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Abstract. We define a General Pattern Matching problem and we show
that several compiling problems in programming languages, like pattern
Matching in ML and the calling mechanism of Prolog can be formalized
as instances of the General Pattern Matching problem. As a consequence
of this, the solutions of the general problem which are compiling algo-
rithms can be instantiated into compiling algorithms for the instances.
In particular, the proof of the decidability of the existence of optimal so-
lutions is a proof of the decidability of the instances. This approach can
be used for the meta-compilation of pattern-matching problems, for the
implementation of languages or systems that contain diflerent instances
of the general problem and for the implementation of systems using Call
by Name style of evaluation for which completeness and optimality are
equivalent.

Introduction

In 1979 Huet and Lévy [1, 2] proposed a method for the compilation of pattern
matching problem with linear non ambiguous patterns. In 1988 Laville[4, 5]
adapted this result for the matching of linear pattern with priority rule for
disambiguation. In 1990 Puel and Suéarez [7] extended Huet and Lévy results for
a family of terms called constrained terms in order to solve the call by pattern
matching problem of the compilation of the language ML.

In this work, we propose a generalization of the pattern matching defined in
[1] and a compilation algorithm. We define and prove properties of sequentiality
and optimality of this algorithm. We check the correspondence between the
notion of sequentiality in [1] and here.

After this theoretical results, we show how the problem addressed in [1] can
be seen as a particular case of our general pattern matching problem. Finally, we
show how to use this results in practice in order to build compilers of matching
primitives of programnming languages. Two kinds of instances of the matching
problem are defined. Those based on the matching of terms and those based on



502

unification. We check the inheritance of the general result of sequentiality and
optimality for these instances.

1 Terms and Constraints

Definition 1 Let X and X be two disjoint sels of symbols representing respec-
tively variables and term constructors. The set T' of terms ts composed by:

terms
Tu==z reX
|F(t1,...,tn) Fe E,tl,...,tn cTn Z 0
Notation In what follows, we abbreviate the sequence of terms ty, ... t, by t,.

A linear term t is a term in which variable names are pairwise distinct. A sub-
stitution s @ morphism over terms. A term ¢ is more general than another term
t' denoted t < U if there exists a substitution s such that s(t) = t'; in this case we
also say that ¥ is an instance of t. Two termst and t' are compatible denoted
t 1t if there exists a substitution s such that s(t) = s(t'). A closed term is a
term without variables.

The occurrences O are sequences of pairs formed by a term constructor F €
X and an integer i denoted F* ( motice that the sequence of integers represents
the usual notion of occurrence). The empty sequence is denoted €. Let t be a
term, the set of occurrences of t, denoted O(t), is the subset of O defined by

O(F) = {e¢} FeXuUuX
O(F(t,)) = {e} U {Fiulue Ot:),1 < i< n}.

The subterm of a term ¢ at occurrence u, denoted t/u is defined by

t‘/E:t
Ft)/Frfu=t/ul <i<n.

The label of a term t at occurrence u, denoted t(u) is defined by

rle) =z ifre X
te) = F ift=F(t,),n>0
i(u) = (t/u)(e) ufe

An occurrence v is a prefiv of another occurrence u, denoted v <prenx u if and
only if there exisls an occurrence w such that u = vw. An occurrence u is incom-
patible with a term t if there exisl two occurrences v and w such that u = vw,
v € O@t), t/v = F(In), w = G'.w' and F # G ori > n. An occurrence u
overpass a term t if there exists v <prefix u such that v € O(t) and t(v) € X (in
other words, neither u € O(t) nor u is incompatible with t). The set Var(t) of
variables of a term ¢ 1s {x € X|3u € O(t) such that t(u) = z}.

Example 1 Let £={f,g,a}, ¢ € X and t=f(g(a),z). O@)={e, f*, /% f1g'},
t/e = t, t/f' = gla), t/flg" = a, t/f* = z. f2¢" overpass ¢t and f1f? is
incompatible with ¢.
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Definition 2 Let A be a set. The constraints are predicate logic expressions
with constants true, false and atoms A € A.

constraints
Cu=A AeA  (Atomic constraints)
| true | false

| e1Voen e1,c2 €C
| c1 Aep c1,c3 €C
| —e ceC

To each atomic constraint A is associated o subset of O denoted U(A) and a
valuation function V(A) : T — C. The valuation function of atoms is extended
to any constraint as follows:

V(true)(t) = true
V(false)(t) = false

V(er Ve2)(t) = true if V(er)(t) = true
or V(ez)(t) = true
V(er V e2)(t) = false if V(e )(t) = false
and V(cz)(t) = false
Vler v ea)(t) = V(en) () v Vies)1)

otherwise

V(er Acg)(t) = true of V(er)(t) = true
and V(cp)(t) = true
V(er A e)(t) = false if V(e1)(t) = false
or V(e2)(t) = false
Yer Aea)(t) = V(er)(®) AV(ea)(t

otherwise
V(—e)(t) = true if V(c)(t) = false
V(=e)(t) = false of V(c)(t) = true
Vol =060

The instances of a constraint C' are the set Inst(C) = {t € T|V(C)(1) = true}. A
constraint C' implies a constraint D, denoted C' = D, if Inst(C) C Iust(D). Two
constraints C' and D are equivalent, denoted C = D, if Inst(C) = Inst(D). Two
constraints C' and D are compatible, denoted C' 1 D, if Inst(C) NInst(D) # 0.
Otherwise they are incompatible, denoted C ¥ D. A constraint C is compatible
with a set of constrainis I if there exists a constraint D € II compatible with

C.

We define here a set of atoms frequently used below: the predicate Occ(u)
tests if u belongs to the set of occurrences of a term.
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Definition 3 (Constraint Occ(u)) To each u € O s assoctated the predicate
Occ(u) over terms such that U(Occ(u)) = {u} and its valuation is defined by:

V(Oce(uw))(t) = true  if u € O(t)
= Occ(u) if u overpass
= false  if u incompatible with ¢

2 General Pattern Matching Problem

We define pattern matching over constraints and check its correspondence with
pattern matching over terms.

2.1 Match over constraints

Definition 4 Let II = {My,..., My} be a set of pairwise incompatible con-
straints named patterns. The pattern matching partial function Matchy over
constraints is defined by Match(C) =i of and only if C = M,.

Let us show how a matching problem can be seen as a Matching over constraints.

— Atoms for matching and valuation:

Definition 5 Let A be the set of atoms of the form u=F (u € O, F € ¥
and U(u=F) = {u}) whose valuation is defined by

V(u=F)(t) = true if u incompatidle with t
V(u=F)(l) = u=l ifu overpasst

V(u=F)(1) = true ift(u) = F
V(u=F)(t) = false if t{u) = G

and F £ G
V(u=F)(t) = u=F ift(u) € X.

These atoms correspond to primitive comparison operations between the label
of a term at a given occurrence and ¢ constant.

— To each term ¢ is assoclated the constraint

cty= J\ u=F
u € Olt),
t(u)=F

— Lemma 1 Lett and t' be two terms. t < t' if and only of C(¢') = C(t).
Proof: Clearly,ift < t/, there exists a constraint D such that C(t'} = C(t)AD
and thus, C(t') = C(t). Conversely if C(t') = C(t), as V(C(t"))(t') = true,
for every u € O(t), such that t(u) = F, V(u=F){t') = true, u € O(t')
and t'(u) = t(u), otherwise, there would exist v € O(t') N O(t) such that
t'(v) # t(v) (= G) and thus, V(v=G)(t') # true. In conclusion, ¢ < t'.
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There are several algorithms to check the match of a constraint by a given
set of patterns, named pattern matching algorithms. We will use Search trees to
represent these algorithms. The nodes of these trees that are not leaves, have
constraints as labels. The label of the root is true. The sons of a node with label
C' are C A D where D) is either an atom or the negation of an atom and C A D
is compatible with a pattern. The labels of the leaves are pairs (C, i) where C'
1s a constraint and 7 is the integer such that C' = M;. The only freedom in the
construction is the choice of the atom used to develop the subtrees. A pattern
matching algorithm either associates to a given constraint a pattern or fails.
The algorithm is said to recognize the constraint C if there exists a leave (D, 1)
such that C = D.

Definition 6 Let T = {M,} a set of pairwise disjoint constraints and s be
a search tree corresponding to II. A term t 1s recognized by s if it belongs to
the instances of one of the leaves of s. The partial function Search that follows
associates 1o a pair (s,t) an integer ¢ such that t € Inst(M;).

Search((C,i),t) =14 ift € Inst(C)
Search(C(7m),t) = Search(r;,t)
if t € Inst(label(7;))
Search((C,1),t) = fail otherwise.

2.2 Optimality and sequentiality
We are interested in optimal pattern matching algorithm in the following sense:

Definition 7 (Optimal Pattern Matching) A pattern maiching algorithm
ts optimal if it recognizes every lerm that is recognized by any other pattern
matching algorithm.

