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Abstract 

We give a survey of concepts for system specification and design based on the 
viewpoint that a system is a community of objects. Objects are self-contained 
units of structure and behavior capable of operating independently and cooper- 
ating concurrently. Our approach integrates concepts from semantic data mod- 
eling and concurrent processes, adopting structuring principles partly developed 
in the framework of object-orientation and partly in that of abstract data types. 
A theory of object specification based on temporal logic is briefly outlined. 

1 I n t r o d u c t i o n  

The components of large software systems often do not fit together well. The imped- 
ance mismatches between programming languages, database systems and operating 
systems are notorious. And extending or adapting a software system is, if feasible at 
all, expensive and error-prone. 

One of the deeper reasons for this state of affairs is that appropriate formal methods 
are missing which are powerful and versatile enough for handling the many facets of 
large software systems in a coherent way. 

For instance, information systems are usually designed by modeling and specifying 
the static structure and the dynamic behavior by independent, Often incompatible 
formalisms. Consequently, there is no uniform formal description of the entire system. 
Without such a uniform model, correctness assertions concerning the whole system 
cannot even be formulated, let alone proved [Sa92]. 

There are three successful modeling domains, each supported by languages and 
tools: abstract data types, concurrent processes and persistent data collections. For 
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CT/C/TIT/178/90 FAC3 contract. 
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the first two, we have rich bodies of theory. Each of these modeling domains addresses 
essential aspects of software systems, but none of them is broad enough to cover all 
aspects in an adequate way. 

For abstract data types, we have two lines of development, the algebraic approach 
and the model based approach. [CHJ86] gives an introduction to both. Theoreti- 
cal treatments of the algebraic approach can be found in [EGL89, EM85]. Relevant 
textbooks for diverse approaches to process theory are [He88, Ho85, Mi89, Re85]. Per- 
sistent data collections are at the heart of conceptual modeling [Bo91, CY91, GKP92, 
Gr91, HK87, RBPEL91, 1=tC92, SF91]. 

Our approach is a combination of ideas from these three fields, drawing especially 
from experience in information systems modeling and design. The ideas have been 
mainly developed in the ESPRIT Working Group IS-CORE: employing objects as 
a unifying concept and aiming at a conceptually seamless methodology from require- 
ments to implementation [EGS91, EGS92, ES91, ESS92, FSMS92, SE91, SFgl, SJE92]. 

There are many languages, systems, methods and approaches in computing which 
adopt the object paradigm, among them programming languages, database systems, 
and system development methods. Our intention is to provide high-level system spec- 
ification languages with in-the-large features, backed by a sound theory and a coherent 
design methodology. 

Because of space limitations, we cannot go into much detail. In the next section, 
we give an intuitive survey of our concepts so that the casual reader can get an idea of 
what our approach is about. Then we take a closer look at the most important issues: 
templates, schemata involving classes, specialization, generalization, aggregation, in- 
terfacing and interaction, and finally reification and modularization. 

2 Concepts 

We view a system as a community of objects. Objects are self-contained units of struc- 
ture and behavior capable of operating independently and cooperating concurrently. 
Objects store and manipulate data, and they interact by exchanging data in messages. 
Messages are transmitted via channels which can be viewed as shared subobjects. 

In our opinion, data and objects are diffcrent kinds of entities: data are more like 
messages, namely signals to be processed, and objects are like processors processing the 
signals. Unifying these concepts as in Smalltalk is possible, but introduces unnecessary 
conceptual complication and confusion. 

Data values like integer '7' or text 'abc' are global and unchangeable. It is standard 
practice to organize data into abstract types, each encapsulating a domain of values 
and offering an interface with a specific set of operations on these values. There are well 
understood techniques and tools for specifying and designing appropriate universes of 
data types. 

Because they are unchangeable items, also object identities are considered as data. 
For conceptual modeling, it is practical to utilize the facilities of abstract data type 
specification for structuring the identities into several types, allowing for application 
specific operations combining identities to form new identities. 

