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Abs t r ac t .  We define a General Pattern Matching problem and we show 
that several compiling problems in programming languages, like pattern 
Matching in ML and the calling mechanism of Prolog can be formalized 
as instances of the General Pattern Matching problem. As a consequence 
of this, the solutions of the general problem which are compiling algo- 
rithms can be instantiated into compiling algorithms for the instances. 
In particular, the proof of the decidability of the existence of optimal so- 
lutions is a proof of the decidability of the instances. This approach can 
be used for the meta-compilation of pattern-matching problems, for the 
implementation of languages or systems that contain different instances 
of the general problem and for the implementation of systems using Call 
by Name style of evaluation for which completeness and optimality are 
equivalent. 

Introduct ion 

In 1979 ttuet and L4vy [1, 2] proposed a method for the compilation of pat tern 
matching problem with linear non ambiguous patterns. In 1988 Lavilte[4, 5] 
adapted this result for the matching of linear pat tern with priority rule for 
disambiguation. In 1990 Puel and Sugrez [7] extended ttuet and L4vy results for 
a family of terms called constrained terms in order to solve the call by pat tern 
matching problem of the compilation of the language ML. 

In this work, we propose a generalization of the pat tern matching defined in 
[1] and a compilation algorithm. We define and prove properties of sequentiality 
and opt imal i ty  of this algorithm. We check the correspondence between the 
notion of sequentiality in [1] and here. 

After this theoretical results, we show how the problem addressed in [1] can 
be seen as a particular case of our general pat tern  matching problem. Finally, we 
show how to use this results in practice in order to build compilers of matching 
primitives of programming languages. Two kinds of instances of the matching 
problem are defined. Those based on the matching of terms and those based on 
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unification. We check the inheritance of the general result of sequentiality and 
optimality for these instances. 

1 T e r m s  a n d  C o n s t r a i n t s  

Def in i t i on  1 Let Z and X be two disjoint sets of symbols representing respec- 
tively variables and term constructors. The set T of t erms  is composed by: 

t e rms  
T : : = x  x E X  

] F(Q, . . . , t ,~)  F E r , Q , . . . , t , ~  E T n >_ 0 

N o t a t i o n  In what follows, we abbreviate the sequence of t erms  t l , .  .. ,t,~ by t,~. 
A linear term t is a term in which variable names  are pairwise distinct. A sub- 
stitution is a morphism over terms.  A term t is more general than another term 
t' denoted t -4 ff i f  there exists a substi tution s such that s(t)  = if; in this case we 
also say that ff is an instance of t. Two terms  t and ff are compatible denoted 
t T t'  i f  there exists a substi tution s such that s(t)  = s( t ' ) .  A closed term is a 
term without variables. 

The occurrences 0 are sequences of pairs formed  by a term constructor F E 
and an integer i denoted F i ( notice that the sequence of integers represents 

the usual notion of  occurrence). The empty  sequence is denoted e. Let t be a 
term, the set of occurrences o f t ,  denoted O(t) ,  is the subset of  O defined by 

O ( F ) =  {e} 
O ( F ( ~ ) )  = {e} u {Fi .u l  u E O ( t d ,  1 < i < n}.  

The subterm of a term t at occurrence u, denoted t / u  is defined by 

t / e  = t 

The label of a term t at occurrence u, denoted t(u) is defined by 

x(e) = x i f  x E X 
t(e) = F i f t  = > o 
t ( u ) = ( t / u ) ( e )  i f u e e  

An  occurrence v is a prefix of another occurrence u, denoted v _<pr~nx u i f  and 
only i f  there exists an occurrence w such that u = vw.  An  occurrence u is incom- 
patible with a t erm t i f  there exist two occurrences v and w such that u = vw, 
v E O(t) ,  t / v  = F ( t ~ ,  w = Gi .w ' and F 5s G o r i  > n. An  occurrence u 
overpass a term t if  there exists v <prefix u such that v ~ O(t)  and t(v) E X (in 
other words, nei ther  u E O(t)  nor u is incompatible with t) .  The set Var(t) of 
variables of  a term t is {x  E X l 3 u  E O(t)  such that t (u)  = x} .  

E x a m p l e  1 Let Z = { f , g , a } ,  x E X and t = f ( g ( a ) , x ) .  O( t )={e  f l , f 2  f i g 1 } ,  
t i e  = t, t / f  a = g(a),  t / f i g  I = a, t / f  ~ = x. f2g l  overpass t and f l f l  is 
incompatible with t. 
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D e f i n i t i o n  2 Let ,4 be a set. The constraints are predicate logic expressions 
with constants true, false and atoms A E ,4. 

constraints 
C : :=  A A E .A (Atomic constraints) 

I t rue ]false 
I Cl VC2 Cl,C2 E C 
[ ClAC2 Cl,52 E C 
[-,c c ~ C  

To each atomic constraint A is associated a subset of 0 denoted U(A) and a 
valuat ion function ~2(A) : T --+ C. The valuat ion function of atoms is extended 
to any constraint as Jollows: 

