organisation
in software environments for formal methods. Software development by formal
methods has program refinement and theorem-proving as two major sub-tasks.
We first analyse each of them in its own right, and then discuss their relationships
in the context of software development by formal methods.

3.1 Theo rem-Prov ing

P r o o f Theory Sys tem. An interactive theorem-proving system maintains the
information useful in constructing and understanding proofs. The user updates
the information from time to time. Since a system is usually developed to support
theorem-proving in different application domains, the information is divided into
domain-specific groups. The information in one group forms a proof theory, and
all the proof theories constitute the proof theory system.

301

Between the proof theories, there exist relations capturing the fact that one
application domain is a sub-domain of, or similar to, another application domain.
If the application domain of theory A contains the application domain of theory
B, the information in B may all be included in A. To retain the fact that they
are two separate theories and to achieve maximum reuse and consistency, an
inter-theory relation may be introduced to indicate that theory A inherits all
the information of theory B. We call this relation an inheritance reference from
theory A to theory B. Concrete examples can be found in Demo2 [12], HOL [4]
and Mural [7].

If theory C's domain has features similar to those of theory D's domain,
certain information in D may be used in C. To realise this, an inter-theory re-
lation of another kind may be introduced to indicate that theory C can access
certain information of theory D upon translation. We call this relation a mor-
phism reference from theory C to theory D. Concrete examples can be found in
Mural [7].

The inheritance and morphism reference relations are called theory depen-
dence relations from child theories to parent theories. The proof theory system
records the individual theories and the dependence relations between them.

P r o o f Theory . A proof theory provides a logical context for proof problems
in the concerned application domaim This logical context contains, as elements,
symbols, axioms, detinitions, theorems, inference rules, tactics, and so on. Be-
tween these elements, there exist relations capturing the fact that one element
refers to another element for definitional or inferential purposes. For instance, a
function may be used in stating an inference rule, and an axiom may be referred
to when justifying assertions in a theorem's proof. We call such relations refer-
ence relations between proof theory elements. A proof theory records the theory
elements and the reference relations between them.

P r o o f T h e o r y E lements . A proof theory element usually has a number of
components. Most of these components have a very simple structure. The most
complicated element components are proofs of theorems.

Proof . Constructing a proof involves an inference process aimed at establishing
the validity of an assertion which expresses a proof problem. This inference
process is usually composed of a number of inference steps. Each step relates
an assertion to other assertions according to an inference rule, in the hope that
establishment of these latter assertions guarantees establishment of the former
assertion. The relation from the former assertion to each of the latter assertions
is called a use relation between assertions. This inference process continues until
all the assertions involved either have immediate proof or have been related to
other assertions.

A proof records each of the assertions involved and the information rele-
vant to each proof step. The use relations between assertions are embedded in

302

their corresponding proof step information, and reflect the proof's construction
process.

Proof Object Hierarchy. We call all the objects involved in the proof process
proof objects, including the proof theory system, proof theories~ theory elements,
element components (e.g. proofs), assertions and proof step information. The
inclusion relations among these objects tailor them into a proof object hierarchy.
The dependence relations between proof theories, the reference relations between
proof theory elements and the use relations between assertions are also structural
features of interactive theorem-proving that we are interested in. These relations
are embedded in the relevant proof objects.

3.2 Program Refinement

As in theorem-proving, an interactive program refinement system assists the user
in manipulating all the objects involved in the refinement process, which we call
refinement objects. By analogy, a hierarchy of refinement objects may also be
formulated as an object organisation model for interactive program refinement.

Ref inement Theory System. Corresponding to the proof theory system, we
have the refinement theory system which contains all the information useful
in developing and understanding refinements. This information is divided into
groups specific to application domains of program refinement. Each group forms
a refinement theory. There exist inheritance and morphism reference relations
between refinement theories to capture the fact that one application domain is a
sub-domain of, or similar to, another application domain. The refinement theory
system records the individual refinement theories and the dependence relations
between them.

