
Constructing Systems as Object Communities *

H a n s - D i e t e r E h r i c h

Gr i t Denke r

Abteilung Datenbanken, Technische Universit~it, Postfach 3329

W-3300 Braunschweig, GERMANY

Ami l ca r Se rnadas

Computer Science Group, INESC, Apartado 10105

1017 Lisbon Codex, PORTUGAL

Abstract

We give a survey of concepts for system specification and design based on the
viewpoint that a system is a community of objects. Objects are self-contained
units of structure and behavior capable of operating independently and cooper-
ating concurrently. Our approach integrates concepts from semantic data mod-
eling and concurrent processes, adopting structuring principles partly developed
in the framework of object-orientation and partly in that of abstract data types.
A theory of object specification based on temporal logic is briefly outlined.

1 I n t r o d u c t i o n

The components of large software systems often do not fit together well. The imped-
ance mismatches between programming languages, database systems and operating
systems are notorious. And extending or adapting a software system is, if feasible at
all, expensive and error-prone.

One of the deeper reasons for this state of affairs is that appropriate formal methods
are missing which are powerful and versatile enough for handling the many facets of
large software systems in a coherent way.

For instance, information systems are usually designed by modeling and specifying
the static structure and the dynamic behavior by independent, Often incompatible
formalisms. Consequently, there is no uniform formal description of the entire system.
Without such a uniform model, correctness assertions concerning the whole system
cannot even be formulated, let alone proved [Sa92].

There are three successful modeling domains, each supported by languages and
tools: abstract data types, concurrent processes and persistent data collections. For

*This work was partly supported by the EC under ESPRIT BRA WG 3023/6071 IS-CORE and
WG 3264/6112 COMPASS, by DFG under Sa 465/1-1 and Sa 465/1-2, and by JNICT under PM-
CT/C/TIT/178/90 FAC3 contract.

454

the first two, we have rich bodies of theory. Each of these modeling domains addresses
essential aspects of software systems, but none of them is broad enough to cover all
aspects in an adequate way.

For abstract data types, we have two lines of development, the algebraic approach
and the model based approach. [CHJ86] gives an introduction to both. Theoreti-
cal treatments of the algebraic approach can be found in [EGL89, EM85]. Relevant
textbooks for diverse approaches to process theory are [He88, Ho85, Mi89, Re85]. Per-
sistent data collections are at the heart of conceptual modeling [Bo91, CY91, GKP92,
Gr91, HK87, RBPEL91, 1=tC92, SF91].

Our approach is a combination of ideas from these three fields, drawing especially
from experience in information systems modeling and design. The ideas have been
mainly developed in the ESPRIT Working Group IS-CORE: employing objects as
a unifying concept and aiming at a conceptually seamless methodology from require-
ments to implementation [EGS91, EGS92, ES91, ESS92, FSMS92, SE91, SFgl, SJE92].

There are many languages, systems, methods and approaches in computing which
adopt the object paradigm, among them programming languages, database systems,
and system development methods. Our intention is to provide high-level system spec-
ification languages with in-the-large features, backed by a sound theory and a coherent
design methodology.

Because of space limitations, we cannot go into much detail. In the next section,
we give an intuitive survey of our concepts so that the casual reader can get an idea of
what our approach is about. Then we take a closer look at the most important issues:
templates, schemata involving classes, specialization, generalization, aggregation, in-
terfacing and interaction, and finally reification and modularization.

2 Concepts

We view a system as a community of objects. Objects are self-contained units of struc-
ture and behavior capable of operating independently and cooperating concurrently.
Objects store and manipulate data, and they interact by exchanging data in messages.
Messages are transmitted via channels which can be viewed as shared subobjects.

In our opinion, data and objects are diffcrent kinds of entities: data are more like
messages, namely signals to be processed, and objects are like processors processing the
signals. Unifying these concepts as in Smalltalk is possible, but introduces unnecessary
conceptual complication and confusion.

Data values like integer '7' or text 'abc' are global and unchangeable. It is standard
practice to organize data into abstract types, each encapsulating a domain of values
and offering an interface with a specific set of operations on these values. There are well
understood techniques and tools for specifying and designing appropriate universes of
data types.

Because they are unchangeable items, also object identities are considered as data.
For conceptual modeling, it is practical to utilize the facilities of abstract data type
specification for structuring the identities into several types, allowing for application
specific operations combining identities to form new identities.

Objects, in contrast, are time-varying entities, albeit with individual identities
which do not change. An object encapsulates all its relevant static and dynamic prop-

455

erties: it has an individual behavior and an internal state changing in time. Objects
can be composed to form complex objects, they can be related by different forms of
inheritance, they can be interfaces of other objects, and they can interact with each
other.

Objects are usually organized into object classes having a time-varying population
of (usually similar) objects as members. Object classes can be viewed as particular
kinds of complex obj~=ts.

An object community is a complex object designed for modeling the system at
hand. It usually contains many object classes and individual objects.

A conceptual schema - or s.chema for short - is a formal specification of an object
community.