F(t rue)( t )  = true 
l;(false)(t) = false 

12(cl V c2)(t) = true if~Y(cl)(t) = true 
or ~2(c2)(t) = true 

"12@1 V c2)(t) = false if "12(Cl)(t) = false 
a .d  V(e2)(t) = false 

V(c~ v c2)(t) = V(c~)(t) v V(c2)(t) 
otherwise 

1;(cl A c2)(t) = true /f l;(cl)(t) = true 
and Y(c2)(t) = true 

V(Cl A e2)(t) ~-- false ifl2(Cl)(t) = false 
or V(e2)(t) = false 

V(~I A c2)(t) = V(cl)( t )  A V(c2)(t) 
otherwise 

F(~c)(t) = true /f V(e)(t) = false 
12(~c)(t) = f a l s e / f  12(c)(t) = true 
v(-,~)(t)  = -~ (V(c ) ( t ) )  

otherwise 

The instances of a constraint C are the set Ins t (C)  = {t E Tl•(C)(t) = true}. A 
constraint C implies a constraint D, denoted C ~ D, i f Inst(C) C Ins t (D) .  Two 
constraints C and D are equivalent, denoted C =- D, i f lns t (C)  = Ins t (D) .  Two 
constraints C and D are compatible, denoted C T D, i f lns t (C)  n Ins t (D)  r 0. 
Otherwise they are incompatible, denoted C ~/ D. A constraint C is compatible 
with a set of constraints II if  there exists a constraint D E H compatible with 
C. 

We define here a set of  a toms  frequently used below: the predicate Occ(u) 
tests if u belongs to the set of  occurrences of  a term. 
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D e f i n i t i o n  3 ( C o n s t r a i n t  Occ(u)) To each u C 0 is associated the predicate 
Occ(u) over terms such that U(Occ(u)) = {u} and its valuation is defined by: 

V(Occ(u))(t) = true if  u E O(t) 
= Occ(u) if  u overpass t 
= false i fu  incompatible with t 

2 G e n e r a l  P a t t e r n  M a t c h i n g  P r o b l e m  

We define pattern matching over constraints and check its correspondence with 
pattern matching over terms. 

2.1 M a t c h  ove r  c o n s t r a i n t s  

Def in i t i on  4 Let H = {M1, . . . ,M,~}  be a set of pairwise incompatible con- 
straints named patterns. The pattern matching partial function Match j7 over 
constraints is defined by Matchn(C)  = i if and only if  C ~ M~. 

Let us show how a matching problem can be seen as a Matching over constraints. 

- Atoms for matching and valuation: 

D e f i n i t i o n  5 Let A be the set of atoms of the form u '-F (u E O, F E 
and U ( u -  F) = {u}) whose valuation is defined by 

Y(u-+-F)(t) = true if u incompatible with t 
P ( u -  F)( t)  = u - I  if u overpass t 
v ( ~ -  F) ( t )  = ~rue 
V ( ~ -  F)( t )  = false if t(~) = G 

and F y~ G 
v ( ~ - F ) ( t )  = ~ - F  

i f t (u)  = r 

if t(~) e x .  

These atoms correspond to primitive comparison operations between the label 
of a term at a given occurrence and a constant. 

- To each term t is associated the constraint 

c(t) = A , ~ - ~  

t(~) = F 

- L e m m a  1 Le t t  andt '  be two terms, t - 4 t '  if and o n l y i f C ( t ' ) ~ C ( t ) .  
P r o o f :  Clearly, if t  _ t', there exists a constraint D such that C(t') = C(t)AD 
and thus, C(t') ~ e(t) .  Conversely if C(t') ~ C(t) ~ V(C(t'))(t ')  = true, 
for every u C O ( t ) ,  such that t ( ~ )  = F ,  V(~-' F)(t ' )  = re ,  e, ~ ~ O(t') 
and if(u) = t(u), otherwise, there would exist v E O(t') N O(t) such that 
t '(v) # t(v) (= c )  and thus, V ( < C ) ( t ' )  # true. ~n conclusion, t _< t'. 
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There are several algorithms to check the match of a constraint by a given 
set of patterns, named pattern matching algorithms. We will use Search trees to 
represent these algorithms. The nodes of these trees that are not leaves, have 
constraints as labels. The label of the root is true. The sons of a node with label 
C are C A D where D is either an atom or the negation of an atom and C A D 
is compatible with a pattern. The labels of the leaves are pairs (C, i) where C 
is a constraint and i is the integer such that C ~ Mi. The only freedom in the 
construction is the choice of the atom used to develop the subtrees. A pattern 
matching algorithm either associates to a given constraint a pattern or fails. 
The algorithm is said to recognize the constraint C if there exists a leave (D, i) 
such that C ~ D. 