Objects, in contrast, are time-varying entities, albeit with individual identities 
which do not change. An object encapsulates all its relevant static and dynamic prop- 
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erties: it has an individual behavior and an internal state changing in time. Objects 
can be composed to form complex objects, they can be related by different forms of 
inheritance, they can be interfaces of other objects, and they can interact with each 
other. 

Objects are usually organized into object classes having a time-varying population 
of (usually similar) objects as members. Object classes can be viewed as particular 
kinds of complex obj~=ts. 

An object community is a complex object designed for modeling the system at 
hand. It usually contains many object classes and individual objects. 

A conceptual schema - or s.chema for short - is a formal specification of an object 
community. 

The basic unit of a schema is a template. A template encapsulates the structural 
and behavioral properties of a specific kind of object or object class - or just an aspect 
of it. The core parts of a template describe which attributes can be observed, which 
actions can be performed, how attributes change when actions happen, under which 
conditions actions may happen, under which conditions actions are obliged to happen, 
etc. 
Example  2.1: As ml example, consider the following specification of a simple clock 
template. We use OBLOG-TROLL style pseudocode [SSE87, CSS89, JSHS91]. 

template CLOCK 
attributes 

hr: [0.. 23] 
min: [0.. 59] 
alarm?" {yes,no) 

actions 
*create ( al,'~rm: {yes, no}) 
+destroy 
t i c  ! 

valuation 
[create(a)]hr = 0 
[create (a)] min = 0 
[create(a)] alarm? m a 
[tic]hr = if min<>59 then hr else if hr-23 then 0 else hr+l 

[tic]min = if min<>59 then min+l else 0 
permission 

{create}tic 
{tic}destroy 

obligation 
{warranty=valid} =~ tic 

end CLOCK 

Please note that the specification is not complete: in order to keep the example 
intuitive, we use a warranty attribute in the obligation section, and in order to keep 
the example small, we do not specify it in the attributes and valuation sections. 

The specification says that a CLOCK is a kind of object with three attributes, hr, 
rain and alarm?, giving rise to the following possible observations: 

hr=O .... , hr=23, min=O .... , min=59, alarm?=yes, alarm?=no. 

The third attribute indicates whether the clock has an alarm facility or not. 
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The action section says that a clock can be created (* indicates a birth event), 
giving as a parameter whether it has an alarm facility or not, or that it can be destroyed 
(+ indicates a death event), or that it can tick. The symbol ! indicates initiative, i.e., 
that the clock can actively perform the action by its own initiative 1. 

The valuation section specifies the effects of actions on attributes in an obvious 
way. The permission section specifies preconditions for actions to happen, i.e. safety 
constraints: a clock can only tick after creation, and it can only be destroyed after it 
has ticked (at least once). The obligation section specifies that a clock must tick i f -  
and as long as - there is a warranty. 

There is no specification about how the t i c  action affects the alarm? attribute: we 
assume a frame default rule saying that an attribute doesn't change unless explicitly 
specified otherwise. [] 

The conceptual schema of an object community has to specify not only templates, 
but also relationships between templates. Such relationships comprise several kinds 
of interaction (action calling or sharing, synchronously or asynchronously), ways of 
how objects can be put together to build complex objects (aggregation of parts), ways 
of how aspects can give different views of the same object (specialization, roles) or a 
unified abstract view of different objects specified before (generalization), and ways of 
abstracting only part of the features specified (interfacing, hiding). 
E x a m p l e  2.2: Referring to our clock example, we might want to specify an alarm 
clock as a specialization of CLOCK. We inherit the specification given above and add 
the special alarm clock items in a specification like this: 

template ALARM-CLOCK 
special CLOCK .here alarm?=yes 

. . ~  

end ALARM-CLOCK 

We omit the details. In a similar way, we may further specialize to specify a snoozer- 
alarm-clock, various clock versions, say, with different styles of showing the time (En- 
glish, German , . . .  ), etc. 