The basic unit of a schema is a template. A template encapsulates the structural
and behavioral properties of a specific kind of object or object class - or just an aspect
of it. The core parts of a template describe which attributes can be observed, which
actions can be performed, how attributes change when actions happen, under which
conditions actions may happen, under which conditions actions are obliged to happen,
etc.
Example 2.1: As ml example, consider the following specification of a simple clock
template. We use OBLOG-TROLL style pseudocode [SSE87, CSS89, JSHS91].

template CLOCK
attributes

hr: [0.. 23]
min: [0.. 59]
alarm?" {yes,no)

actions
*create (al,'~rm: {yes, no})
+destroy
t i c !

valuation
[create(a)]hr = 0
[create (a)] min = 0
[create(a)] alarm? m a
[tic]hr = if min<>59 then hr else if hr-23 then 0 else hr+l

[tic]min = if min<>59 then min+l else 0
permission

{create}tic
{tic}destroy

obligation
{warranty=valid} =~ tic

end CLOCK

Please note that the specification is not complete: in order to keep the example
intuitive, we use a warranty attribute in the obligation section, and in order to keep
the example small, we do not specify it in the attributes and valuation sections.

The specification says that a CLOCK is a kind of object with three attributes, hr,
rain and alarm?, giving rise to the following possible observations:

hr=O , hr=23, min=O , min=59, alarm?=yes, alarm?=no.

The third attribute indicates whether the clock has an alarm facility or not.

456

The action section says that a clock can be created (* indicates a birth event),
giving as a parameter whether it has an alarm facility or not, or that it can be destroyed
(+ indicates a death event), or that it can tick. The symbol ! indicates initiative, i.e.,
that the clock can actively perform the action by its own initiative 1.

The valuation section specifies the effects of actions on attributes in an obvious
way. The permission section specifies preconditions for actions to happen, i.e. safety
constraints: a clock can only tick after creation, and it can only be destroyed after it
has ticked (at least once). The obligation section specifies that a clock must tick i f -
and as long as - there is a warranty.

There is no specification about how the t i c action affects the alarm? attribute: we
assume a frame default rule saying that an attribute doesn't change unless explicitly
specified otherwise. []

The conceptual schema of an object community has to specify not only templates,
but also relationships between templates. Such relationships comprise several kinds
of interaction (action calling or sharing, synchronously or asynchronously), ways of
how objects can be put together to build complex objects (aggregation of parts), ways
of how aspects can give different views of the same object (specialization, roles) or a
unified abstract view of different objects specified before (generalization), and ways of
abstracting only part of the features specified (interfacing, hiding).
E x a m p l e 2.2: Referring to our clock example, we might want to specify an alarm
clock as a specialization of CLOCK. We inherit the specification given above and add
the special alarm clock items in a specification like this:

template ALARM-CLOCK
special CLOCK .here alarm?=yes

. . ~

end ALARM-CLOCK

We omit the details. In a similar way, we may further specialize to specify a snoozer-
alarm-clock, various clock versions, say, with different styles of showing the time (En-
glish, German , . . .), etc.

The specialization given above is static in the sense that it is determined by the
alarm? attribute which is set at creation time and cannot change during lifetime.
Often, an object can enter and leave special roles during lifetime, like persons becoming
patients for a while. We could have modeled a dynamic alarm clock which enters this
role, say, by pressing the alarm-on button, and becomes a usual clock again by pressing
the a l a rm-of f button:

template DYNAMIC-ALARM-CLOCK
role of CLOCK

actions
*alarm-on
+alarm-off
. . o

end DYNAMIC-ALARM-CLOCK

1The other actions are passive, i.e. they can only occur by some othcr object's initiative via
interaction. Therefore, these serviccs should probably be called passions.

457

Here, * and + indicate role entry and exit rather than birth and death. The attributes
and actions specified here apply only during the alarm phase, otherwise they are not
enabled. Again, we omit the details.

In another specification section, we might want to specify how clocks are put to-
gether from parts. To this end, we would probably like to reuse specifications set up
before, for instance that of a battery.

Somewhere in the same or another specification section, we might want to specify
how the parts interact and cooperate to perform the desired function. We might also
want to specify how clocks interact with their environment, e.g., their users.

Later on, we might be interested in reusing part of our clock design to specify the
generalized concept of a device for weights and measures, generalizing clocks, pairs of
scales, etc.

Another abstraction we might want to specify is putting an interface, or view, on
our clock, hiding the inner mechanism and showing only the observable display. Maybe
another object uses just this, triggering its operation by the time observed. In general,
hiding introduces nondeterminism: the clock changes its time while the reason for this
is not apparent from the interface actions (of course, we are used to looking at clocks
as being among the most deterministic devices ever, although we do not see the inner
mechanism; but still.., think about it!). []

All inter-template relationships mentioned in the example can be based on the
concept of incorporating one template into another one, like clock into alarm-clock.
We elaborate on this idea in the next section.