Definition 6 Let H = {M,~} a set of pairwise disjoint constraints and s be 
a search tree corresp~,nding to 17. A term t is recognized by s if it belongs to 
the instances of one of the leaves of s. The partial function Search that follows 
associates to a pair (s,t) an integer i such that t E Inst(Mi). 

Search((C,i),t) = i i f t  E Inst(C) 
Search(C(c-g,~), t) = Search(rj, t) 

i f t  E Inst(label(rj)) 
Search((C, i), t) = fail otherwise. 

2.2 Optimality and sequentiality 

We are interested in optimal pattern matching algorithm in the following sense: 

Defini t ion 7 (Opt imal  P a t t e r n  Match ing)  A pattern matching algorithm 
is optimal if it recognizes every term that is recognized by any other pattern 
matching algorithm. 

In the following we propose an algorithm that produces a search tree and prove 
the optimality of the corresponding pattern matching algorithm. In order to do 
that we introduce, following ttuet and Ldvy [1], the sequentiality of a pattern 
matching problem H and we prove that the algorithm producing the search tree 
does not fail if and only if the problem is sequential and that the sequentiality 
of the problem is decidable and implies the optimality of the pattern matching 
algorithm. 

Definition 8 (Set of  Direct ions of  a cons t ra in t  C wi th  respect  to H) 
Let 17 be a set of pairwise incompatible constraints. Let C be a constraint and 
17~ = {M E HIM T C} the set of patterns compatible with. C. 

[ D e Atom(H), C~r C(:~-~D, ] 
Diru(C) = ~D [Vu e U(D) ,C ~ Oct(u) and 

( I V M E 1 7 ' , V u E U ( D ) , M A C ~ D V - n D  

Defini t ion 9 (sequent ia l i ty)  Let H be a finite set of pairwise incompatible 
constraints. The problem 17 is sequential, if for every constraint C compatible 
with H and such that every pattern M EII, C ~ M, Diru(C) ~ 0. 
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The following algorithm built trees STcr(true) that we interpret as pattern 
matching algorithms for a given set of pat terns /7 .  

Definition l o  (Search  t r ee )  Let H = {M~,. . . ,  M,,} be a set of patterns and 
C be a constraint. 

ST.(C) 
= i f  Dirr,(C) non empty t h e n  let  

D E DirLr(C), 
/71 = {M C HIM A C A D ~ false} a n d  
/72 = {M E/71M A C A -~D ~ false} in  
C(STrt(C A D), STrr(C A ~D)) 

i f  i l l  5s O and II2 ~ 0 
C(STn(C A D)) i f / /~  r O and/7~ = 0 
C(STrI(C A -~D)) i f  i l l  = O and/72 r ~1 

= (C,i) i fC  ~ Mi 
= fail o t h e r w i s e  

We prove in lemma 3 that all the trees provided by this algorithm for a given 
set of patterns recognize the same set of patterns. Let us first show how this 
formalism can describe the usual pattern matching problem for terms. 

2.3 H u e t  a n d  Levy ' s  o r ig ina l  p r o b l e m  

To each term t is associated the constraint C(t) defined above. The following 
notions correspond: 

term t and constraint ~(t) 
{riga cr(t)= r} and {T]I?(C(t))(T): true} 

match/z and Matche(~) 
Di~.(t) and Dir~c~)(C(t)) 

The equality between {~-13~ ~(t)  = T} a~d {<IV(C(t))O-) = true} is a conse- 
quence of the fact that for every term t ,  "~(C(t))(t) = true. 

Let H = {Pl,---,P,~} be a set of pairwise incompatible linear terms. Let 
C(//) = {C(pl) , . . .  ,C(pn)} be the set of corresponding constraints. Let matchzr 
be the predicate defined by matchn( t )  = true if there exists p,. E H such that 
Pi _ t. A term t satisfies the predicate mat&r/  if and only if the function 
Matchc(~r) is defined for the corresponding constraint C(t), as a consequence of 
lemma 1. 

Let /7 = { P l , - . . , P n }  be a set of pairwise incompatible linear terms. Let 
6(/7) = {6(pl) , . . - ,d(p~)} be the set of corresponding constraints. Let t be a 
term compatible with a pattern p ~ / / s u c h  that matchn(t)  = false. Let us recall 
that u E Dirrt(t) if and only if u ~ O(t), t /u  is a variable and for every pattern 
p E / 7  compatible with t, p/u -~ t/u. The following property is satisfied. 

u e DirlT(t) ~ 3D e Dire(m(O(t)) 
such that u C U(D). 
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Let u E DirH(t),  there exists a pattern p compatible with t such that p/u = 
F( . . . ) .  Let D = u - F  and U(D) = u, D E Atom(s and by definition 
C(t) ~ Occ(u). As t satisfies C(t) and t /u  is a variable, C(t) # D. As p is 
compatible with t there exists an instance 7- of t such that r /u  = F( . . . )  and 
thus, C(t) ~ --D. Finally let M E /7 be a pattern compatible with t. M / u  7~ t /u  
implies C(M) ~ D V -~D. Conversely" let D = u -  F E Dire(n)(C(t)). As C(t) 
0co(u),  t / u  is defined, t /u  is a variable otherwise either t(u) = F and C(t) ~ D 
or t(u) = G with G r F and e( t )  ~ --,D. For every compatible pattern p E / / ,  
p/u is not a variable otherwise C(p) r D V --,D because F(D V ~D)(p) r true 
and P(e(p)) (p)  = true. 