Ref inement Theory. A refinement theory is composed of different kinds of
elements useful for program refinement in the concerned application domain,
such as function definitions, refinement rules, applications, and so on. An ap-
plication encapsulates the development of a software system in a way similar to
that in which a theorem encapsulates the proof of an assertion. It has a name, a
statement which specifies the targeted software system, and a refinement which
records the refinement results and process of the system.

There exist reference relations between elements of a refinement theory for
definitional or refinement purposes. For instance, an application's statement may
be defined using functions, and its refinement steps use refinement rules.

A refinement theory records the theory elements and the reference relations
between them.

Ref inemen t Theo ry Elements . Elements of a refinement theory have a num-
ber of components. Most of these components have a very simple structure. The
most complicated components are refinements of applications.

303

program_l

validate

theorems

prove

axioms

re/~ne

~ verify

theorems

prove

axioms

program_21 o..

program_22 �9 �9

Fig. 1. Relationship between refinements and proofs

Refinement. Developing a software system in a formal method involves formal
specifications and program code. In our discussion, specifications and programs
are not distinguished, and they are all referred to as programs. Therefore, a
program is a specification segment~ a code segment or a mixture of both. A
program may have additional validation obligations stating its properties.

The development of an application usually involves a number of design or
refinement steps. Each step relates a program to other programs according to a
refinement rule. Under the specific semantic relation determined by the refine-
ment rule, these latter programs constitute a refinement of the former program.
The relation from the former program to each of the latter programs is called a
use relalion between programs. Among the information relevant to a refinement
step are the verification obligations stating the conditions that the step has to
satisfy. This refinement process continues until all the programs involved are
either efficient code segments or have been related to other programs.

A refinement records each of the programs involved and the information rele-
vant to each refinement step. The use relations between programs are embedded
in their corresponding refinement step information, and reflect the refinement's
construction process.

3.3 Software Development by Formal Methods

As discussed above, program refinement gives rise to validation and verifica-
tion obligations, which are theorems to be proved. This relationship between
refinements and proofs is shown in Fig. 1.

Conceptually, program refinement (excluding the establishment of proof obli-
gations) and theorem-proving are separate tasks. Therefore, we retain the refine-
ment and proof object hierarchies in the support environment. They constitute
the overall software object hierarchy for software development by formal meth-
ods, rooted at the development theory system, as shown in Fig. 2.

To realise the above relationship between refinements and proofs on this over-
all hierarchy, we introduce reference relations from proof obligations of programs

304

development theory system

refinement theory system proof theory system

refinement theory proof theory

application / ~ t h e o r e m

refinement

J

progr am/step-info'~rmation

J
J

J

proof

assertion/step-information

Fig. 2. Hierarchical relationship among software objects

and refinement steps on the refinement sub-hierarchy to theorems on the proof
sub-hierarchy (see Fig. 2). These reference relations are called proof allocation
relations. Under a proof allocation relation, the proof obligation concerned is
regarded as being discharged by the proof of the referred theorem.

The above structural organisation of software development by formal meth-
ods supports the user's conceptual model in that the distinction between the
program refinement task and the theorem-proving task is maintained by sepa-
ration of refinement theories from proof theories and that the close relationship
between refinements and their proofs is supported by proof allocation relations.
In general, this approach gives an object organisation model for the entire soft-
ware development task, which is conceptually natural and structurally simple.

This object organisation model has been instantiated to a number of theorem-
proving and program refinement methodologies, to obtain their environment
support architectures [5]. They include Demo2 [12], Mural [7], HOL [4], Nuprl
[3], B [14] and the refinement calculus [8]. The model is also applicable to other
methodologies such as VDM [6] and RAISE [9]. In the following three sections,
we concentrate on the instantiations to the refinement calculus and the Demo2
theorem-proving system. We also discuss the refinement-proof relationships in
using Demo2 to meet the theorem-proving requirements of the refinement cal-
culus.