Having set up a specification for an object community, we would like to under-
stand precisely what it means. Roughly speaking, the semantics describes all possible
actual populations and all possible dynamic behaviors of such populations. An actual
population consists of a set of object instances, structured in a way permitted by the
schema. At any point in time, a single object instance is in some state, given by the
current values of its attributes, the set of currently enabled actions, the set of actions
currently happening, and the execution state of its process. We do not presume that
larger aggregations of objects, nor the entire object community, have a definable state:
if there is no system-wide clock synchronizing everything, the concept of global state
may be inadequate.

If we have completed the specification of an object society and understood it thor-
oughly, the work is not yet done: we might want to implement it.

To this end, we reffy our specification, i.e., give a more detailed description on a
lower level of abstraction, using a given implementation platform. In particular, spec-
ification level (concurrent) actions will be reified to implementation level (serialized)
transactions. If the system is large and the gap between abstraction levels is big, we
would like to reify in pieces and steps, addressing amanageable portion of the whole
task at a time. For verification purposes, we would like to make the relationship be-
tween the specified abstract interface and that of the implementation platform very
precise. And we would like to know whether the entire system is correctly implement-
ed if we have made the single tasks right, parallel steps (horizontal composition) as
well as subsequent steps (vertical composition).

For reusing work done before, we would like to encapsulate, and probably param-
eterize, typical modules that have an abstract 'top' interface and a concrete 'bottom'

458

one, putting the abstract interface into operation once the services of the concrete one
are provided. The other way round, if we have a library of such modules available, we
would like to find the ones we need in an effective way and integrate them easily into
our design.

In the sections to follow, we give more details on the concepts mentioned above.
The salient feature of our approach is to integrate concepts from semantic data model-
ing and concurrent processes, adopting structuring principles partly developed in the
framework of object-orientation, and partly in that of abstract data types.

3 Templates

Templates represent structure and behavior patterns for kinds of objects. Example
2.1 shows a typical template specification: structure is described by attributes, and
dynamic behavior by actions. Axioms express, among others, the effects of actions on
attributes and the permissible and obliged occurrences of actions.

Since we envisage objects to appear in multiple specializations or roles, we will
have to cope with several templates for one kind of object, each one describing some
aspect of the object. Examples 2.1 and 2.2 show CLOCK as an aspect of ALAR~I-CLOCK.
Also for composite objects, we will have to cope with several interrelated templates
for describing one object: the composite template incorporates the templates of the
parts. Therefore, it is essential to study not only templates, but also appropriate
relationships between templates.

We distinguish between templates and types. In a sense, templates are like types:
they give critera for the kind of object accepted in a certain context. In another sense,
however, templates are different from types: they do not provide a domain of possible
instances. For that, we must add a domain of identities lESS89, JSHS91].

We already made the distinction between templates and classes: the latter describe
time-varying populations of (usually similar) objects as members. Object classes can
be viewed as particular kinds of complex objects. So we also have templates for classes,
as we will see in the next section.

Technically speaking, templates are adequately modeled as processes endowed with
data. We give a particularly simple template model where enabled and occurring
actions as well as data observations are uniformly treated as facts: sets of facts describe
situations, finite or countably infinite sequences of situations describe life cycles, and
sets of life cycles describe template processes. Amazingly enough, this simple model is
powerful enough to serve as a semantic basis for languages like TROLL [JSHS91, Ju93].

A template defines a set of actions and a set of attributes with their value domains.
For each action a, we have two facts (propositions): ~>ot (o~ is enabled), and | (a
occurs). For each attribute a and each value v in its domain, we have a fact a = v
with obvious meaning. This way, a template defines a set of facts F which we take as
our abstract notion of signature.

Def ini t ion 3.1 : A template signature is a set F of facts.
At any point in time, we observe that some facts hold true: some actions are

enabled, some occur, and attributes have certain values. A situation over F is a set
of facts a _ F. Usually, not every subset of F represents a meaningful situation. For
instance, we expect that actions are enabled when they occur, that each attribute has

459

at most one value, etc. We do not elaborate on this point here.
Taking the facts as atomic formulas of a propositional logic, we obtain a situation

logic for talking about static object situations conforming with the template at hand.
Given a set F of facts, a life cycle)~ = (al, a2, a3,.. .) over F is a finite or infinite

sequence of situations over F. It represents a specific run of an object conforming with
the template. Our process model is a set A of life cycles over F: a process represents
all possible runs of an object conforming with the template.

An appropriate logic for talking about template dynamics is temporal logic [Pn77,
Se80, FM92, SSC92]: adding modalities always [7, sometime 0 and next 0 extends
our situation logic to what we call our template logic TL. TL is similar to OSL [SSC92]
and to the logic used in [Ju93].

In the rest of this section, we give precise definitions for the most fundamental con-
cepts in our approach: template specifications and template specification morphisms,
together with their fo~rmal semantics.

Def in i t ion 3.2 : A template specification is a pair 0 = (F, g/) where F is a
template signature, and �9 is a set of axioms, i.e., formulas of TL.

The models of teiaplate logic are life cycles A = (a l ,a~ ,a3 , . . .) where ai,i =
1, 2 , . . . , are situations. The semantics [0] of a template specification is the set of
all its models, i.e., a process. That is, we employ a loose semantics describing the
template's possible behavior in a most liberal way: every system run is permitted as
long as it does not violate axioms. If �9 = 0, we write [F] instead of [0].