The specialization given above is static in the sense that it is determined by the 
alarm? attribute which is set at creation time and cannot change during lifetime. 
Often, an object can enter and leave special roles during lifetime, like persons becoming 
patients for a while. We could have modeled a dynamic alarm clock which enters this 
role, say, by pressing the alarm-on button, and becomes a usual clock again by pressing 
the a l a rm-of f  button: 

template DYNAMIC-ALARM-CLOCK 
role of CLOCK 

actions 
*alarm-on 
+alarm-off 
. . o  

end DYNAMIC-ALARM-CLOCK 

1The other actions are passive, i.e. they can only occur by some othcr object's initiative via 
interaction. Therefore, these serviccs should probably be called passions. 
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Here, * and + indicate role entry and exit rather than birth and death. The attributes 
and actions specified here apply only during the alarm phase, otherwise they are not 
enabled. Again, we omit the details. 

In another specification section, we might want to specify how clocks are put to- 
gether from parts. To this end, we would probably like to reuse specifications set up 
before, for instance that of a battery. 

Somewhere in the same or another specification section, we might want to specify 
how the parts interact and cooperate to perform the desired function. We might also 
want to specify how clocks interact with their environment, e.g., their users. 

Later on, we might be interested in reusing part of our clock design to specify the 
generalized concept of a device for weights and measures, generalizing clocks, pairs of 
scales, etc. 

Another abstraction we might want to specify is putting an interface, or view, on 
our clock, hiding the inner mechanism and showing only the observable display. Maybe 
another object uses just this, triggering its operation by the time observed. In general, 
hiding introduces nondeterminism: the clock changes its time while the reason for this 
is not apparent from the interface actions (of course, we are used to looking at clocks 
as being among the most deterministic devices ever, although we do not see the inner 
mechanism; but still.., think about it!). [] 

All inter-template relationships mentioned in the example can be based on the 
concept of incorporating one template into another one, like clock into alarm-clock. 
We elaborate on this idea in the next section. 

Having set up a specification for an object community, we would like to under- 
stand precisely what it means. Roughly speaking, the semantics describes all possible 
actual populations and all possible dynamic behaviors of such populations. An actual 
population consists of a set of object instances, structured in a way permitted by the 
schema. At any point in time, a single object instance is in some state, given by the 
current values of its attributes, the set of currently enabled actions, the set of actions 
currently happening, and the execution state of its process. We do not presume that 
larger aggregations of objects, nor the entire object community, have a definable state: 
if there is no system-wide clock synchronizing everything, the concept of global state 
may be inadequate. 

If we have completed the specification of an object society and understood it thor- 
oughly, the work is not yet done: we might want to implement it. 

To this end, we reffy our specification, i.e., give a more detailed description on a 
lower level of abstraction, using a given implementation platform. In particular, spec- 
ification level (concurrent) actions will be reified to implementation level (serialized) 
transactions. If the system is large and the gap between abstraction levels is big, we 
would like to reify in pieces and steps, addressing amanageable portion of the whole 
task at a time. For verification purposes, we would like to make the relationship be- 
tween the specified abstract interface and that of the implementation platform very 
precise. And we would like to know whether the entire system is correctly implement- 
ed if we have made the single tasks right, parallel steps (horizontal composition) as 
well as subsequent steps (vertical composition). 

For reusing work done before, we would like to encapsulate, and probably param- 
eterize, typical modules that have an abstract 'top' interface and a concrete 'bottom' 
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one, putting the abstract interface into operation once the services of the concrete one 
are provided. The other way round, if we have a library of such modules available, we 
would like to find the ones we need in an effective way and integrate them easily into 
our design. 

In the sections to follow, we give more details on the concepts mentioned above. 
The salient feature of our approach is to integrate concepts from semantic data model- 
ing and concurrent processes, adopting structuring principles partly developed in the 
framework of object-orientation, and partly in that of abstract data types. 

3 Templates 

Templates represent structure and behavior patterns for kinds of objects. Example 
2.1 shows a typical template specification: structure is described by attributes, and 
dynamic behavior by actions. Axioms express, among others, the effects of actions on 
attributes and the permissible and obliged occurrences of actions. 