3 Decidability of sequentiality. Optimality 

As in the case of terms we prove that  the pattern matching algorithm computed 
for a sequential set of constraints H is optimal. First we prove that a finite set 
of patterns H is sequential if and only if the set of constraints appearing in 
the labels of the search tree STH (true) is sequential. This property implies the 
decidability of the sequentiality of a finite set of patterns . 

L e m m a  2 Let H be a finite set of constraints such that ST/-/ (true) does not fail. 
For every constraint C compatible with a pattern M E H there exists a label P 
in STH(true) such that C ~ P and for every label P', if C ~ P' then P ~ P'. 
P is named the maximum prefix of C in STH(true).  Furthermore, i f P  is not a 
leaf, DirH(P)  M Dirn(C)  :~ 0. 
P r o o f :  Let C be a constraint such that  there exists a pattern M E H compatible 
with C. Let P be the set of labels M in STH (true) such that C :~ M. P is not 
empty because C ~ true. All the elements of P belongs to the same branch of 
STH(true) otherwise there exists a constraint D such that C ::~ D and C =:~ -~D 
and thus, C = false that contradicts the fact D T M. Clearly there exists P E P 
such that  for every p4 E 7 ), P ~ P ' .  
Let D E DirH(P)  such that P A D or P A -~D or both are labels of STH(true).  
Knowing that  D E Dirrr(P) we prove that D E DirH(C). C ~ D otherwise 
C ~ P A D that contradicts the maximality of P if P A D is a label of STH(true) 
and the compatibility of C with a pat tern if not. The same argument proves 
C r ~-D. By definition of STH(true) ,  D is a direction of P and thus, Vu E U(D), 
P ~ Occ(u). As C ~, P,  then C ~ Occ(u). The last property is a consequence 
of the fact that  C ~ P implies C A M ~ P A M. 

L e m m a  3 ( E q u i v a l e n c e  o f  o p t i m a l  S e a r c h  Trees )  Let 17 be a set of pat- 
terns. All the search f.rees built using the algorithm STH(true) have the same set 
of leaves. 
P r o o f :  Let T and T'  be two search trees STH(true) and F be a leaf of T. Notice 
that DirH(F)  = 0, Inst(F)  ~! 0 and i f F '  • F is a l e a f o f T ,  Inst(F)•Inst(F ' )  = 0. 
There exists by lemma 2 a leaf P~ of T '  such that  F ~ P' .  The same reasoning 
leads to the existence of a leaf F '  of T such that  P '  ~ F ~. Thus, F = F r. 
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We deduce fi'om this lemma that all the different trees ozT/7(true) recognize 
the same set of constraints which allows us to use STri(true) in order to denote 
one of them. 

T h e o r e m  1 Let 17 be a finite set of constraints. 17 is sequential if and only if the 
algorithm STrr(true) terminates without any fail. Furthermore the sequentiality 
of a finite set of patterns is decidable. 
Proof :  I f / / i s  sequential each step in STrt(true) is such that either there exists 
a direction or a pattern matches the constraint. Conversely, let us suppose that 
STn(true) does not fail. By lemma 2, for every constraint C compatible with 
/7 such that  for every M C II, C r M ,  there exists a maximal prefix P in 
STn(true) such that  D i r ~ ( P ) n  D i ru (C )  r O. Therefore D i m ( C )  r 0 and 17 is 
sequential. The algorithm STII ( t rue)  terminates because the depth of the tree 
is bounded by the number of atoms in /7 ,  and thus the sequentiality is decidable. 

L e m m a  4 Let 17 = { M 1 , . . . ,  M~} be a set of pairwise incompatible constraints. 
['or every integer i and every constraint C such that C ~ Mi, there exist 

F F1, . . .  , F k leaves of STn( true)  such that C ~ Va_<j<~ J :==> M.i. 
P roof :  Let C be a constraint such that C ~ M1 for instance and P its maxi- 
mum prefix in STrl (true). The proof is by induction over the size of the subtree 
of STrj(true) with root P. If P is a leave there exists ~ pattern Mi such that 
C :=> P ==> Mi that implies M1 = Mi because patterns are incompatible. Other- 
wise, let D E Dirrt(P) such that P A D  or PA-~D or both are labels of STrt(true). 
First notice that  C - (C A D) Y (C A -~D) because C =:> M~ =:> D V "~D. As 
C A D (rasp. C A-~D) satisfies the inductive hypothesis, C A D => Vj eJ  Fj =::> M1 
(rasp. C A -~D ~ Vjez ,  Fj ~ M1) where J (rasp. J ' )  is a subset of [1, k]. Thus, 
C ~ VjeJuJ,  Fj ~ M1. The last part follows straightforwardly. 