For studying relationships among templates, we use maps h : F1 --+ F~ between
sets of facts as signature morphisms. In practical cases, signature morphisms will send
facts to "similar" facts (enablings to enablings, occurrences to occurrences, etc.), but
the theory works - and is a lot simpler! - without making such assumptions.

Let h : F1 -+ F2 be a signature morphism. Using this map in the reverse direction,
we can translate each life cycle A2 = (a~l, a22, ~2a,...) over F2 to the life cycle A1 =
(ffll,O'12, a13,. . .) over F1 by defining a,, = {fcF2 I h(f)ea2~} for all i = 1 ,2 , . . .

This defines a reduction map h ~ : [F2] -+ [F1].
If h is an inclusion, h ~ restricts each A2 to F1. Referring to examples 2.1 and 2.2,

each hLARM-CLOCK life cycle is reduced to a CLOCK life cycle by just keeping the CLOCK
facts and omitting the others.

Def in i t i on 3.3 : Let 01 = (F1, 91) and 02 = (F2' g/2) be template specifications.
A template specification morphism h : 01 --+ O~ is a signature morphism h : F1 -+ F2
such that ~2 entails h~(g/l).

h~(~l) is the obvious translation of formulas, applying h to facts and leaving the
rest unchanged. If h is an inclusion, h ~ is just the identity map.

The semantics of a template specification morphism is a reduction map h b : [02] --+
[01] preserving models: h b sends each life cycle satisfying 92 to one satisfying ~1.

We note in passing that template logic as outlined above forms an institution
[GB92] (cf. also [SCS92]).

4 S c h e m a t a

A schema is a formal specification of an object community. Its semantics is given by
the permissible populations of the community, the permissible interactions between

460

its members, the permissible behaviors of its members, and their possible states.
Template specifications are the atomic units of a schema, but they rarely occur

in isolation. The predominant description units are template clusters, specification
"molecules" so to speak, interrelated in a characteristic way. We explain the most
important of these clusters: classes, specialization, generalization, aggregation, inter-
facing, and interaction.

Classes. There is some confusion around the class concept in object-oriented
approaches. In programming, a class is considered to be like a template in our sense.
In the database field, a class is considered to be an abstraction of the file concept:
it represents a time-varying collection of members (records). We follow this latter
concept.

A class is specified by giving a template together with a naming mechanism for the
members of the class. The template specification gives the "record schema" describing
the permissible members, and the rest of the class specification describes the permis-
sible structure and dynamics of the collection. Often, most of the latter is a hidden
"standard package" which the user doesn't specify: it provides actions for insertion,
deletion and update, and attributes like the current set of members, its cardinality,
etc. In TROLL, the specifier has to provide only the domain of identities for members.
For more details, the reader is referred to [JSHS91, ES91, ESS92, SJE92].

The semantics of a class specification is given by its expansion to a template spec-
ification, making the above mentioned class structure and behavior explicit.

Thus, a class is a particular kind of object - or, rather, aspect! Indeed, classes are
subject to the structuring principles to be explained below: they can be specializations
or roles or generalizations of other classes, etc.

Specialization. By specialization we mean what often is called "inheritance": we
specify a specialization of a template by inheriting the latter. But there is too much
confusion around inheritance, so we avoid this term altogether.

Example 2.2 gives an example of how specialization is handled in TROLL. This
example also shows our concept of roles, i.e., dynamic specialization.

Specialization (static and dynamic) is formally described by a template specifica-
tion morphism which is an inclusion. Referring to example 2.2, the morphism includes
the CLOCK specification textually into that of ALAt~-CLOCK (or DYNAblIC-hLhP, bl-CLOCK,
respectively).

The semantics is a reduction of (dynamic) alarm clock life cycles to pure clock life
cycles by omitting the special facts, as explained in the previous section.

This way, an alarm clock (any kind) can be viewed as a clock, i.e., it can be treated
as a clock in any context where a clock is expected. For instance, it can be a member
in some class of clocks, together with other special kinds of clocks, giving the class
concept a polymorphie flavor although it is formally monomorphic.

As for dynamic specialization: it is not obvious how the semantics of objects which
run through phases should be, and how to reason about them. For instance, consider
a person with an attribute weight running through a patient phase. Suppose that
the patient template has special actions changing the weight, like surgery. After ter-
minating the patient phase, this action is no longer in the scope of that person, it is
unknown to her or him. But it left its effcct as a change of weight behind which is now
unexplainable from visible actions. For specifying the person template, this means

461

that we cannot adopt the frame default rule mentioned in example 2.1: the weight
can change "spontaneously". Reasoning is a problem, too: how can we prove anything
about the person's weight? Should it be possible to reason with actions outside the
current scope? Or should we choose the union of all possible phases as scope of rea-
soning? The interplay between multiple specializations and roles of the same object
is a delicate point in itself. These problems need further study.

The object aspects ~pecified in a specialization cluster must be present in any state:
an alarm clock/s a clock at any time, and a patient/s a person at any time. This is
in contrast to the mea~dng of aggregation clusters to be explained below.