Since we envisage objects to appear in multiple specializations or roles, we will 
have to cope with several templates for one kind of object, each one describing some 
aspect of the object. Examples 2.1 and 2.2 show CLOCK as an aspect of ALAR~I-CLOCK. 
Also for composite objects, we will have to cope with several interrelated templates 
for describing one object: the composite template incorporates the templates of the 
parts. Therefore, it is essential to study not only templates, but also appropriate 
relationships between templates. 

We distinguish between templates and types. In a sense, templates are like types: 
they give critera for the kind of object accepted in a certain context. In another sense, 
however, templates are different from types: they do not provide a domain of possible 
instances. For that, we must add a domain of identities lESS89, JSHS91]. 

We already made the distinction between templates and classes: the latter describe 
time-varying populations of (usually similar) objects as members. Object classes can 
be viewed as particular kinds of complex objects. So we also have templates for classes, 
as we will see in the next section. 

Technically speaking, templates are adequately modeled as processes endowed with 
data. We give a particularly simple template model where enabled and occurring 
actions as well as data observations are uniformly treated as facts: sets of facts describe 
situations, finite or countably infinite sequences of situations describe life cycles, and 
sets of life cycles describe template processes. Amazingly enough, this simple model is 
powerful enough to serve as a semantic basis for languages like TROLL [JSHS91, Ju93]. 

A template defines a set of actions and a set of attributes with their value domains. 
For each action a, we have two facts (propositions): ~>ot (o~ is enabled), and | (a  
occurs). For each attribute a and each value v in its domain, we have a fact a = v 
with obvious meaning. This way, a template defines a set of facts F which we take as 
our abstract notion of signature. 

Def ini t ion 3.1 : A template signature is a set F of facts. 
At any point in time, we observe that some facts hold true: some actions are 

enabled, some occur, and attributes have certain values. A situation over F is a set 
of facts a _ F. Usually, not every subset of F represents a meaningful situation. For 
instance, we expect that actions are enabled when they occur, that each attribute has 
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at most one value, etc. We do not elaborate on this point here. 
Taking the facts as atomic formulas of a propositional logic, we obtain a situation 

logic for talking about static object situations conforming with the template at hand. 
Given a set F of facts, a life cycle )~ = (al, a2, a3,.. .  ) over F is a finite or infinite 

sequence of situations over F.  It represents a specific run of an object conforming with 
the template. Our process model is a set A of life cycles over F:  a process represents 
all possible runs of an object conforming with the template. 

An appropriate logic for talking about template dynamics is temporal logic [Pn77, 
Se80, FM92, SSC92]: adding modalities always [7, sometime 0 and next 0 extends 
our situation logic to what we call our template logic TL. TL is similar to OSL [SSC92] 
and to the logic used in [Ju93]. 

In the rest of this section, we give precise definitions for the most fundamental con- 
cepts in our approach: template specifications and template specification morphisms, 
together with their fo~rmal semantics. 

Def in i t ion  3.2 : A template specification is a pair 0 = (F, g/) where F is a 
template signature, and �9 is a set of axioms, i.e., formulas of TL. 

The models of teiaplate logic are life cycles A = (a l ,a~ ,a3 , . . . )  where ai,i = 
1, 2 , . . . ,  are situations. The semantics [0]  of a template specification is the set of 
all its models, i.e., a process. That  is, we employ a loose semantics describing the 
template's possible behavior in a most liberal way: every system run is permitted as 
long as it does not violate axioms. If �9 = 0, we write [F] instead of [0].  

For studying relationships among templates, we use maps h : F1 --+ F~ between 
sets of facts as signature morphisms. In practical cases, signature morphisms will send 
facts to "similar" facts (enablings to enablings, occurrences to occurrences, etc.), but 
the theory works - and is a lot simpler! - without making such assumptions. 

Let h : F1 -+ F2 be a signature morphism. Using this map in the reverse direction, 
we can translate each life cycle A2 = (a~l, a22, ~2a,... ) over F2 to the life cycle A1 = 
(ffll,O'12, a13,. . .  ) over F1 by defining a,, = {fcF2 I h(f)ea2~} for all i = 1 ,2 , . . .  