305

theory name inheritance references (to) elements
roo t < elements. .~ >
f o l roo t < elements . . . >
rune_logic f o l < elements..~ >
computation func._logic < elements . . . >
a r i t hme t i c computation < elements . . . >

: : :

Fig. 3. A Demo2 proof theory system

4 D e m o 2

Demo2 is an interactive proof editor developed based on a window inference
approach [10, 12]. Proofs, proof theory elements, proof theories and the proof
theory system in our model largely correspond to proofs, theory elements, the-
ories and the theory hierarchy in Demo2, respectively.

4.1 Proof Theory System

The proof theory system in our model corresponds to the theory hierarchy in
Demo2. Structurally~ the proof theory system is composed of the model theories
which correspond to the Demo2 theories on the hierarchy. All the dependence
relations between theories in Demo2 are inheritance relations in our model. Ex-
cept for the theory zoot which does not have parent theories, all other theories
have exactly one parent theory.

Figure 3 shows an example proof theory system in Demo2. The theory roo t
contains the basic facts about theorem-proving. The theory f o l is a theory of
first order logic. The theory func__logic is a theory of functional logic [11]. The
theory computation is a theory of computation in functional logic. The theory
a r i t hme t i c is a theory of arithmetic. The inheritance relations between these
theories are also shown in' Fig. 3.

4.2 P r o o f T h e o r y

A theory in Demo2 comprises the information available for proof construction
in a particular application domain. A proof theory in our model corresponds to
a Demo2 theory, and may contain additional information such as tactics. The
following are some typical theory elements: primitive and defined quantifiers,
primitive and defined functions, window opening rules, hypothesis splitting rules,
simplification rules, axioms, theorems, and tactics.

Reference relations exist among elements of a proof theory, including the in-
ferential reference relations among axioms, theorems and inference rules. Demo2
enforces strict "proof-before-use", i.e. only axioms and theorems with complete
proofs can be used to prove other theorems and to introduce inference rules.

306

theory name: arithmetic

theory elements:

name type
i s _ i n t prim_fun
+ prim_fun
�9 prim_fun
< prim_fun
> def_fun
/> def_fun
itsucc axiom
posinc axiom
geonem axiom
th theorem

inheritance references (to): computation

contents
(1,default A)
(2,500,y x)
(2,490,yfx)
(2,520,xfx)
(2,52O,x: x); Ix1, x2], x2 < xl
(2,52O,x x); Ix1, > v =
i s_ in t (A) ~ A < A + 1
A ~> 0::::~ A + 1~> 1
A < B A C > ~ I ~ A < B , C
i s _ i n t ($) A S ~> 0 =:~
(S~>O) A (S < (S + I) * (S + I)) < p r o o f . . . >

Fig. 4. Demo2 theory ar i thmet ic

Figure 4 shows some elements of the Demo2 theory arithmetic, where the
theorem proofs are omitted. Note that a primitive function has, as its contents,
an arity, a precedence and an associativity. A defined function has, in its contents,
an additional definition term preceded with a list of object variables. An axiom
has a statement as its contents. A theorem has a statement and a proof as its
contents. The use of the defined function/> in the statement of the theorem th
is an example of definitional references between proof theory elements. In the
next subsection, we will see examples of inferential references.

4.3 P r o o f

The construction of a proof in Demo2 is carried out primarily by a sequence
of goal-directed equivalence transformations in a logical window. Each trans-
formation is either simple or complex. If the user transforms a window from
one version to another version by a simple operation such as appealing to an
axiom or a hypothesis, this transformation is classified as simple. On the other
hand, a complex transformation achieved by transforming a term relevant to the
current window version requires justification of how the term transformation is
performed. The justification itself is a proof car, ried out in a nested subwindow
and is composed of a sequence of simple and complex transformations.