T h e o r e m  2 Let 1I be a finite set of pairwise incompatible constraints. I f  ]7 is 
sequential then the search tree STrt(true) is optimal. 
Proof :  The optimality is a consequence of lamina 4, by definition. 

De f in i t i on  11 Let H = {Mn} a set of pairwise disjoint constraints and s be 
a search tree corresponding to ]7. A term t is recognized by s if it belongs to 
the instances of one of the leaves of s. The partial function Search that follows 
associates to a pair (s , t)  an integer i such that t E hast(Mi). 

Search((C,i) , t )  = i i f t  E Inst(C) 
Search(C(~--~), t) = Search(rj, t) 

if  t Inst(label(Th)) 
Search((C, i), t) = fail otherwise. 

We present now several instances of the general match problem which can be 
classed in two groups: Those based on the match operation and those based on 
the unification operation. The former can be used in term rewriting systems and 
in functional programming; the later group is oriented to the implementation of 
logic programming languages. 
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4 Compilation of Pattern Matching in ML 

For the first group, let us consider different variants of the match construct of 
the ML language whose semantics can be defined by the following conditional 
rewriting rule in the style of [6]. 

D e f i n i t i o n  12 ( S e m a n t i c s  o f  m a t c h  in M L )  Let E be a set of expressions of 
the ML language containing functions defined by cases "(fun pl --+ e l [ . . .  ]pn -+ 
e~)" and the match construct below that corresponds to the application of a 
function to an expression "ma tch  e w i t h  Pl ~ e l i . . .  IPn ---+ e,~ - ( fun Pl ---' 
e l l . . . ]Pn  --+ e n ) e "  The set P of language patterns and the relation i = 
match{b-~-}(v ) where {~-~} C P will be defined for each of the proposed vari- 
ants of the match construct. The substitution operation ei~9 i ~-- V] produces a 
partially evaluated expression in which the variables in pattern Pi are replaced by 
the corresponding parts of the value v. Finally, e ~ v is the relation that holds 
if the value of expression e is v, which is defined on the structure of expressions 
and contains the rule 

e ~ ,  i = m a t c h b o x ( v )  e~[p~ ~ -  v] ~ v '  
(match) 

m a t c h  e 'with pl ---+ ell - . .  [p,~ ---+ e~ ~ v ~ 

The goal of each o[" these presentations is to define, for each of the instances of 
the problem, a representation of patterns H0 = {~-g} as constraints H = C(H0) 
which, by lemma 2, will lead to the definition of a search tree s = ST/i( true)  
such that for any value v, matchr/o(V) = Search(s, v). Under these conditions, 
the rule above can be replaced by its equivalent compiled version. 

s =  STc(vT) (true) 

e ~ ~ i = S e a r c h ( s ,  v) e~[p~ ~ v] ~ v '  
(match') 

m a t c h  e w i t h  pl ---+ eli . . .  IP,~ ---+ e,~ ~ v t 

4.1 M a t c h  o f  l i n e a r  n o n  a m b i g u o u s  p a t t e r n s  

This is a restriction to the match construct of the ML language in which patterns 
must not have common instances. It correspond to the original work of Huet and 
L6vy [1]. For this instance of the problem the set P of language patterns is the 
set T of terms (definition 1); the evaluation of the match construct 

m a t c h  e w i t h  Pl -+ e l i . . .  [p~ -+ en ~ v' 

is only defined for sets of patterns H = {~-g} such that for any term t E T, 
pi ~ t and pj ~_ t if and only if i = j; finally, the match predicate is defined by 
matchrl(v) = i if pi ~_ v. 

To each pattern p E P is associated the constraint 

c(p)= A 
u E O(p), 

p/~ -- F ( ~ )  
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The  t r ans l a t i on  of  a set H0 of  p a t t e r n s  is defined by 

c(rto) = {c(;)lp e Iio} 

E x a m p l e  2 Let e0 , e l , e2 ,  e3 be ML expressions " be a b i n a r y  cons t ruc tor  in 
infix no ta t ion ,  Nil, 1 be cons tan ts ,  x, y, z be var iables  and e be the  expression 

m a t c h  e0 w i t h  (1 :: y :: z) ~ el  I ( x  :: Nil) ~ e2 t Nil ~ e3. 

The  set of  p a t t e r n s  of e i s / / o  = {1 :: y :: z, x :: Nil, Nil}. The  t r ans l a t i on  of  these 
p a t t e r n s  p roduces  the  cons t ra in t s  

C1 = ~-"  :: A ::1 " I A  ::2 , --, 

C2 = e "  :: A ::~ ' -Ni l ,  
C3 = ~ ' - N i l  and  
17 = {C1, C2, C~}. 