This defines a reduction map h ~ : [F2] -+ [F1]. 
If h is an inclusion, h ~ restricts each A2 to F1. Referring to examples 2.1 and 2.2, 

each hLARM-CLOCK life cycle is reduced to a CLOCK life cycle by just keeping the CLOCK 
facts and omitting the others. 

Def in i t i on  3.3 : Let 01 = (F1, 91) and 02 = (F2' g/2) be template specifications. 
A template specification morphism h : 01 --+ O~ is a signature morphism h : F1 -+ F2 
such that  ~2 entails h~(g/l). 

h~(~l) is the obvious translation of formulas, applying h to facts and leaving the 
rest unchanged. If h is an inclusion, h ~ is just the identity map. 

The semantics of a template specification morphism is a reduction map h b : [02] --+ 
[01] preserving models: h b sends each life cycle satisfying 92 to one satisfying ~1. 

We note in passing that template logic as outlined above forms an institution 
[GB92] (cf. also [SCS92]). 

4 S c h e m a t a  

A schema is a formal specification of an object community. Its semantics is given by 
the permissible populations of the community, the permissible interactions between 
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its members, the permissible behaviors of its members, and their possible states. 
Template specifications are the atomic units of a schema, but they rarely occur 

in isolation. The predominant description units are template clusters, specification 
"molecules" so to speak, interrelated in a characteristic way. We explain the most 
important of these clusters: classes, specialization, generalization, aggregation, inter- 
facing, and interaction. 

Classes. There is some confusion around the class concept in object-oriented 
approaches. In programming, a class is considered to be like a template in our sense. 
In the database field, a class is considered to be an abstraction of the file concept: 
it represents a time-varying collection of members (records). We follow this latter 
concept. 

A class is specified by giving a template together with a naming mechanism for the 
members of the class. The template specification gives the "record schema" describing 
the permissible members, and the rest of the class specification describes the permis- 
sible structure and dynamics of the collection. Often, most of the latter is a hidden 
"standard package" which the user doesn't specify: it provides actions for insertion, 
deletion and update, and attributes like the current set of members, its cardinality, 
etc. In TROLL, the specifier has to provide only the domain of identities for members. 
For more details, the reader is referred to [JSHS91, ES91, ESS92, SJE92]. 

The semantics of a class specification is given by its expansion to a template spec- 
ification, making the above mentioned class structure and behavior explicit. 

Thus, a class is a particular kind of object - or, rather, aspect! Indeed, classes are 
subject to the structuring principles to be explained below: they can be specializations 
or roles or generalizations of other classes, etc. 

Specialization.  By specialization we mean what often is called "inheritance": we 
specify a specialization of a template by inheriting the latter. But there is too much 
confusion around inheritance, so we avoid this term altogether. 

Example 2.2 gives an example of how specialization is handled in TROLL. This 
example also shows our concept of roles, i.e., dynamic specialization. 

Specialization (static and dynamic) is formally described by a template specifica- 
tion morphism which is an inclusion. Referring to example 2.2, the morphism includes 
the CLOCK specification textually into that of ALAt~-CLOCK (or DYNAblIC-hLhP, bl-CLOCK, 
respectively). 

The semantics is a reduction of (dynamic) alarm clock life cycles to pure clock life 
cycles by omitting the special facts, as explained in the previous section. 

This way, an alarm clock (any kind) can be viewed as a clock, i.e., it can be treated 
as a clock in any context where a clock is expected. For instance, it can be a member 
in some class of clocks, together with other special kinds of clocks, giving the class 
concept a polymorphie flavor although it is formally monomorphic. 

As for dynamic specialization: it is not obvious how the semantics of objects which 
run through phases should be, and how to reason about them. For instance, consider 
a person with an attribute weight running through a patient phase. Suppose that 
the patient template has special actions changing the weight, like surgery. After ter- 
minating the patient phase, this action is no longer in the scope of that person, it is 
unknown to her or him. But it left its effcct as a change of weight behind which is now 
unexplainable from visible actions. For specifying the person template, this means 
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that we cannot adopt the frame default rule mentioned in example 2.1: the weight 
can change "spontaneously". Reasoning is a problem, too: how can we prove anything 
about the person's weight? Should it be possible to reason with actions outside the 
current scope? Or should we choose the union of all possible phases as scope of rea- 
soning? The interplay between multiple specializations and roles of the same object 
is a delicate point in itself. These problems need further study. 

