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Abstract .  We show that the positive existentiM fragment of the theory 
of tree embedding is decidable. 

1 Introduction 

Symbolic Constraints, i.e. formulae interpreted in some term structure, have 
been revealed to be extremely useful in logic programming and theorem prov- 
ing. Among such constraints, the ordering constraints can be used in expressing 
ordered strategies at the formula level instead of the inference level. This allows 
to cut further the search space, while keeping the completeness of the strategy 
[7]. Solving ordering constraints also allows for a nice lifting of orderings from 
the ground level to the terms with variables: define s > t by V~.s > t where 
2, the variables of s, t ,  range over all ground terms. This provides with more 
powerful orderings for termination proofs in rewriting theory. 

Up to now, the satisfiability of ordering constraints has been studied for some 
orderings on terms: Venkataraman showed that the existential fragment of the 
theory of the subterm ordering is decidable, while the Z3 fi'agment is undecid- 
able [10]. These results have been extended recently to infinite trees [9]. Comon 
showed that the existential fragment of the theory of any total lexicographic 
path ordering is decidable [1]. This result has been extended to any recursive 
path ordering over a total precedence by Jouannaud and Okada [6]. On the other 
hand, the Z4 fi'agment of the theory of any partial recursive path ordering is 
undecidable (provided that the signature is rich enough) [8]. 

All these works have left some open questions, among which the decidability 
of the existential theory of a partial recursive path ordering. Among the partial 
recm'sive path orderings, the tree embedding is the simplest one: the precedence 
is assumed to be empty. Actually the tree embedding is contained in all (partial) 
recursive path orderings. We do not solve here the decidability problem in its 
full generality, but we hope to contribute to the general solution: we show that  
the positive existential fragment of the theory of tree embedding is decidable. 

The proof is carried out by elementary techniques which are quite different 
from those in [10, 9, 1, 6]. Indeed, for subterm problems, [10, 9] use some "test 
sets" showing that, if there is a solution, there is some solution which has a 
"small" size. They also use normal forms of inequations systems in which all 
inequations s > t have a variable on the left. As we will see, it is not possible to 
follow this technique with the embedding relation. On the other hand, [1, 6, 7] use 
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the linearity of the ordering in many places: the main problem is the expression 
of the successor function on the term level. Of course, we cannot use such a 
technique with the embedding which is not a linear ordering. 

First, we set up precisely the problem in section 2. Then we give some obvious 
transformation rules in section 3. Using some stability properties of the set of 
solutions, we derive some additional rules reported in section 4. In section 5, we 
introduce more syntactic constructions in order to express easily strategies and 
we solve the problem of multiple upper bounds. We give section 6 the last rule 
which allows to break non-trivial cycles which necessarily occur in problems that  
are irreducible w.r.t. ';he other rules. Then we show that  the whole set of rules 
terminates, thus leading to the decidability result. 

~ ) e m a n t l c s  2 S y n t a x  a n d  ~ 

Terms are built on the finite (ranked) alphabet F of function symbols and a 
set of variable symbols X. The resulting algebra is denoted T(F,  X) (Or T ( F )  
when X is empty). We use mainly the notations of [3]. For example, the result 
of replacing a term t with a term u at position p in s is denoted s[u]p. This 
notation is also used in order to indicate that u occurs at position p in s. The 
root position (empty string) is denoted by A. 

The tree homeomarphic embedding (or simply embedding) is the reduction 
relation associated with the rewrite system consisting of all rules 

xi  

for i E {1,.. . ,7~} an:l f E F ( x l , . . . , x n  are variables). Embedding is a well 

ordering on terms [4]; it will be denoted _<1 (more precisely, s <1 t if t --* s using 

the above rules). 
More operationally, we can use the following definition: 

s =_ f ( s t , . . . , s ,~ )  <1 g( t l , . . . , t ,~ )  = t iff 
3i, s ~_ ti 

or f = g  and Vi, s i~_ti  

Iuequatioual formulae are disjunctions of existentially quantified conjunctions 
of either inequations s _< t or equations s = t where s, t E T(FI X) .  The set of 
variables of an inequa~ional formula I is denoted by Vat(I ) .  T and • respectively 
denote the trivial and the unsatisfiable inequational problem. 