The  o p t i m a l  search tree assoc ia ted  to this  p r o b l e m  is 

t r u e  

e-- "" "~e'---- "" 

.."~ _-- ..'" _, =2 -- :: e - N i l  

I 
::1 " 1  ::u --'Nil 

Ano the r  search tree for the  s ame  set of  p a t t e r n s  could be 

t r u e  

e - -  :: - ~ e "  "" 

..1 - 1  _~ ::1 ' - 1  eL-Nil 

�9 . - ~  �9 . . 2  - N i l  ..2 --n : _:_ .. 

..2 - N i l  

C o m p a r e d  to the  o p t i m a l  search tree below, this  search tree has  an add i t i ona l  
s tep  for ins tances  of the  second pa t t e rn ,  which means  t ha t  there  are ins tances  
of  t e rms  tha t  can be recognized by the former  and not  by  the la ter .  T h a t  is the  
case of  the  t e rm  x :: Nil. 
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4.2 Ma tch  of  l inear  p a t t e r n s  o rde red  by  pr io r i ty  

This instance has been studied by its own by Laville[4] and by Puel and Su&rez [7]. 
The presentation proposed here does not cover completely those works; in par- 
ticular, the strictness characterization of a match problem is not treated here. 
This instance of the general match problem correspond to the original match 
construct of the ML language. 

We keep in this instance the same set P of language patterns, and change 
the match predicate as follows: 

m a t c h H ( v ) = i  i f p ~ _ v  and for a n y j < i ,  piy~v 

To each pattern p E P is associated the constraint 

c(p)= A 
c o(p), 

p/u = F(~"-'~ ) 

The translation of a set H0 of patterns is defined by 

C(//0) = {C(pi) A A -~C(PJ )11 < i < n} 
l<j<i 

Example  3 Let e0,el,e2, e3 be ML expressions, f be a constructor, a,b be 
constants and x, y be variables and e be the expression 

m a t c h  eo wi th  f(a, b) ---+ el I f(c, x) ---+ e2 I f(r b) --* e3. 

The translation of the patterns of this problem produces the constraints 

C1 = ~ -  f A f l - a  A f2 "--b, 
C2 = ~- f A f 2 -  b, 
C3 = r  f A f 2 - b  A -~fl--a A -~fl--c and 
/ / =  {C1, C2, C3} 

The optimal search tree associated to this problem is 

true 

c-f 

f l - c  f l - a  - , f l ea  A - , f l - c  

f2-- b f2-- b 
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4.3 M a t c h  o f  n o n  l i n e a r  n o n  a m b i g u o u s  p a t t e r n s  

This is a variant of the match construct of ML in which variables in pat terns 
might appear  several times. The set P of language patterns in this instance is the 
set of non linear terms that  can be represented with the notation (p with xl = 
Yl , . . . ,  z,,~ = y,~) which indicates that  in the linear pat tern p variables xi and 
yi should correspond to the same value. The match predicate of this instance, 
defined only for non ambiguous sets of pat terns  is 

matchn~(v) = i 
ifpi = (p with s), p _  v 

and for any pair x = y E s, x[p *-- v] = y[p ~ v] 

We introduce now, new atoms that  will represent the non linear part  of 
patterns. 

D e f i n i t i o n  13 Let A be the set of atoms of the form u -  F as in defi.nition 5 
completed with equality constraints which are expressions of the form uTv where 
u and v are occurrences and U(ujv) = {u,v} .  The valuation function defined 
for terms as follows: 

v (~ fv ) ( t )  = true if u incompatible with t 
or v incompatible with t 

v ( ~ i v ) ( t )  = ~ v  if ~ overpass t or v overpass t 
P(uTv)(t) = false if t / v  = F( . . . )  and t /u  E Var(t/v) 
F(uT.v)(t) = false i f t / u  = F ( . . . ) , t / v  = a ( . . . )  and F r a 

V(ufv)(t) = V(Al<i<_,~u.F~iv.r~)(t) 
if t /~  = F ( ~  and t / v  = F ( ~ )  

v(nfv)(t) = ufv otherwis~ 

Equality constraints can be translated into a call to a general equality function 
often available in functional languages. 

To each pat tern "r with s E P" is associated the constraint 

C(r with s) = A u ' -F  A A uTv 
uE O(r ) ,  z = y E s ,  

~/~ = ~(7- -~)  ~ / ~  = ~, 
T/V  : y 

The translation of a set /70 of pat terns is defined by 

C(~ro) = {C(p)lp E/7o} 

E x a m p l e  4 Let e0, el, e2, e3 be ML expressions, f ,  g, h be constructors, x be a 
variable and e be the expression 

m a t c h  e0 w i t h  f (g(x) ,  h(x)) ~ e~ 

I f ( z ,  z) ~ e3. 
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The original patterns associated to this example are 

{ (f(g(x),h(y)) with x = y), } 
I70 = ( / (g(x) ,  y) with x = y), 

(f(x, y) with x = y) 

The translation of these patterns produces the constraints 

C1 : s A f l  .__g/k f 2 - h / k  f l . g l ~ f 2 . h l ,  

C2 = ( ' - f  A f l  ._g A f l . f  ~f2, 
(73 = e'-f A fl]-f2 and 
f l  = {C~, C.% C3}. 