General iza t ion. Generalization is the reverse of specialization: if we have already
specified several speciaJL templates, we want to recognize and specify an aspect common
to all of them. For instance, if we already have patients and employees in our schema,
we might want to specify persons, integrating properties common to both patients and
employees.

In a sense, this is reminiscent of view integration studied extensively in conceptual
modeling and database design.

Logically and semantically, the situation is similar to specialization. We cannot go
into further detail here.

Aggregat ion. Aggregation concepts are standard in many languages and model-
ing approaches: objects are aggregated to form complex objects.

The template of a complex object incorporates those of its parts in much the same
way as a specialization incorporates an aspect. In fact, on the template level, there is
no difference between ~r and aggregation: both are formalized by template
morphisms which are inclusions or injections, respectively. The difference is with the
intended interpretation. The parts of an aggregated template are to be interpreted by
different objects, not by aspects of the same object. The parts relationship may be
dynamic: a complex object may insert and delete components.

Complex objects may share parts: whatever happens in a shared part affects all
objects sharing it. For example, consider two persons sharing a job. If the job gets
better paid, both persons are happy.

While the syntax of aggregation is textual inclusion, its semantics is given by
parallel composition. For instance, if 01 = (Ft, ~) and 02 = (F~, gl~) are templates
and O1 +192 = (F1 +F2, ~l +g/2) is their aggregation (disjoint union), then [(91 +02] =
[(9~l H [O2l where [[denotes disjoint parallel composition, i.e., the set of all life cycles
whose projections are in |01] and in |02], respectively [ES91].

Interfacing. The concept of interfacing is well known, e.g., from database views.
On the template level, an interface to an object is like a generalization of this object,
it provides part of the services and hides the rest. The semantics, however, is different:
the interface is intended to be a separate object with its own identity.

Also the pragmatics of interfacing is different. While generalizations of determin-
istic objects are most often intended to be still deterministic, this is not the case with
interfacing. Like in read-only database views, we accept and expect behavior which is
determined by hidden actions so that the interface shows "spontaneous" moves in a
nondeterministic way. While our logic and semantics are powerful enough to capture
nondeterminism (this is not obvious, but we cannot explain it here), reasoning in such
a framework is not an easy problem.

462

In terac t ion . Interaction is essential for an object community to cooperate in a
meaningful way. For specification and modeling, there are several concepts available:
synchronous or asynchronous interaction, and symmetric or directed interaction.

In our approach, we adopt synchronous symmetric interaction by event sharing
and synchronous directed interaction by event calling.

The easiest way to give interaction a formal semantics in our framework is via
constraints: synchronous calling al >> a2 of action a~ by action al is captured by the
constraint that, whenever al occurs in some situation in a life cycle, as must occur
in the same situation in the same life cycle. Synchronous sharing is easily treated as
mutual calling.

Also asymmetric forms of interaction can be given a precise meaning in our theory,
namely via lifeness constraints. We did not exploit this so far.

More elaborate forms of interaction can be described via shared components: they
can act as channels synchronizing all objects sharing the actions happening in the
channel. Also interaction via "shared memory" can be treated this way, by sharing
attributes as well. The formal semantics of interaction by sharing coincides with that
of aggregation with shared parts.

5 Reification

R.eification means implementation: an abstract object is reified by describing it in
more detail on a lower level of abstraction, using the features of a given base object
(which will typically be composite). The purpose is that, once the services of the base
object are provided, the abstract object is put into operation.

The problem has been studied extensively in algebraic data type theory [EGL89,
EM90] and in the theory of processes [REX89, Br91]. In our approach, aspects of both
theories are involved [SJE92, SGS92].

For example, consider the reification of an object class EMPLOYEE by a relational
database relation F21PA~EL plus appropriate transactions. If address is an attribute
of an F.2IPLOYEE, we may implement it by several attributes in FA~P.REL like s t r e e t ,
number, city, zipcode, etc. If, say, fire is an action for an EMPLOYEE, its implemen-
tation will be a transaction consisting of a series of deletions, insertions and updates,
probably distributed over several database relations.

For describing reification, we have to combine three objects: the abstract object,
the (composite) base object, and a "middle" object specifying how to bridge the gap,
i.e., how the abstract services depend on the base services. That is, the middle object
consists of an aggregation of the two others, enriched by a specification how to reify
abstract attributes by base "data structures" (combinations of base attributes), and
abstract actions by (possibly concurrent) base transactions.

In order to show correctness of an implementation, we need to know which base data
structures represent which abstract attributes. Let Oa denote the abstract template,
and let Ob denote the base template. Let F~ be the set of finite conjunctions of facts
in Fb. We capture correct representation by an abstraction function [Ho72], i.e., a
partial surjective map c~ : F~ ---r Fa sending conjunctions of base attribute-value facts
to abstract attribute-value facts. For example, each meaningful combination of street,
number, city, zipcode, etc. data is mapped to one abstract employee address, and each

463

of the latter should be represented by some such combination of data. Please note
that a is always undefined on action enablings and occurrences.