I is interpreted as follows: a ground assignment o. (i.e. a mapping associating 
each variable of [ with a term in T(F))  satisfies s < t if so- _,21 to.. Similarly, it 
satisfies s = t if so. - to. (_-- is the identity of terms). This interpretation extends 
to inequational formulae in the usual way. If all solutions of an inequational 
formula I are also solutions of an inequational formula J,  we will write I ~ J .  

The problem we address here is the satisfiability of inequational problems. 
"Most" of the problems are satisfiable. Let us show some examples of unsatisfi- 
able problems in increasing complexity. In all examples, f ,  h are binary function 
symbols, g, k are unary function symbols and a, b are constants. 
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Example 1. 
g(y) 5 x A g(x) <_ y is not satisfiable since we can deduce g(g(y)) <_ y, which is 
unsatisfiable. This illustrates the monotonicity of embedding. We also used the 
fact that embedding contains the subterm ordering. 

Example 2. 
g(y) < x A x < f(y ,  g(g(a))) A b <_ f (x ,  y) is not satisfiable since, from the first 
two inequations, we can conclude that  g(y) must be embedded in g(g(a)). It 
follows that y is either a or g(a). Next, x must be embedded in f(g(a), 9(g(a))). 
Then b < f (x ,  y) cannot be satisfied. This illustrates the fact that only finitely 
many terms are embedded in a given term. 

Example 3. 
x < g(k(y)) A x < k(g(y)) A k(y) < x A g(y) <_ x is not satisfiable. Indeed, either 
x = g(xz), or x = k(xa) for some x~, or the top symbol of x is neither g nor k. 

- In the first case, we deduce from the second inequation that g(xt)  _< g(y), 
hence xz _< y. From the third inequation, we deduce that  k(y) <_ g(xt),  hence 
k(y) <_ xz. Now there is a contradiction: x~ _< y A/r _< x~ is unsatisfiable 
as in example 1. 

- The second case (x = k(xl))  is symmetric of the first one. 
- In the last case (the top symbol of x is neither g nor k), we can deduce from 

the first inequation that  x < y which, together with k(y) < x leads to a 
contradiction. 

This example illustrates the problem of "multiple upper bounds": if some term 
t is embedded in both g(u) and h(v), then it must be embedded in either u or v. 

3 A f i r s t  s e t  o f  t r a n s f o r m a t i o n  r u l e s  

The technique we will use for deciding the satisfiability of inequational formulae 
is now classical (see [2, 5]): it consists of rewriting the formula, using some rules 
which preserve the satisfiability, until the problem becomes trivially decidable. 

Our first set of rules is quite straightforward to derive. It is displayed in 
figure 1. Let us call 7~0 this set of rules. All formulae are assumed to be kept 
in disjunctive normal form. Then the rules of figure 1 transform an inequational 
formula into an inequational formula. 

L e m m a  1. All rules in Tto preserve the set of solutions of inequational formulae. 
Moreover, T~o is terminating and irreducible inequational formulae are disjunc- 
tions of conjunctions of equations and inequations whose a~ least one member is 
a variable. 

Actually, after one normalization w.r.t. 7~0, equations become useless. Dis- 
carding them preserves the satisfiability. Hence, for sake of simplicity, we assume 
now that inequational formulae do not contain any equation. We can assume this 
property along all other transformations. Also, every disjunction can be treated 
separately (there is no interaction between them). For this reason, we will some- 
times forget that inequational problems contain disjunctions. 
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Embedding Rules (Emb) 

m 

/ ( s l , . . . ,  s,~) __< g(t l , . . . ,  t,,) ~ V / ( ~ 1 , . . . ,  s , )  _< t4 
4=1 

if l e g  
n r~ 

/ ( . :  . . . . .  ~.) <_ f ( t ,  . . . .  ,~") -~ ( A  ~4 < t,) v V : ( s l  . . . .  , . . )  < t, 
4=1 i = 1  

Unification Rules (Unif) 

f (~ l , . . . ,  ~ )  = g(t~, . . . , t ,O --. • 
f ( s~ , . . . , sn )  = f ( h , . . . , t n )  ~ Sl = tl A . . . A s ~  = t~ 

x = s A P - - *  x = s A P { x ~ " *  s} 
if  x r y ~ ( ~ ) ,  �9 ~ Ya~(P) ,  and 
if s E X, then s E Var(P) 

8 : S --"> "~ 

x = ~[~],  --* • 
i fp  r A 

Occur Check Rules (Check) 

x < t[x] --~ T 

if p4 r A for some i 

xa < x2 A .. . A xn <_ xl A P "+ P{x~ w+ xl, . . . , xn  ~"~ xa } A A x4 = xl 
i = 2  

Removing ground terms occurring on the right (Ground  1) 

x ~ _ t A P - - ~  V x = u A P { x ~ - * u }  
u ~ t  

if t e T(F) 

Fig. 1. The set T~o of rules 

4 B a s i c  P r o p e r t i e s  o f  I n e q u a t i o n a l  P r o b l e m s  

In this section, we state the basic (crux) properties of inequational problems. 