The optimal search ~;ree associated to this problem is 

true 
r 

~'-f 

f ~ _+_g 

f::- h 

fl.gl"[f~.hl -~fl.glTf2.hl 

fl.glTf2 

~f2-- h 

f l . g l T f 2  ~f1.11 ~f2 
faT f2 

_~fl '_g 

1 
f i t  f2 

4.4 M a t c h  o f  n o n  l i n e a r  p a t t e r n s  o r d e r e d  by  p r i o r i t y  

This is an extension of the match construct of ML in which both, priorities and 
non linear patterns are used. The constraints are defined on the set of atoms of 
definition 13. 

To each pattern ;- with s E P is associated the constraint 

C ( r w i t h s ) =  A u- F A A uTv 
u e O(r ) ,  x = y e s ,  

T/u = F(7-'~) T/U = x, 
T/V = y 

The translation of a set //0 of patterns is defined by 

C ( H o ) = { C ( p  d A  A ~c(vJ) I1 < i < n }  
l<_j<i 
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Example  5 Let e0, el, e2, e3 be ML expressions, f be a constructor, x, y be 
variables and e be the expression 

ma tch  e0 wi th  f (x ,  y, y) ---+ el 
I f(x, y, x) -~ e2 
I f(x, x, y) ---+ e3. 

The translation of the patterns of this problem produces the constraints 

C1 = r  A f2 ~f3, 
62 = e - f  A f l ) f 3  A _~f2~f3, 
C3 = e - f  A f i e f 2  A _,f2~f3 A ~fz ]./3 and 

: {cl, c~, c3}. 

The optimal search tree associated to this problem is 

true 

f2~[f3 _~f21f3 / ' - . . .  
fiT/3 _,I]W3 

f f t f  s 

Another possible instance of the general match problem leading to the com- 
pilation of an extension of ML is the use of patterns of the form (t with s) in 
which s is any arbitrary predicate. The result will be a matching algorithm in 
which those predicates and the other matching operations are embedded and 
launched in the best possible order. 

5 C o m p i l a t i o n  of  R e s o l u t i o n  in P r o l o g  

The following examples represent different variants of the calling mechanism of 
logical programming languages. They are based on the unification as a pattern 
recognition operation. 

Defini t ion 14 (Semant ics  of  the  calling mechan i sm of  Prolog)  Let II  = 
{p-g~} be a set of patterns and i = matchrt(t) be a relation representing the pattern 
matching operation that will be defined for each of the instances of the problem. 
A goal is a term (an element of T) .  The set C1 of Prolog clauses is defined by 

c~auses 
Cl : :=p : -  ql...q,~. P E P,~g E T ,n  > 0 
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The relation ~ = mgu(t, t') holds if  the substitution c~ is a most general unifier 
of terms t and t ~. We note "F F g ~ g~", a resolution step of a set of goals g 
given the set of clauses 1" producing a set of goals g'. This operation is defined 
by the conditional rewriting rule below in which g, gl �9 . . ,  gn denote sets of terms 
representing goals 

t ( ( )  = P /r~ :::} izp Zde f  (Pl  : - - g l - - - P n  : - - g n )  

i = m;~tch{FT}(t ) cr = mgu(t,pl) 
(Resolv) 

Given an appropriate compilation function C for patterns, the predicate rule 
above can be replaced by a compilation rule for definitions of relations and a 
new rule for the resolution. 

s = STe(~)(true) 
(Cmpl) 

/ ' ,  ( F ,  P l  : --  g l  - - -  Pn : -- gn) :::> 
F U { F  = c m p  (S, V l , g t , . . . , P n , g n ) }  

t (g) ~--- F r :::} F =crnp (S, p l , g l , - - - , p n ,  gn) 

i = Search(s,t)  ~ = mgu(t ,pl)  (Resolv') 

5.1 R e s o l u t i o n  w i t h  l i nea r  p a t t e r n s  o r d e r e d  by  p r i o r i t y  

The first instance is variant of Prolog in which only linear patterns are allowed. 
A disambiguating rule, priority in this case, is necessary because unification as a 
pattern matching operation is intrinsicly ambiguous for terms that are prefixes 
(with respect to --<) of patterns. 

In this instance of the general match problem, the set P of language patterns 
is the set T of terms and the match function is defined as follows: 

t matches p if and only i fp  and t are unifiable 
marcher(t) = i ifpi,  matches t 

and for any j < i, t does not match pj 

The following atomic constraints will be used for the representation of patterns. 