A proof in our model corresponds to a Demo2 proof, with assertions corre-
sponding to window versions and proof steps to transformation steps. Therefore,
a model proof for Demo2 is composed of a linear sequence of proof steps. Ex-
cept for the initial window version, all other assertions are generated from proof
steps. An assertion has a focus F, a goal G, a number of hypotheses H, and an

307

1~: ~ ((is_int(S) A $ >/ 0 ~ (S ~> 0) A ($ < (S + 1) * (S + 1))) r t rue)
epeuwin on (S/> 0) A (S < (S + 1) * (S + 1)

2]: is_• S >/0 ~- ((S/> 0) A (S < (S + 1) * (S -I- 1)) r true)
openwin on S >~ 0 of focus

3]: is_int(S), S 7> O, S < (S + I) * (S + I) ~ ((S >i O) * true)
trans focus by hyp 2

3~: is_int(S), S >~ O, S < (S -k I) * (S + 1) ~ (true r true)
closewin

2~: is_int(S), S >/0 5 ((S < (S -k 1) * (S Jr I)) r true)
lemma proof S < S + 1

321: is_int(S) , S/> 0 ~ ((S < S + 1) r t rue)
t rans_t rue focus by l t succ and hyp 1

392: is_• S >/0 ~ (true 4~ true)
closelemma

23: i s_ in t (S) ,S >/ 0, 1: S < S + I [- ((S < (S + I) * (S ~- I)) •true)
lemma proof S + 1 >/ 1

3~: is_int(S) , S >/0, S < S + 1 ~ ((S + 1 /> 1) r t rue)
t rans_t rue focus by posinc and hyp 4

3~: is_int(S) , S/> 0, S < S + 1 ~ (t rue * t rue)
closelemma

2~: is_int(S), S >~ O, I: S < S+I, I: S+I >i 1
((S < (S + I) �9 (S + I)) r true)

trans_true focus by geonem, hyp 3 and hyp 8
25: is_int(S), S i> O, 1 : S < S + I, 1 : S + 1 >i 1 ? (true r true)

closewin
1~: 1: i s_ int (S) h S/> 0 ~ (S < S + 1), 1: is_int(S) A S/> 0 ~ (S +] /> 1)

I- (true ~=~ true)

Fig. 5. th 's Demo2 proof

equivalence relation ~_. It defines an intention to prove that given the hypothe-
ses, the focus and the goal are equivalent according to the equivalence relation:
H ~- (F -- G). The focus, goal and hypotheses are all logical terms. The equiv-
alence relation can be logical equivalence, arithmetic equality, and so on. The
information attached to a proof step records the proof command applied, in-
cluding references to theory elements such as axioms and theorems. A complex
proof step also has a nested justification proof.

Figure 5 shows a Demo2 proof of the theorem tit in the theory a r i t h m e t i c
in a condensed form. At the beginning of the proof, the initial assertion labelled
1~ is introduced. The proof is carried out top-down, and is recorded with as-
sertions to the left and (explanations of) proof operations to the right in an
interleaved manner. Because the proof operations are self-explanatory, we shall
not go through the proof process step by step. Note that the use of the axiom
l t s u c c in the above proof is an example of inferential references between theory
elements.

The modelling exercise in this section shows that the organisation require-

308

theory name inheritance references (to) elements

: : :

list . . . < e lements .
arith list < e lements .
sorting list < e lements .
UI . . . < e lements .
language arith, sorting < e lements .
environment language, UI < elements

Fig. 6. A refinement theory system for the refinement calculus

>
>
>
>
>
>

meats of Demo2 can be naturally met by our model. Like the current Demo2
system, our model supports object construction. In addition, the modelling sug-
gests improvements as to easy editing, checking, review, replay and reuse of proof
objects by recording the object structures and inter-object relations.

5 R e f i n e m e n t C a l c u l u s

The refinement calculus is a formal method for software development, developed
primarily by Back, Morgan and Morris. In the following discussion, we follow
Morgan's presentation of the method in [8].