L e m m a 2 .  The set of solutions of an inequational problem is stable by homo- 
morphism i.e. given any tree-morphism 0 from T ( F )  into itself i f  ~ ~ I, then 
0 o ~  I0.  

For example, if there is no constant occurring in I ,  and a E F is a constant, 
then the set of solutions is stable under the morphism {a ~-~ t} for any ground 
term t. 

We can also take advantage of the following straightforward remark: 
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L e m m a  3. I f  I is a conjunction of inequations of the form x <_ t where x is a 
variable and t is a non-ground term, then, for  any ground term u, lhe substitution 
~ mapping every variable of I on u is a solution of I .  

As a corollary, the following rule preserves the satisfiability: 

Separate 
I 1 A  I2 A sl <_ t l  A .. .A  s~ < tn ~ I1 

for every i, Va'r(ti) ~ Var(I1) U Var(s~ , . . . ,  sn), and 
I2 consists of inequations z _< s where x is a variable and s is a non-ground term. 

Indeed, if cr is a solution o f /1 ,  then the substitution tr o ~r, is a solution of 
/1 A Iv_ A sl <_ t l  A . . .  A s~ < t,~ for some large enough u. Actually, it is sufficient 
to choose for u a term larger than s lo - , . . . ,  s ,~ .  This is always possible, except 
if F contains two distinct constants and no function symbol of arity larger or 
equal to 2. This latter case is discarded now: the case of unary function symbols 
can be solved by means of au tomata .  

The above remarks also suggest to remove inequations s _< x from [ when 
s is a ground term. Indeed, if c~ is a solution of the remainder of the problem, 
then it will be enough to compose ~ with a well chosen homomorphism ({a ~ s} 
for example),  leading to a solution of I .  This is not completely correct as the 
remainder of I may contain occurrences of constants (and hence be modified by 
the morphism).  So, we will "freeze" the inequations ~ _< x when the variables of s 
only occur on the left, waiting until the rest of the problem is solved. Then, either 
s _< x has become ground along the transformation (leading to either T or •  
or else we will be able to construct a solution out of a solution of the non-frozen 
part,  thanks to the stability by homomorphism.  Let us show an example: 

Example ~,. 
Let I be g(a) < x A :e < f ( a , y )  A x < f ( y , a )  A y < x. We freeze g(a) <_ x. The 
two inequations x < f (a ,  y) A x < f ( y ,  a) are equivalent to x <_ f (a ,  a) V x < y 
(see the next sections). In the first case, using the "R0-normalization, we get a 
contradiction with the frozen part  g(a) < x which has become ground: g(a) < 
f (a ,  a). In the second case, we get y = x. Prom any substitution a = {x ~-~ 
s; y ~ s} (which is a solution of the hot part)  we get a solution 0 ocr of I ,  
by composition with the morphism 0 = {b ~ g(a)} where b is any constant 
occurring in s. 

Let us consider a new syntactic construction (for strategic purposes only) in 
inequational formulae: conjunctions of inequations may be surrounded by brack- 
ets {} in which case, the inequations are frozen. This will be managed by the 
following rule: 
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F r e e z e  
{ Z ~ } A s < t A h  - .  { Z ~ / ~ s < ~ } A h  
If there is no variable in s occurring in some right hand side of an inequation of/2 

The non-frozen part  of a conjunction of inequations I will also be called the 
hot part  of I and written H ( I ) .  