The object aspects ~pecified in a specialization cluster must be present in any state: 
an alarm clock/s a clock at any time, and a patient/s a person at any time. This is 
in contrast to the mea~dng of aggregation clusters to be explained below. 

General iza t ion.  Generalization is the reverse of specialization: if we have already 
specified several speciaJL templates, we want to recognize and specify an aspect common 
to all of them. For instance, if we already have patients and employees in our schema, 
we might want to specify persons, integrating properties common to both patients and 
employees. 

In a sense, this is reminiscent of view integration studied extensively in conceptual 
modeling and database design. 

Logically and semantically, the situation is similar to specialization. We cannot go 
into further detail here. 

Aggregat ion.  Aggregation concepts are standard in many languages and model- 
ing approaches: objects are aggregated to form complex objects. 

The template of a complex object incorporates those of its parts in much the same 
way as a specialization incorporates an aspect. In fact, on the template level, there is 
no difference between ~r and aggregation: both are formalized by template 
morphisms which are inclusions or injections, respectively. The difference is with the 
intended interpretation. The parts of an aggregated template are to be interpreted by 
different objects, not by aspects of the same object. The parts relationship may be 
dynamic: a complex object may insert and delete components. 

Complex objects may share parts: whatever happens in a shared part affects all 
objects sharing it. For example, consider two persons sharing a job. If the job gets 
better paid, both persons are happy. 

While the syntax of aggregation is textual inclusion, its semantics is given by 
parallel composition. For instance, if 01 = (Ft, ~ )  and 02 = (F~, gl~) are templates 
and O1 +192 = (F1 +F2, ~l  +g/2) is their aggregation (disjoint union), then [(91 +02] = 
[(9~l H [O2l where [[ denotes disjoint parallel composition, i.e., the set of all life cycles 
whose projections are in |01] and in |02], respectively [ES91]. 

Interfacing.  The concept of interfacing is well known, e.g., from database views. 
On the template level, an interface to an object is like a generalization of this object, 
it provides part of the services and hides the rest. The semantics, however, is different: 
the interface is intended to be a separate object with its own identity. 

Also the pragmatics of interfacing is different. While generalizations of determin- 
istic objects are most often intended to be still deterministic, this is not the case with 
interfacing. Like in read-only database views, we accept and expect behavior which is 
determined by hidden actions so that the interface shows "spontaneous" moves in a 
nondeterministic way. While our logic and semantics are powerful enough to capture 
nondeterminism (this is not obvious, but we cannot explain it here), reasoning in such 
a framework is not an easy problem. 
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In terac t ion .  Interaction is essential for an object community to cooperate in a 
meaningful way. For specification and modeling, there are several concepts available: 
synchronous or asynchronous interaction, and symmetric or directed interaction. 

In our approach, we adopt synchronous symmetric interaction by event sharing 
and synchronous directed interaction by event calling. 

The easiest way to give interaction a formal semantics in our framework is via 
constraints: synchronous calling al >> a2 of action a~ by action al is captured by the 
constraint that, whenever al occurs in some situation in a life cycle, as must occur 
in the same situation in the same life cycle. Synchronous sharing is easily treated as 
mutual calling. 

Also asymmetric forms of interaction can be given a precise meaning in our theory, 
namely via lifeness constraints. We did not exploit this so far. 

More elaborate forms of interaction can be described via shared components: they 
can act as channels synchronizing all objects sharing the actions happening in the 
channel. Also interaction via "shared memory" can be treated this way, by sharing 
attributes as well. The formal semantics of interaction by sharing coincides with that 
of aggregation with shared parts. 

5 Reification 

R.eification means implementation: an abstract object is reified by describing it in 
more detail on a lower level of abstraction, using the features of a given base object 
(which will typically be composite). The purpose is that, once the services of the base 
object are provided, the abstract object is put into operation. 