De f in i t i on  15 ( Var C o n s t r a i n t )  To each u E 0 is associated a constraint 
Var(u) defined by: 

V ( V a r ( u ) ) ( t )  = t r ~ e  
= Var( , , )  
= false 

r ~ e o ( t )  and t(u) ~ X 
if u overpass t 
i f , ,  ~ o ( t )  and t(u) ~ r 
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To each pattern p E P is associated the constrain~ 

= A (Var( ) v . - F )  
e o(p), 

p/,, = F(~--g~ ) 

The translation of a set H0 of patterns is defined by 

d(IIo) = {d(pi) A f -,d(pj)ll < i < n} 
l<_j<i 

E x a m p l e  6 Let g1,92 be sets of terms, g, h be constructors, x, y be variables 
and f be the Prolog predicate defined by 

f (x ,g(y))  : -  gl. f (g(x) ,  h(y)) : -  g2. 

The constraints associated to this definition are 

C, = (Var(e) V e'-f) A (Var(f 2) V f2-g), 
Cu = (Var(e) V e-f) A (Var(f 1) V f l - -g)A 

(Var(/2) V f~&h) and 
/ I  = {01, C~}. 

In order to save space in the representation of search trees, we will only represent 
nodes that are not implied by all of their sons. This convention lead to the 
representation of trees that are not binary. The optimal search tree associated 
to this problem is 

true 

Var(Q e - f  

Var(f  2) f 2 - g  f f  - h 

Var(f  1 ) f l  - h  

5.2 R e s o l u t i o n  w i t h  n o n  l i nea r  p a t t e r n s  o r d e r e d  b y  p r i o r i t y  

This instance of the general match problem correspond to the usual pure Prolog 
calling mechanism. As for pattern matching, we use the intermediate notation 
% with s" where s = {Xl = Y l , . . . , x ,  = y~},n _> 0 to note non linear patterns. 
The match function is defined for this instance as: 

t matches ( r  with s) if and only if r and t are unifiable 
and for any pair x = y E s, 
x and y are unifiable 

m a t c h , ( t )  = i ifpl ,  matches t and for any j < i, 
t does not match pj 
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Def in i t i on  16 (Uni f iab i l i ty  C o n s t r a i n t )  An unifiability constraint is an ex- 
pression of the for,,  u~v where u and v are occurrences and U ( ~ )  = {u, v}. 
The valuation functwn for unifiability constraints is defined as follows: 

12(u~v)(t) = true if u incompatible with t 
or v incompatible with t 

V(uitv)(t) = true if u overpass t or v overpass t 
]2(u~.v)(t) = true i f t / u  C X and t /v  e X 
V(u~-~)(t)  = true if t/u ~ x , t / v  = F(~) 

and t/u r Var(t/v) 
V(u~v)(t) = true if t /v  E X,  t /u  = F(tTn) 

and t /v  ~ Var(t/u) 
F(u~v)(t) = false if t /u  = F ( ~ ) ,  t / v  --- G(t~ 

and F t G 
F(u~v)(t) = false if t / v  = F(t--~) and t /u  e Var(t/v) 
l;(u~.v)(t) = false if t /u  = F ( ~ )  and t /v  E Var(t/u) 
F(u~rv)(t) = F(Al<i<~u.Fi~fv.Fi)(t) 

if t /u = F(~)  
and t / v  = F(ff,~) 

v(u~)(t)  = u ~  otherwise. 

Unifiability constrai'nts can be implemented by a built-in unification procedure for 
terms called as an atomic operation. 

To each language pattern is associated the constraint 

d(r  with s) = A (Var(u) V u - F )  A A ui}v 
u E o(p), x = y E  s, 

pl.~ = F(T2) ~1~ = ~, 
fly = y 

The translation of a set H0 of patterns is defined by 

C(IIo) = {C(p/) A A -~C(PJ)I1 < i < n} 
l<_jKi 

E x a m p l e  7 Let gl, g2,g3 be sets of terms, a, b be constants, x, y be variables 
and f be the Prolog predicate defined by 

f(x,b. .x) : - g l .  f ( a ,a , x )  : -g2 .  f ( x , a , y )  : -g3 .  

The constraints associated to this definition are 

C1 = Var(e) V (e- ' f  A (Var(f ~) V f~'-b) A fl~ff3),  
C~. = (Var(~) V ( e - f  A (Var(f 1) V f' '--a) A (Var(f 2) V f2•  A 'he1, 
C~ = (Var(e) V ( e - f  A (Var(f ~) V f~ -a ) ) )  A -.61 A -~62 and 
H = {C1, C2, C3}. 

Finally, the optimal search tree associated to this problem is 
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true 

Var(O ~• 

f z -  a 

Var(f  I ) fl--+-a (-~Var(f 1) A -~fl--a) 

~f~--a 

I 
fief3 

Conclusion 

We have given in this work the tools needed for the application of the sequential- 
ity methodology for the resolution of different matching problems. We showed 
that  this is a practical approach for the meta-compilation of pattern matching 
constructs in programming languages by the development of different variants 
of the matching constructs of two different programming languages: ML and 
Prolog. As part of this work, we also developed two interesting and practical 
instances: the match of terms with non linear patterns and the use of unification 
as a pat tern matching primitive. 
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