5 Elimination of multiple upper bounds 

The S e p a r a t e  rule allows to eliminate variables which occur only in right sides 
of inequations (take h = 0). F r e e z e  eliminates (from the hot part)  variables 
which occur only on r~he left. It  is also possible to eliminate the variables which 
are bound only once; the rule: 

E l i m i n a t e  
{p}  A Q A x < s --+ {P{~ ~ st} A Q{x ~+ s} 
If x does not occur irL s nor in any left member of an ineqaation of P or Q 

preserves the satisfiability. Indeed, if cr is a solution of { P }  A Q A x < s, consider 
the substitution 0 which is identical to (r, except on x where xO =_ s~r. Of course, 0 
still satisfies any inequation in which x does not occur. It  also obviously satisfies 
x _< s. Then, it only remains to consider inequations in which x occurs on the 
right. Let y _< t be such an inequation. Then yO = yo'<lt~<ltO since xcr<ls~ = xO. 
Hence 0 is also a solution of y < t. 

The problem is now illustrated by example 3: some variable may be bounded 
twice by "incompatible" terms. In order to express that  x is bounded by both s 
and t, we write x E s&t .  This will be useful for keeping track of the deductions 
we already considered. 

Let g be the set of terms in T ( F  U {&},X)  where & is assumed to be 
associative-commutative and is used in infix notation. Ground expressions e E g 
are interpreted as finite sets of terms as follows: 

[s&q 
[f(sl,...,sn)] 

Z(f(sl,..., s~)) 
Z(s~t) 

def  
= t[41 n [t~ 
de=r Is1] U . . . U ~s~] U { f ( t l ,  . . . , t~ )  I Vi, h C [si]} 

dof {S( t , , . . . ,  t~) I Vi, t~ ~ Z( sd )  

For example, Z ( g ( f ( a , g ( a ) ) ~ h ( b , g ( a ) ) ) )  = { g ( a ) , g ( g ( a ) ) ) :  the first g cannot 
be erased, whereas the other occurrences of g (below &) can be erased. Let us 
emphasize that  [.~ stands for the set of all terms embedded in the expression, 
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whereas :Z-, which is only used above the first occurrence of a &, imposes that  no 
symbol is erased until an & is reached. 

Then, we introduce a new predicate symbol E with the following meaning: the 
solutions o f s  E e, where s E T(F, X)  and e E g is the set of ground substitutions 

such that  scr E g(e~r). For example, the solutions of x E g(l~(y))&k(g(y)) 
are the substitutions {x ~,  g(s); y ~-~ s} for some ground term s and the 
substitutions {x ~-* k(s); y ~ s} for some ground term s. 

The occur-check relation is the smallest reflexive-transitive relation <ore on 
the variables of an inequational problem I such that:  

- if u[x] < y is in I ,  then x -<o'~ Y 
- if ~: E y&e is in I,  then x _<oIc y 

Gathering together the bounds of a variable x is expressed using the new 
predicate symboh 

B o u n d s  

X ~ 8 1 A . . . A x  ~ s  n --+ X C 8 1 ~ . . . & 8  n 
if x is maximal w.r.t. _<oc among the variables occurring in inequations of the hot 
part of the problem, and s l , . . . ,  s~ are all the terms occurring on the right of an 
inequation whose left member is x, and n _> 2. 

The correctness of this rule is quite straightforward. "Deciphering" member-  
ship conditions consists in replacing x E e with a conjunction of inequations; for 
e E $, we define ~)(s E e) as the set of inequations s ~ t where t is any normal  
form of e w.r.t the rewrite system 

U ~V  ---+ 73 

Ut~V "-+ ~3 

Now, we are ready to give the additional rules dealing with the new syntactic 
constructions. They are given in figures 2 and 3. 

The rule system 7~1 acts on normal forms w.r.t. ~0.  It  consists of all rules of 
figures 2, 3 and of tile rule B o u n d s .  The new rules S e p a r a t e  and F r e e z e  which 
are displayed in this figure are generalizations of the previous ones (hence we do 
not have to give new names), incorporating the new syntactic construction. 

L e m m a 4 .  All rules of T~l - { S e p a r a t e ,  U n b o u n d e d - V a r }  preserve the sa~- 
isfiability of inequational problems. 