Unless c~ is injective, the inverse image a-1 may associate more than one alterna-
tive base representation with an abstract attribute-value fact. Such alternative rep-
resentations often occur in practice. As an example, consider buffers: many internal
representations represent one and the same abstract queue state.

The middle template is of the form Or, = ea + eb + ec where er describes how
the abstract items in e~ are "programmed" on top of the base items in eb. Given
abstraction map a, tile correctness criteria are given by a set .4 of formulas saying
that each middle situation must contain some base representation for each abstract
attribute-value fact. t?or each such fact a = v e F~ , its inverse image a - l (a = v) =
{pl , . . . ,Pr} gives the set of its alternative representations. Then we have .4 = {
E](a = v =r pl V . . . V pr) I a = v e Fa}. as theorems to be proved in the middle
template.

As for the semantics: each middle life cycle contains an abstract and a base life
cycle where it can be projected to by the corresponding reduction maps. The criteria
,4 make sure that the middle life cycles coordinate the abstract and base actions in
such a way that, at any moment, the observable attribute-value facts are in correct
interrelationship.

There is, however, one problem: it is not practical to assume that the abstract
and base life cycles are in perfect step-to-step synchronization. On the contrary, one
abstract action will usually be reified by a base transaction consisting of many single
actions extending over some span of time. We capture this by allowing for empty
situations being interspersed in life cycles, as appropriate. These empty situations
serve as placeholders, i.e., as "virtual" steps where nothing is observable, nothing is
enabled, and nothing happens. By this life cycle stretching, the "real" situations in
an abstract life cycle can be positioned into any place and synchronized with their
corresponding representations in the base life cycles.

Of course, the logics and semantics of templates has to be reconsidered carefully
in view of life cycle stretching. For instance, the temporal next operator O becomes
somewhat problematic, but this is inevitable anyway when it comes to reification. An-
other problem is the frame default rule mentioned in example 2.1, but this rule has
to be reconsidered anyway in view of nondeterminism as introduced by interfacing.
Please note that the correctness criteria ,4 defined above are vacuous for virtual ab-
stract situations, so they are trivially satisfied there. This allows for base intermediate
steps whithout correct representation requirements, a feature badly needed in practice.

With the logics and semantics worked out appropriately, we obtain a general ab-
stract serializability criterion, leaving much freedom for implementing any practical
transaction management system.

As pointed out in section 2, it is most important that a reification concept displays
horizontal and vertical composability. We are confident that our approach indeed
enjoys these properties.

464

6 Modularization

It is commonplace that modularization is of paramount importance to software con-
struction and reconstruction. The object concept itself is a sort of modularization
principle, but a rather in-the-small one. For effective software reuse~ we need an in-
the-large concept which makes it possible to put modules into a library, find the ones
we need and put them together effectively.

Such modules should have standardized interfaces by which they easily fit together
- like LEGO bricks [Co90]. At least two interfaces are indispensible: a "downward"
one for accepting lower-level services, and an "upward" one for providing higher-level
services. Hidden in its body, the module should have correctly implemented the latter
on top of the former. Often, it is necessary to have more than one "upward" interface,
like databases with multiple views [Sa92, SJE92].

That is, reification as outlined in the previous section is one of the essential concepts
for modules.

Situations are becoming rare where we have to build new software. Reusing and
adapting old software is greatly supported by a module concept which tells how to
encapsulate existing software and put it together with other software.

Software is rarely designed for one specific purpose, and it is rarely reused in exactly
the same way as it was once implemented. What is needed is a way to make modules
generic and being able to instantiate them with various actual parameters. This way,
a module can fit flexibly into many different environments, reducing the need for costly
ad-hoc design and implementation.

Therefore, what is needed is a concept for parameterization and instantiation for
modules. Algebraic data type theory provides an elaborate theory of parameterization
[EGL89, EM85] where essential ideas can be drawn from. The problem, however, is
to integrate parameterization with reification, and it is not obvious how to do that in
our approach. The notion of framework [JF88, TNG92] promises to be useful in this
context.

7 Concluding Remarks

The tour d'horizon given in this paper touches on many issues where the details have
to be worked out. Our goal is a coherent methodology based on a sound theory and
backed by an operational language and tool environment.

One important fundamental concept which has hardly been mentioned is instances.
The idea is that objects are named instances of (clusters of) templates, but the picture
has to be detailed carefully. As pointed out in section 2, an object instance runs
through states. The state tells what the current values of attributes are, which actions
are enabled and which are occurring, and what the object's "rest" process is which
it can pursue from the current state on. The operational semantics of an object
community specification, i.e., of a schema, should tell precisely how the states of
objects in the community look like and how they change. In particular, it should
make precise how the states of aggregated objects are composed from those of the
parts. Ultimately, the state of the entire object community is characterized as an
aggregation of the states of its members.

465

However, the concept of (central) state is not always adequate, for instance if the
system is truly distributed, i.e., without some central coordination. Here we come to
the limits of our object model: as it is, it does not capture truly distributed cases. It
is good practice to identify large portions of the system where a central state makes
sense, for instance the sites of the distributed system, so here we can use our approach.
Giving a logics and semantics for an entire truly distributed system, however, would
require to substitute our process model by another one, involving true concurrency
and distributed states. Petri nets may be a good idea. We are confident that it is
possible to substitute other process models into our approach.