Experimental tools have been developed to support the refinement calculus
[2, 13, 1]. Because of their experimental nature, these tools concentrate on the
support for the core refinement activities, and give little consideration to the
object organisation issue. Instead of modelling an existing system, therefore, we
propose an object organisation system for the refinement calculus.

5.1 Ref inement Theory System

The refinement theory system for the refinement calculus is composed of indi-
vidual refinement theories specific to application domains. For simplicity, only
inheritance relations between these theories can be introduced to allow one the-
ory to inherit all the information of another theory.

Figure 6 shows a refinement theory system for the refinement calculus and
contains a number of refinement theories: l i s t for list-processing, a r i t h for
arithmetics, so r t i ng for sorting algorithms, UI for user interface applications,
language for processing programming languages, and environment for develop-
ing programming environments. The inheritance relations between these theories
are also shown in Fig. 6.

5.2 Ref inement Theory

A refinement theory for the refinement calculus contains the information avail-
able for program refinement in a particular application domain, and is composed

309

theory name: arith

theory elements:

name type contents

inheritance references (to): list

+ prim_fun
�9 prim_fun

~/- def_fun

[J def_fun
assn 1 rule
sqrt app

(2,500); R + ~ :
(2,490); ~ + ~ :
(1,480); v ~ : ~ ; x / q = b i f f b) 0 A b * b = a

(1,480); [RJ: Z; [aJ = b i f f b ~< a < b + 1
pre post[\E],t en [pre, post] c_ := E

I[v a r r, s : • �9 r : [t r u e , r =][
< refinement. . . >

Fig. 7. Refinement theory a r i t h

of various elements. The following are some typical elements in a refinement
theory: primitive functions, defined functions, refinement rules and applications.
Definitional and refinement reference relations exist among these elements. For
example, the primitive and defined functions may be used to define other func-
tions and to write programs involved in applications. The refinement rules are
used to carry out refinement steps of applications. One application may be used
in another application's refinement as part of the development.

Figure 7 shows some of the elements in the refinement theory a r i t h , where
the refinements of applications are omitted. Note that a primitive function has, as
its contents, an arity-precedence pair and a concrete syntax in terms of the types
of the function's parameters and result. A defined function has an additional
definition in its contents. A refinement rule has a rule statement as its contents.
An application has a statement (i.e. an abstract program) and a refinement as its
contents. The use of [J in the statement of the application s q r t is an example
of definitional reference between refinement theory elements. An example of
refinement references can be found in the next subsection.

5.3 R e f i n e m e n t

Constructing a refinement in the refinement calculus involves many steps. Each
step refines a program by applying a refinement rule, and generates a number of
other programs. The refinement records all the programs and refinement steps.

The refinement calculus embeds a specification mechanism, the specification
statement, in Dijkstra's Guarded Command Language. As such, a program in the
refinement calculus may contain both abstract and executable constructs, and is
a simple or complex statement 1. A simple statement is an assignment statement

1 For simplicity, we only consider those programs that do not contain va/idation obli-
gations or advanced language features such as procedures and modules.

310

or a specification statement. The specification statement has the form:

w : [pre, post]

where w is the frame containing the variables whose values may be changed by
the statement, pre is the precondition describing the initial state of the program,
and post is the postcondition describing the final state of the program. A complex
statement is composed of a number of statements organised by one of the follow-
ing constructs: sequential composition (;), alternation (if fi), iteration (do od)
and local block (I[]1)- A local block may contain variable (var), invariant (and)
and logical constant (con) declarations. A program in our model corresponds to
a program in the refinement calculus, except that a model program may have an
environment to record the declaration information of its enclosing context when
it is isolated from this context: [environment] statement.

A refinement step in the refinement calculus is carried out by application
of a refinement rule, and may generate verification obligations. A step which
isolates some components of a program without functional refinement is also
regarded as a refinement step. For instance, the body of an iteration may be
isolated from the overall iteration. The refinement operation applied and the
verification obligations generated (if any) constitute the information attached to
the refinement step. The refinement operation contains, among other things, a
reference to the refinement, rule applied.