This is mostly a mechanical verification. Note however that,  for e E g, we 
always have g(e)  C_ [[4, but the converse is false when the top symbol of e is not 
&. Consequently, the G r o u n d  2 rule or the second F r e e z e  rule which replaces 
x E e with ~ ( x  E e) may, locally, add solutions. But they don' t  add solutions 
to the original inequational problem as the additional solutions can be found in 
another disj unct. 
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E l i m i n a t e  

if x does not  occur in s nor in ~ny left member  of an inequat ion of P or Q 

G r o u n d  2 

z E e - ~  ~ ( z  E e) 
if there is an inequat i~n x < t with t ground in T)(z E e) 

& - n o r m a l i z a t i o n  

.,t~)~g(~,...,~m)] ~ V �9 e @~g(~,..., s~) ]v  
i = l  
m 

V ~ E 4S(~,. . . , t~)~,] 
i=l 

i f f # g  

x E e [ f ( t l , . . . ,  t * * ) ~ f ( s l , . . . ,  s~)] --~ x E e [ f ( s l S z t l , . . . ,  s,~s 

V ~ e @~f01, . . . ,  s~)]v 
i = l  

n 

V �9 e ~[f(tl,...,t~)~,,] 
i=l 

G r o u n d  2 

if there is an inequat ion x _< t with t ground in ~D(x E e) 

C h e c k - &  

E ~[u[~]p~s] ~ x E ~[s] 
if there is no ~ symbol along the path p 

C h e c k - E  

P A xo  E x l , ~ e l  A . . .  A x ~  E x o l ~ e ~ + l  --~ xo = x l  A . . .  A Xo = x n  

A x 0  E e l ~ = .  �9 �9 '~:en+l 

AP{xl  ~ x0; , . , ;  x ,  ~-* x0} 

F ig .  2. The set ~1 of rules. Par t  I 



384 

Separate 

A . ,  * - A 
i6~ iEJ t:E~ j E J  

If 1. no rule from ~0, & : - n o r m a l i z a t i o n ,  G r o u n d  2 can be applied to the 
problem on the left 

2. V is a subset of the variables occurring in the problem on the left 
3. For all i E Z, Var(x~, ei) C V 
4. For all j E if, Var(e')) A V 7~ 0 
s. For ~n k e ~c, v , ~ ( ~ )  n v = o ~ d  w ~ ( t A  n v # 0 
6. Var(P_v) N V = O. 

U n b o u n d e d - V a r  

If y doesn't  occur in any left side of a membership condition or an inequation, there 
is no & along the path p, and the & : - n o r m a l i z a t i o n  rules cannot be applied. 

F r eeze  
{I1} A s < t A I 2 - ~  { I a A s < t } A I 2  

If there is no v~riable in s which occurs in either some right hand side of an 
inequation of /2  or in some right side of a membership condition of I2. 

If x does not occur in e nor in Is. 

F ig .  3. The set 7Q of rules. Part  II 

Also~ we need an extens ion of l e m m a  3 in order  to prove the correctness  of  

the  S e p a r a t e  rule: 

L e m m a 5 .  Assume that I consists of membership conditions x E e only and 
that [ is irreducible w.r.t. & - n o r m a l i z a t i o n  and G r o u n d  2. Then, for every 
ground term t, there is a solution ~ of I such that, for every variable x of l ,  
t ,~ xo'. 

Pro@ Replace  every a t o m  x E t~[z l&e l , . . . ,  z,~&en] in the  inequa t iona l  p rob l e m 
I wi th  3 x l , . . . , x ~ . x  = t ~ [ x l , . . . , x ~ ] A x l  E z l & e l . . . A x n  E z ~ e ~  where  
t~ doesn ' t  conta in  any occurrence of  & ( this  is of  course correct) .  We get  an 
equa t iona l  pa r t  I1 and  a con junc t ion  [2 of a t o m s  of  t i le form x E z&e where  z is 
a var iab le  (by i r reduc ib i l i ty  w.r . t .  & : - n o r m a l i z a t i o n ) .  Then ,  for every g round  
t e r m  u, c,~ is a so lu t ion  of I~. We prove this  resul t  by induc t ion  on the  sum of  
sizes of all expressions occurr ing  on the r ight  of the  m e m b e r s h i p  condi t ions  of 

I2. 



385 

If all membership conditions are of the form x E t where t does not contain 
any &, this is a consequence of lemma 3. In the same way, if the only occurrences 
of & are in expressions z i & . . . & z ~  where z i , . . . , z ~  are variables, then c% is 
obviously a solution. 