The conceptual and theoretical work presented in this paper is part of a coordinat-
ed effort which also comprises practical work, developing object specification languages
OBLOG [SSE87, CSS89] and TROLL [JSHS91]. Work on prototype implementations
is in progress. The E.S.D.I. company in Lisbon is developing OBLOG into a commer-
cial product.

Languages and tools for an object system design and specification approach should
be based on a systematic methodology [CY91, Gr91, Lo93]. Work on methodology
was not in the focus of our activities so far, but we expect that it will become more
important in the future.

Another promising line of research is to incorporate "knowledge" into our approach.
Our situation concept Isets of facts) is open for generalization to other kinds of formu-
las, e.g., deduction rulq~. Also, default reasoning is becoming very interesting [Br92].
We expect that object-oriented and knowledge-based approaches can be integrated
along our lines.

Acknowledgements
Thanks to all IS-COILS colleagues who contributed to the development of ideas pre-
sented here. In particular, Cristina Sernadas, Gunter Saake and Ralf Jungclaus par-
ticipated in discussing the basic ideas of objects and object descriptions. Felix Costa's
contributions to object semantics as well as Jose Fiadeiro's and Tom Maibaum's con-
tributions to object logic are gratefully acknowledged. We have taken some inspira-
tion from Gunter Saake's Ilabilitationsschrift [Sa92] and Ralf Jungclaus' Doktorarbeit
[Ju931.

References
[Bo91] Booch,G.: Object-Oriented Design. Addison-Wesley, Reading (Mass.) 1991

[Br91] Broy, M.: Compositional Refinement of Interactive Systems. Technical Report, Tech.
Univ. Miinchen ,~nd DEC System Research Center, Palo Alto, 1991

[Br92] Bra6,S.: Defaults in deduktiven Datenbanken. Dissertation, Universigit Hannover
1992

[CHJ86] Cohen,B.;Harwood,W.T.;Jackson,M.: The Specification of Complex Systems. Ad-
dison Wesley, Re,~ing 1986

[Co90] Cox,B.J.: Planning the Software Industrial Revolution. IEEE Software, vol 7, no 6,
1990, 25-33

466

[CSS89] Costa,J.-F.;Sernadas,A.;Sernadas,C.: OBL-89 Users Manual (version 2.3). Internal
Report, INESC, Lisbon 1989

ICY91] Coad,P.;Yourdon,E.: Object-Oriented Design. Pergamon Press, Englewood Cliffs
1991

[EGL89] Ehrich,H.-D.;Gogolla,M.;Lipeck,U.: Algebralsche Spezifikation Abstrakter Daten-
typen. Teubner-Verlag, Stuttgart 1989

lEGS91] Ehrich, H.-D.; Goguen, J.A.; Sernadas, A.: A Categorial Theory of Objects as
Observed Processes. Proc. REX/FOOL School/Workshop, deBakker, J.W. et. al.
(eds.), LNCS 489, Sprlnger-Verlag, Berlin 1991, 203-228

lEGS92] Ehrich,H.-D.;Gogolla, M.iSernadas,A.: Objects and Their Specification. Proc. 8th
Workshop on Abstract Data Types, M. Bidoit, C. Choppy (eds.), LNCS 655,
Springer-Verlag, Berlin 1992, 40-66

[EM85] Ehrig,H.;Mahr,B.: Fundamentals of Algebraic Specification 1. Springer-Verlag,
Berlin 1985

[EMg0] Ehrig,H.;Mahr,B,: Fundamentals of Algebraic Specification 2. Springer:Verlag,
Berlin 1985

[ESgl] Ehrich, H.-D.; Sernadas, A.: Fundamental Object Concepts and Constructions. In-
formation Systems - Correctness and Reusability, Proc. ISCORE Workshop'91 (G.
Saake, A. Sernadas, eds.), Informatik-Berichte 91--03, Tcchn. Univ. Braunschwelg
1991, 1-24

[ESS89] Ehrich,H.-D.;Sernadas,A.;Sernadas,C.: Objects, Object Types, and Object Identi-
fication. In Categorical Methods in Computer Science (H. Ehrig et al, eds.), LNCS
393, Springer-Verlag, Berlin 1989, 142-156

[ESS92] Ehrich,H.-D.;Saake,G.;Sernadas,A.: Concepts of Object-Orientation. Proc.
2nd Workshop Informationssysteme und Kfinstliehe Intelligenz: Modellierung,
Informatik-Fachberichte 303, Springer-Verlag, Berlin 1992, 1-19

[FM92] Fiadeiro,J.;Malbanm,T.: Temporal Theories as Modularisatlon Units for Concurrent
System Specification. Formal Aspects of Computing 4 (1992), 239-272