The problem has been studied extensively in algebraic data type theory [EGL89, 
EM90] and in the theory of processes [REX89, Br91]. In our approach, aspects of both 
theories are involved [SJE92, SGS92]. 

For example, consider the reification of an object class EMPLOYEE by a relational 
database relation F21PA~EL plus appropriate transactions. If address is an attribute 
of an F.2IPLOYEE, we may implement it by several attributes in FA~P.REL like s t r e e t ,  
number, city, zipcode, etc. If, say, fire is an action for an EMPLOYEE, its implemen- 
tation will be a transaction consisting of a series of deletions, insertions and updates, 
probably distributed over several database relations. 

For describing reification, we have to combine three objects: the abstract object, 
the (composite) base object, and a "middle" object specifying how to bridge the gap, 
i.e., how the abstract services depend on the base services. That is, the middle object 
consists of an aggregation of the two others, enriched by a specification how to reify 
abstract attributes by base "data structures" (combinations of base attributes), and 
abstract actions by (possibly concurrent) base transactions. 

In order to show correctness of an implementation, we need to know which base data 
structures represent which abstract attributes. Let Oa denote the abstract template, 
and let Ob denote the base template. Let F~ be the set of finite conjunctions of facts 
in Fb. We capture correct representation by an abstraction function [Ho72], i.e., a 
partial surjective map c~ : F~ ---r Fa sending conjunctions of base attribute-value facts 
to abstract attribute-value facts. For example, each meaningful combination of street, 
number, city, zipcode, etc. data is mapped to one abstract employee address, and each 
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of the latter should be represented by some such combination of data. Please note 
that a is always undefined on action enablings and occurrences. 

Unless c~ is injective, the inverse image a-1 may associate more than one alterna- 
tive base representation with an abstract attribute-value fact. Such alternative rep- 
resentations often occur in practice. As an example, consider buffers: many internal 
representations represent one and the same abstract queue state. 

The middle template is of the form Or, = ea  + eb + ec  where er describes how 
the abstract items in e~ are "programmed" on top of the base items in eb. Given 
abstraction map a, tile correctness criteria are given by a set .4 of formulas saying 
that each middle situation must contain some base representation for each abstract 
attribute-value fact. t?or each such fact a = v e F~ , its inverse image a - l ( a  = v) = 
{pl , . . . ,Pr}  gives the set of its alternative representations. Then we have .4 = { 
E](a = v =r pl V . . .  V pr) I a = v e Fa}. as theorems to be proved in the middle 
template. 

As for the semantics: each middle life cycle contains an abstract and a base life 
cycle where it can be projected to by the corresponding reduction maps. The criteria 
,4 make sure that the middle life cycles coordinate the abstract and base actions in 
such a way that, at any moment, the observable attribute-value facts are in correct 
interrelationship. 

There is, however, one problem: it is not practical to assume that the abstract 
and base life cycles are in perfect step-to-step synchronization. On the contrary, one 
abstract action will usually be reified by a base transaction consisting of many single 
actions extending over some span of time. We capture this by allowing for empty 
situations being interspersed in life cycles, as appropriate. These empty situations 
serve as placeholders, i.e., as "virtual" steps where nothing is observable, nothing is 
enabled, and nothing happens. By this life cycle stretching, the "real" situations in 
an abstract life cycle can be positioned into any place and synchronized with their 
corresponding representations in the base life cycles. 

Of course, the logics and semantics of templates has to be reconsidered carefully 
in view of life cycle stretching. For instance, the temporal next operator O becomes 
somewhat problematic, but this is inevitable anyway when it comes to reification. An- 
other problem is the frame default rule mentioned in example 2.1, but this rule has 
to be reconsidered anyway in view of nondeterminism as introduced by interfacing. 
Please note that the correctness criteria ,4 defined above are vacuous for virtual ab- 
stract situations, so they are trivially satisfied there. This allows for base intermediate 
steps whithout correct representation requirements, a feature badly needed in practice. 

With the logics and semantics worked out appropriately, we obtain a general ab- 
stract serializability criterion, leaving much freedom for implementing any practical 
transaction management system. 