Now, assume that there is a condition x E z l & . . . & z n & e  where e is not 
a variable. Then, by irreducibility w.r.t. & - n o r m a l i z a t i o n ,  e can be written 
u[y i&ei , . . . ,  yk&ee] (/~ >_ 0) where u does not contain any occurrence of & 
and Yi , . . . ,  Yk are variables. Moreover, there is an index i such that  G r o u n d  
2 would not apply on x E yi&ei. (For,  otherwise, G r o u n d  2 would apply on 
x E z i&. . .&z~&e) .  Applying the induction hypothesis to I~ in which ~ E 
Zl&... &zn&e is replaced with x E yi&ei, we get the result that au is a solution 
of this new membership system. But, if xa~ E [yia~&eic%~, then , afortiori,  

We conclude the proof by considering the substitutions Ou which assign to 
each x E Var(1) the term t~[x~, . . . ,  xn]cr~: 0~ is a solution of I and u <1 x0~. [] 

L e m m a 6 .  The rules S e p a r a t e  and U n b o u n d e d - V a r  preserve the satisfiabil- 
ity of inequational problems. 

L e m m a 7 .  Assume that r is E-flee and r ~ O. Then all variables occurring 
Til 

as left members of membership conditions in "~ do not occur in any left hand 
side of an inequation of 0. 

This is a consequence of the maximality conditions on x in the B o u n d s  rule. 

L e m m a  8. Considering ~ i  as acting on normal forms w.r . t  T~o (i.e. we assume 
an T~o-normalization after each T~l-reduetion), we get a terminating reduction. 

Indeed, if we only consider the hot part of inequational problems, the number 
of variables occurring in left sides of inequations is not increasing. No rule can 
introduce variables in left hand sides of inequations, except the rules which 
replace a variable with some other variable in the whole problem (with the 
C h e c k  and Check-E  rules) and the G r o u n d  2 rule. In the former case, the 
number of variables occurring in left sides of inequations is not increasing. In the 
latter case, by "/~0-normalization, x must be replaced everywhere with a ground 
term, which means that it does no longer occur in a left side of an inequation. 
Now, by lemma 7, the number of variables occurring in left sides of inequations 
of the hot part is strictly decreasing as soon as B o u n d s  is applied. 

Now, if there is no occurrence of B o u n d s  in the reduction sequence, the &- 
normalization alone terminates (and is independent of the other rules), G r o u n d  
rules eliminate variables and all other rules reduce the size of the problem. 

6 E l i m i n a t i n g  C y c l e s  

In this section, we restrict our attention to the hot part r of an inequational 
problem I irreducible for TO0 U TCi. The transformation rules that we have given 
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so far yield problems whose hot parts are either T or _1_, or problems involving 
some non-trivial cycles as defined below. For studying the properties of such 
cycles, we associate a weighted, oriented graph G e with an inequational problem 
r irreducible for "/~0 UT~i. Examining this graph will give us both the application 
conditions of our last rule and the termination proof. 

6.1 I n t e r p r e t i n g  I n e q u a t i o n a l  P r o b l e m s  i n t o  G r a p h s  

The vertices of G r are the variables of r The graph G ~ has two different kind 
of arcs, and several arcs may  connect two vertices: 

D e f i n i t i o n 9 .  Let r be an inequational problem, irreducible for 7~0 t2 7~i. The 
graph G r has the variables of r for vertices and 

- There is an arc x ~ y if and only if there is an inequation u[x]p <_ y in r 
where the weight I P I of the arc is the length of position p. 

- There is an arc x ,' p y if and only if there is an a tom x E e in r and 
x <_ t[y]p belongs to D(x E e), where the weight I P I of the arc is the length 
of position p. 

A non-trivial cycle is a cycle (i.e., a non-trivial path with the same target and 

origin) involving arcs of the form x ~ y and arcs of the form x ~ y. The 
weight of an arc in superscript will be dropped if irrelevant. 

It  turns out that  if an inequational problem, irreducible for T~0 U 7~1 is not 
T or J_, then the associated graph G r will contain a non-trivial cycle. 

It follows from the l emma 7 that  if there is an arc x ~P' x~ in G r then all 
PJ 

the in-going arcs of x are of the form x ~ x j ,  and they all come from the same 
a tom x E e [ x l , . . . , x ~ ]  of r 

In case G r contains no arcs of the form x ~ y, then S e p a r a t e  applies with 
V = Var(r  turning the hot part  of the problem into T. We have the following 
straightforward lemma: 

L e m m a  10. Let r be an inequational problem, irreducible for 7~o U T~i. Then 

G r has at least one are of the form x ~ y. 