To demonstrate the modelling of refinements in the refinement calculus, we
consider an example taken from [8]. The refinement problem is that we are
given a natural number s and required to set the natural number r to the
greatest integer not exceeding vG. It is formulated as the application s q r t in
the refinement theory a r i t h (see Fig. 7). The abstract program specifying this
problem is

I[var r, s : N,, r : [true, r = [v/~J]]l (1)

It is the initial program of the refinement and is introduced at the beginning of
the refinement process. After a number of refinement steps, this abstract program
is refined to code (see pages 70-73 of [8] for details):

I[v a r r, s : l ~ .

I[var q :N �9
q, r := s + 1,0;
d o r + 1 7 ~ q

I[var p : N �9
p := (q + r) div 2;
i f s < p 2 ~ q : = p (2)
~s>_p 2 ~ r : = p

fi
]l

od

311

Due to space limitation, we shall not give all the details of the refinement
process (see [5]). The following is one of the refinement steps. Program (3):

[var q, r , s : N]q, r : [true, r 2 < s < qU] (3)

is refined to program (4):

[vat q, r, s : N] q, ~" :-- s -t- 1, 0 (4)

using the refinement rule assnl (see Fig. 7). The verification obligation of this
refinement step is

[var q, r, s : N] t rue ~ 0 ~< s < (s + 1) 2 (3.O1)

Note that the use of the refinement rule assnl in this step is an example of
refinement references between theory elements.

As with the modelling of Demo2, the modelling exercise in this section shows
that our model can effectively meet the organisation requirements of the refine-
ment calculus.

6 R e f i n e m e n t C a l c u l u s a n d D e m o 2

The above refinement example has shown that applying certain refinement rules
gives rise to verification obligations. In general, validation obligations may also
be stated against programs. According to our model, discharging these proof
obligations is a theorem-proving task and should be carried out in proof theories.

If we choose Demo2 as the theorem-proving system for the refinement calcu-
lus, its development theory system is composed of a refinement theory system for
the refinement calculus and a proof theory system for Demo2. For example, we
may combine the refinement theory system and the proof theory system given
in previous examples, into a development theory system.

In a development theory system for the refinement calculus and Demo2,
the proof obligations of refinements may be discharged by proving theorems in
Demo2 theories. The relationships between them are captured by proof allocation
relations. For instance, we may introduce a proof allocation relation from the
verification obligation (3.O1) of sqr t ' s refinement in the refinement theory a r i t h
to the theorem th in the Demo2 theory a r i t h m e t i c . Proving this theorem (as
shown earlier) discharges the verification obligation (3.O1).

Carrington and Robinson's refinement editor [2] uses Bill Pugh's demonstra-
tion proof editor pv for theorem-proving, while Back's refinement diagram edi-
tor [1] is developed on top of the HOL proof generating system. The distinction
between program refinement and theorem-proving tasks is not fully supported in
either of these two systems. In contrast, Vickers' refinement editor [13] separates
program refinement from theorem-proving completely. The natural relationship
between refinements and their proofs is lost.

312

7 R e l a t e d W o r k

Our object organisation model for software development by formal methods is
developed based on investigations into existing theorem-proving and program re-
finement methodologies/systems. Many theorem-proving systems have a mech-
anism to organise proof information into proof theories. In particular, Mural
provides one of the most advanced organisation mechanisms called the theory
store, which corresponds to the proof theory system in our model. The concept
of proof theories as a basic mechanism.for organising proof information has also
inspired us to organise refinement information into refinement theories.

In dealing with the relationships between theorem-proving and program re-
finement, there have been two major approaches. One is to separate them, and
the close relationship between refinements and their proofs is not supported. The
other is to regard them as a single task based on theorem-proving, and the dis-
tinction between the program refinement task and the theorem-proving task is
not recognised. As our model suggests, we argue that both the close relationship
between refinements and their proofs and the distinction between the program
refinement and theorem-proving tasks should be supported to conform to the
user's conceptual model. Mural provides such support to a certain degree by
relating programs/refinement-steps to proof theories.