As pointed out in section 2, it is most important that a reification concept displays 
horizontal and vertical composability. We are confident that our approach indeed 
enjoys these properties. 
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6 Modularization 

It is commonplace that modularization is of paramount importance to software con- 
struction and reconstruction. The object concept itself is a sort of modularization 
principle, but a rather in-the-small one. For effective software reuse~ we need an in- 
the-large concept which makes it possible to put modules into a library, find the ones 
we need and put them together effectively. 

Such modules should have standardized interfaces by which they easily fit together 
- like LEGO bricks [Co90]. At least two interfaces are indispensible: a "downward" 
one for accepting lower-level services, and an "upward" one for providing higher-level 
services. Hidden in its body, the module should have correctly implemented the latter 
on top of the former. Often, it is necessary to have more than one "upward" interface, 
like databases with multiple views [Sa92, SJE92]. 

That is, reification as outlined in the previous section is one of the essential concepts 
for modules. 

Situations are becoming rare where we have to build new software. Reusing and 
adapting old software is greatly supported by a module concept which tells how to 
encapsulate existing software and put it together with other software. 

Software is rarely designed for one specific purpose, and it is rarely reused in exactly 
the same way as it was once implemented. What is needed is a way to make modules 
generic and being able to instantiate them with various actual parameters. This way, 
a module can fit flexibly into many different environments, reducing the need for costly 
ad-hoc design and implementation. 

Therefore, what is needed is a concept for parameterization and instantiation for 
modules. Algebraic data type theory provides an elaborate theory of parameterization 
[EGL89, EM85] where essential ideas can be drawn from. The problem, however, is 
to integrate parameterization with reification, and it is not obvious how to do that in 
our approach. The notion of framework [JF88, TNG92] promises to be useful in this 
context. 

7 Concluding Remarks 

The tour d'horizon given in this paper touches on many issues where the details have 
to be worked out. Our goal is a coherent methodology based on a sound theory and 
backed by an operational language and tool environment. 

One important fundamental concept which has hardly been mentioned is instances. 
The idea is that objects are named instances of (clusters of) templates, but the picture 
has to be detailed carefully. As pointed out in section 2, an object instance runs 
through states. The state tells what the current values of attributes are, which actions 
are enabled and which are occurring, and what the object's "rest" process is which 
it can pursue from the current state on. The operational semantics of an object 
community specification, i.e., of a schema, should tell precisely how the states of 
objects in the community look like and how they change. In particular, it should 
make precise how the states of aggregated objects are composed from those of the 
parts. Ultimately, the state of the entire object community is characterized as an 
aggregation of the states of its members. 
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However, the concept of (central) state is not always adequate, for instance if the 
system is truly distributed, i.e., without some central coordination. Here we come to 
the limits of our object model: as it is, it does not capture truly distributed cases. It 
is good practice to identify large portions of the system where a central state makes 
sense, for instance the sites of the distributed system, so here we can use our approach. 
Giving a logics and semantics for an entire truly distributed system, however, would 
require to substitute our process model by another one, involving true concurrency 
and distributed states. Petri nets may be a good idea. We are confident that it is 
possible to substitute other process models into our approach. 

The conceptual and theoretical work presented in this paper is part of a coordinat- 
ed effort which also comprises practical work, developing object specification languages 
OBLOG [SSE87, CSS89] and TROLL [JSHS91]. Work on prototype implementations 
is in progress. The E.S.D.I. company in Lisbon is developing OBLOG into a commer- 
cial product. 

Languages and tools for an object system design and specification approach should 
be based on a systematic methodology [CY91, Gr91, Lo93]. Work on methodology 
was not in the focus of our activities so far, but we expect that it will become more 
important in the future. 

Another promising line of research is to incorporate "knowledge" into our approach. 
Our situation concept Isets of facts) is open for generalization to other kinds of formu- 
las, e.g., deduction rulq~. Also, default reasoning is becoming very interesting [Br92]. 
We expect that object-oriented and knowledge-based approaches can be integrated 
along our lines. 
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