We can now restrict our attention to the problems involving arcs of the form 

x ~ y. Now, a crucial property of G ~ will locate where to apply our last rule: 

L e m m a  11. Let r be an inequalional problem, irreducible for 7~o U 7~i. I f  G 4~ 
contains an arc x ~ y with p r A, then there is a vertex z >_or Y whose in-going 

arcs are all of the form z ~, q z' wilh [ q lT~ O. 

Proof. Consider a maximal  (i.e. without any in-going arcs) strongly connected 
component  C of G r Let V a t ( C )  be the set of vertices of C. C cannot be reduced 
to a singleton {x} since U n b o u n d e d - V a r ,  S e p a r a t e ,  or E l i m i n a t e  would 
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apply. Indeed, in this case, x having no in-going arc could not appear  anywhere 
in a left-hand side of an inequation or a membership condition. 

We assume now that  Vat(C) is not a singleton, and we first show, by con- 

tradiction that  C contains an arc of the form x ~ y with p # A. Assume the 
converse. Then there is no inequat ionin r of the form u[x]p < y with p 5s A and 

x E Var(C) because if y E Vat(C),  then the edge x el:= y would belong to C 
and otherwise, C would have an in-going arc. Let Atom(C) be the set of a toms 
of r containing a variable of Var(C). The atoms of Atom(C) are then of one of 
the following forms: 

- x E e, w h e r e  x U Vat(e) C_ Vat(C), 
- s _< x ,  w h e r e  x E Var(C) a n d  Vat(s) M Var(C) = ~, 
- x E e, w h e r e  x r Vat(C) a n d  Var(e) M Vat(C) 7k O. 

In this case, Vat(C) matches the application conditions of S e p a r a t e ,  a contra- 
diction. 

Consider now an arc x ~ y of C and let z be a variable, such that  z _>o, Y, z 
being maximal  for the occur-check relation. C having no in-going arc, z belongs 

to C. Since z is maximal  for _>oc, its only in-going arcs are of the form z ~ z~, 
with q r A.n 

The previous l emma shows that  one of the following rules can be applied to 
a problem r irreducible for 7~0 U T~I, whenever r contains an inequation. 

E x p l o d e  

X E ~ [ e l , . . . ,  Chip1 ..... p,~ A ~) --+ 
n 

= , [ z , ,  . . , z . ] p ,  . . . . .  A A z, e 
i=1 

if no rule of ~0 U T~I applies, and x is mammal for _<or and there is an inequation 
u[y]p < x' with p r A in r and x >o~ x', and pl :fi A, . . .  ,p~, ~ A, where el . . . .  , e~ 
are the maximal subterms of t with top function symbol &. 

The rule E x p l o d e  preserves the sets of solutions, according to the semantics 
of the predicate E. Note in addition that  the proof of l emma 11 shows tha t  if 

G r contains an edge x ~ y with p 7s A, then it contains a non-trivial cycle 

since both an edge x ~ y and an edge x ~ ( q y~ belong to the same strongly 
connected component.  The partial  correctness of our algorithm is given by the 
following lemma: 

L e m m a  12. If  the hot part r of an inequalional problem I ~ _L, irreducible for 
Tto U TQ, is not T, then the rule E x p l o d e  applies. 

Indeed, such a problem must  contain an inequation u[y]p with p r A, other- 
wise S e p a r a t e  would apply, reducing the hot part  of the problem to T. In this 
ease, l emma 11 shows that  E x p l o d e  applies. 



388 

We are left to show that  the process of applying E x p l o d e  and re-normalizing 
the problem with 7~0 U ~1 terminates.  

6.2 T e r m i n a t i o n  

We prove the termination by defining a well-founded ordering > w  on graphs 
such that  if E x p l o d e  is applied to a problem r and the resulting problem is 
re-normalized for n 0  U T~I, yielding a problem r then G r > w  G ~. 

D e f i n i t i o n l 3 .  Let P a t h ( G  r be the set of maximal  paths of G r of the form 

x ~ Yl ~p~" Y2 p3 Y3"" "Yn-1 ~p~ Yn, which do not contain twice a same arc 
P~+I  

(by maximal we mean that  there is no further arc y~ ~ Y~+I). 