Most of the existing systems provide methodology-specific object organisa-
tion. The issues involved are not addressed systematically. In particular, there
are very limited provisions for easy modification, review and reuse of software
objects, and no provisions for refinement organisation by refinement theories.

8 C o n c l u s i o n s

In this paper, we have introduced a model for object organisation in software en-
vironments for formal methods. It centres on a hierarchy of software objects, in-
cluding two related sub-hierarchies for program refinement and theorem-proving.
Proof allocation relations are introduced to capture the structural relationships
between program refinement and theorem-proving. They tailor the two sub-
hierarchies into the overall hierarchy in a simple and consistent manner. The
software objects record the development results and reflect the development
processes. Their definition and organisation conform to the user's conceptual
model of software development in given formal methods.

The proposed model has been systematically instantiated to a number of
theorem-proving and program refinement methodologies. These instantiations
have captured the relevant methodologies' object organisation requirements,
and have consequently reflected their environment support architectures. To this
end, our model provides an architectural framework for developing generic and
methodology-specific environments supporting software development by formal
methods.

A more comprehensive account of the model can be found in [5]. It contains
detailed definition of object structures, operations and consistency, and also deals

313

with object presentation. After some prototype experiment [5] and a feasibility
study, we are currently developing a generic, methodology-based environment
for software development by formal methods~

Acknowledgements

We would like to thank David Carrington, Ian Hayes, Peter Lindsay, Peter Robin-
son, John Staples and Nigel Ward for their comments and help.

R e f e r e n c e s

1. R.J.R. Back. Refinement diagrams. In Proc. 4th BCS-FACS UK Refinement
Workshop, pages 125-137, Cambridge, UK, January 1991.

2. D. Carrington and K. Robinson. A prototype program refinement editor. In Proc.
3th Australian Software Engineering Conf, pages 45-63, Canberra, Australia, May
1988.

3. R.L. Constable, S.F. Allen, et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, N J, 1986.

4. M.J.C. Gordon. HOL: A proof generating system for higher-order logic. In VLSI
Specification, Verification and Synthesis, pages 73-128. Kluwer Academic Publish-
ers, Boston, MA, 1988.

5. J. Ham A Structural Model for Methodology-based Interactive Rigorous Software
Development. PhD thesis, University of Queensland, St. Lucia, Australia, 1992.

6. C.B. Jones. Systeraatic Software Development using VDM. Prentice-Hall Interna-
tional, London, second edition, 1990.

7. C.B. Jones, K.D. :[ones, P.A. Lindsay, and R. Moore. mural: A Formal Develop-
ment Support System. Springer-Verlag, London, 1991.

8. C. Morgan. Programming from Specifications. Prentice-Hall International, Lon-
don, 1990.

9. M. Nielsen, K. Havelund, K.R. Wagner, and C. George. The RAISE language,
method and tools. Formal Aspects of Computing, 1(1):85-114, 1989.

10. P.J. Robinson and J. Staples. Formalising the hierarchical structure of practical
mathematical reasoning. Technical Report 138, Department of Computer Science,
University of Queensland, St. Lucia, Austrafia, December 1989.

11. J. Staples. Functional logic for program verification: Introductory lectures. Tech-
nical Report 168, Department of Computer Science, University of Queensland, St.
Lucia, Australia, July 1990.

12. T.G. Tang, P.J. Robinson, and J. Staples. The demonstration proof editor Demo2.
Technical Report 175, Department of CQmputer Science, University of Queensland,
St. Lucia, Australia, April 1991.

13. T. Vickers. An overview of a refinement editor. In Proc. 5th Australian Software
Engineering Conf., pages 39-44, Sydney, Australia, May 1990.

14. T. Vickers. An overview of a theorem proving assistant. In Proc. 13th Australian
Computer Science Con], pages 402-411, Melbourne, Australia, February 1990.