[FSMS92] Fiadeiro,J.;Sernadas,C.;Malbaum,T.;Sernadas,A.: Describing and Structuring
Objects for Conceptual Schema Development. Conceptual Modelling, Databases and
CASE: An Integrated View of Information Systems Development (P.Loucopoulos,
l:t.Zicari,eds.), John Wiley, New York 1992, 117-138

[GB92] Gnguen,J.A.;Burstall,R.M.: Institutions: Abstract Model Theory for Specification
and Programming. Journal of the ACM 39 (1992), 95-146

[GKP92] Gray, P.M.D.;Kulkarni,K.G.;Paton,N.W.: Object-Oriented Databases: A Semantic
Data Model Approach. Prentice Hall, Reading 1992

[Gr91]

[He88]

[HK87]

[Ho72]

[Ho85]

Graham,L: Object-Oriented Methods. Addison Wesley, New York 1991

Hennessy, M.: Algebraic Theory of Processes. The MIT Press, Cambridge 1988

Hull,R.;King,R.: Semantic Database Modelling: Survey, Applications, and Research
Issues. ACM Computing Surveys 19(1987),201-260

Hoare,C.A.R.: Proof of Correctness of Data Representations. Acta Informatlca 1
(1972), 271-281

Hoare,C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs 1985

467

[JF88] Johnson,R.E.;Foote,B.: Designing Reusable Classes. Journal of OO Programming,
vol 1, no 2, 1988, 22-35

[JSHS91] Jungclaus, R.; Snake, G.; Hartmann, T.; Sernadas, C.: Object-Oriented Speci-
fication of Information Systems: The TROLL Language. Informatik-Bericht, TU
Braunschweig 1991

[Ju93] Jungclans, R.: Logic-Based Modeling of Dynamic Object Systems. Doktorarbeit,
TU Braunschweig 1993

[Lo93] L6hr-Richter,P.: Generische Methoden f'dr die friihen Entwurfsphasen yon Informa-
tionssystemen. Doktorarbeit, TU Braunschweig 1993

[Mi89] Milner~R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs 1989

[Pn77] Pnueli,A.: The Temporal Logic of Programs. Proc. 18th FOCS 1977, 46-57

[RBPEL91] Rumbaugh,J.;Blaha,M.;Premerlani,W.;Eddy, F.;Lorensen,W.: Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs 1991

[RC92] Rolland,C.;Cauvet,C.: Trends and Perspectives in Conceptual Modeling. Concep-
tual Modelling, Databases and CASE: An Integrated View of Information Systems
Development (P.Loucopoulos, R.Zicari,eds.), John Wiley, New York 1992

[Re85] Reisig,W.: Petri Nets: An Introduction. Springer-Verlag, Berlin 1985
[REX89] de Bakker,J.W.;de Roever,W.-P.;Rozenberg,G.(editors): Stepwise Refinement of

Distributed Systems: Models, Formalism, Correctness. Proe. REX Workshop 1989,
LNCS 430, Springer-Verlag, Berlin 1990

[Sa92] Saake, G.: Objektorientierte Spezifikation yon Informationssystemen: Konzepte und
Sprachvorschliige. Habilitationsschrift, TU Braunschweig 1992

[SCS92] Sernadas,A.;Co~3ta,J.F.;Sernadas,C.: An Institution of Object Bebaviour. Preprint
22/92, IST Lisbon 1992

[Se80] Sernadas,A.: Temporal Aspects of Logical Procedure Definition. Information Sys-
tems 5 (1980), 167-187

[SE91] Sernadas,A.;Ehrich,H.-D.: What is an Object, After All? Object Oriented Data.
bases: Analysis, Design and Construction (R.Meersman, W.Kent, S.Khosla, eds.),
North Holland, Amsterdam 1991, 39-69

[SF91] Sernadas,C.;Fiadeiro,J.: Towards Object-Oriented Conceptual Modelling. Data and
Knowledge Engineering 6(6), 1991, 47-508

[SGS92] Sernadas,C.;Gouveia,P.;Sernadas,A.: Refinement: Layered Definition of Conceptu-
al Schemata. Information System Concepts (E.Faikcnberg, C.Rolland, E.N.E1-Sayed,
eds.), North-Holland, Amsterdam 1992, 19-51

[SJE92] Saake,G.;Jungclaus,R.;Ehrich,H.-D.: Object-Oriented Specification and Stepwise
Refinement. IFIP Transactions C: Communication Systems, Vol. 1: Proc. Open Dis-
tributed Processing, J. de Meer, V. Heymer, R. Rotb (eds.), North-Holland, Berlin
1992, 99-121

[SSC92] Sernadas,A.;Sernadas,C.;Costa,J.F.: Object Specification Logic. Preprint 20/92,
IST Lisbon 1992

[SSE87] Sernadas,A.;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Specification of Databases:
An Algebraic Approach. Proc. 13th VLDB, Stocker,P.M.; Kent,W. (eds.), Morgan-
Kaufmann Publ. Inc., Los Altos 1987, 107-116

[TNG92] Tsichritzis,D.;Nierstrasz,O.;Gibbs,S.: Beyond Objects: Objects. Int. J. of Intelli-
gent and Cooperative Information Systems, vol 1, no 1, 1992, 43-60