With a path  7 ~ = x ~ Yl p2 Y2 p3 Y3""Yn-1  *~''~'' Yn E Path(Gr  we 
associate the weight W ( P )  = ([ Pl l, n. I P,  ] " I P~-I [ "'" ] P2 l). The ordering 
> w  on graphs is the multiset extension of the ordering obtained by comparing 
lexicographically the weights of the paths of Path(Gr using the usual ordering 
on natural  numbers for the first component,  and alphabetic 1 ordering on words 
of natural  numbers for the second component.  

L e m m a  14. Let r be an inequational problem, irreducible for Tto U Ttl. Assume 
E x p l o d e ,  is applied 1o r followed by a normalization for T~o U TQ, yielding a 
problem ~,. Then G r > w  G r 

Proof. (Sketched) Assume that  E x p l o d e  is applied to x C t [ u l , . . . ,  u,~]p~ ..... p, 
' where the z~s are new in r the variable x being replaced by t [ z~ , . . . ,  z,~]p~ ..... p~, 

variables. The resulting problem is then normalized for ~.0 U 7~1, yielding the 
problem r The atoms involving x before E x p l o d e  is applied to the a tom x C t 
are of one of the following forms: 

- vk  E t ' [ X ] q ~  

- ~ [ y ] ~  _< x 

The last inequation is irrelevant for our measure. Note that  the pis are different 
from A by the application conditions of E x p l o d e  (and l emma 11), and that  
x cannot occur in a left-hand side of an inequation. The corresponding arcs, 
(including a possible additional path  going through x and leading to an arc 
w' ~ w) are as follows: 

1 The alphabetic ordering is not well-founded (there are infinite descending sequences 
1 > 0 �9 i > 0 .0  - 1.. .) ,  but our ordering is well-founded since the first integer in a 
word is its length. 
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\ \ 

w t y 

z j  . . .  

After applying Exp lode ,  the atom x E t has disappeared, and there are new 
atoms of the form z~ G ui[zj]qu. The atoms of the form vk E t'[X]qk have become 
Vk E t'[t[z~]p~]q k �9 They are normalized using the rules of &: -Normal iza t ion  into 

II y l  t l vk E t [~i]qL with [ qki [<l qk [ + ] Pi ]- The inequation u[y]r < x has become 
u[y]r < t[zi]p, which has to be re-normalized. This does not increase the weight 
since no rules (except the unification rules that will never be applied again) may 
introduce a variable in a left-hand side of an inequation, and the embedding rules 
may only decrease tt:e depth of the variables in the left-hand sides of inequations, 
which decreases the first component of the weight of the paths starting with y, 
or yield an inequation of the form u[y],. < zi. In the first case, (that is if the 

rule f ( s l , . . . , s ~ )  < f ( t l , . . . , t , ~ )  --+ A s i  < ti of E m b  is applied), then the 
i = 1  

paths starting from y have been replaced by paths of smaller weight (on the 
first component). Otherwise, the normalization yields an inequation of the form 
u[y]~ <_ z i.' The ineq~aation y _< s[x] has become y _< s[[z~,. . .  , .,~];~,...,p,], which 
is still irrelevant for our measure. The graph G r is then as follows: 

w . . .  v~ / q'ki zi 

w ~ y 

z j  . . .  

The paths of P a t h ( G  r going to y, (or to some w') trough x have been replaced 
by paths of the same length (and same weight in the first component) going 
through the z~s, buL the arcs from the zjs to x labeled with Piqij have been 
replaced by arcs fi'om the zjs to the z}s labeled by qij with Pi ~ A, all smaller 
on the second component of their weight. [] 

We can now state our main result, following by lemmas 12 and 14. 

T h e o r e m  15. The positive existential fragment of the first-order theory of home- 
omorphic embedding is decidable. 
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7 Conclusion 

We gave the first decidability result for the satisfiability of partial path  orderings. 
~re need however to go beyond: 

- we wish to investigate the full existential fragment of the theory of embed- 
ding. 

- we wish to investigate the full positive theory of embedding. 
- we wish to investigate the extension to the positive existential fragment of 

any recursive path  ordering. This is not straightforward, since, for example, 
x < t where t is ground, needs not to have only finitely many  solutions. 

All these works are first steps towards the study of the theory of arbi trary partial  
recursive path  Orderings (for which we recall that  only the ~4 fragment  is known 
to be undecidable). Finally, we would like to understand better  the relationships 
with au toma ta  theory and, in particular, the combination of ordering constraints 
and sort constraints expressed in terms of the membership to recognizable tree 
languages. 
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