In the following we propose an algorithm that produces a search tree and prove
the optimality of the corresponding pattern matching algorithm. In order to do
that we introduce, following Huet and Lévy [1], the sequentiality of a pattern
matching problem I and we prove that the algorithm producing the search tree
does not fail if and orly if the problem is sequential and that the sequentiality
of the problem is decidable and implies the optimality of the pattern matching
algorithm.

Definition 8 (Set of Directions of a constraint C with respect to I7)
Let Il be a set of pairwise incompatible constraints. Let C be a constraint and
II' ={M € II|M 1 C} the set of patterns compatible with C.

D € Atom(IT),CHD, C#—D,
Dirg(C) = ¢ D |Vu € U(D),C = Occ(u) end
VM € I Yu € U(D), M AC = DV =D

Definition 9 (sequentiality) Let IT be a finite set of pairwise incompaiible
constraints. The problem Il is sequential, iof for every constraint C' compatible
with IT and such that every pattern M € II, C' % M, Dirg(C) # 0.
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The following algorithm buili trees STr(true) that we interpret as pattern
matching algorithms for a given set of patterns /7.

Definition 10 (Search tree) Let Il = {My,..., M.} be a set of patlerns and
C be a constrant.

ST (C)
= if Dirg(C) non empty then let
De DiI’H(C),
I = {M e M ACA D # false} and
oy ={M e IMACA-D # false} in
C(STH(C A D), STH(C A —1D))
lfﬂ1 #V)and Hg?éo)
C(STr(CAD)) ifll; #0and II, =0
C(STH(C/\ '1D)) if II, = 0 and II, 7é 0
=(C,10)if C = M;

= fail otherwise

We prove in lemma 3 that all the trees provided by this algorithm for a given
set of patterns recognize the same set of patterns. Let us first show how this
formalism can describe the usual pattern matching problem for terms.

2.3 Huet and Levy’s original problem

To each term ¢ is associated the constraint C(t) defined above. The following
notions correspond:

term ¢ and constraint C(t)
{r|30 o(t) = 7} and {r|V(C(t))(7) = true}
matchy and Matche(m)
Di?"ﬂ(i) and DZ?“(;([I)(C(t))

The equality between {7|3c o(t) = 7} and {r|V(C(t))(r) = true} is a conse-
quence of the fact that for every term ¢ , V(C(1))(t) = true.

Let II = {p1,...,pn} be a set of pairwise incompatible linear terms. Let
C(II) = {C(p1),-..,C(pn)} be the set of corresponding constraints. Let matchy
be the predicate defined by matchs(t) = true if there exists p; € I such that
p; < t. A term t satisfies the predicate matchy if and only if the function
Matche(ry is defined for the corresponding constraint C(t), as a consequence of
lemma 1.

Let /T = {p1,...,Pn} be a set of pairwise incompatible linear terms. Let
C(I1) = {C(p1),..-,C(pn)} be the set of corresponding constraints. Let ¢ be a
term compatible with a pattern p € II such that matchy(t) = false. Let us recall
that u € Dirg(¢) if and only if u € O(t), t/u is a variable and for every pattern
p € IT compatible with ¢, p/u £ t/u. The following property is satisfied.

u € Dirg(t) © 3D € Direimy(C(t))
such that u € U(D).
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Let u € Dirgz(t), there exists a pattern p compatible with t such that p/u =
F(..). Let D = u=F and U(D) = u, D € Atom(C(II)) and by definition
C(t) = Occ(u). As t satisfies C(t) and t/u is a variable, C(t) # D. As p is
compatible with ¢ there exists an instance 7 of ¢ such that r/u = £(...) and
thus, C(t) # —D. Finally let M € II be a pattern compatible with t. M/u £ t/u
implies C(M) = DV = D. Conversely let D = u=F € Dire(p)(C(t)). As C(1) =
Occ(u), t/u is defined. t/u is a variable otherwise either t(u) = F and C{t) = D
or t(u) = G with G # F and C(t) = —D. For every compatible pattern p € II,
p/u is not a variable otherwise C(p) # D V —D because V(D V ~D)(p) # true
and V(C(p))(p) = true.

3 Decidability of sequentiality. Optimality

As in the case of terms we prove that the pattern matching algorithm computed
for a sequential set of constraints I7 is optimal. First we prove that a finite set
of patterns IT is sequential if and only if the sef of constraints appearing in
the labels of the search tree STyr(true) is sequential. This property implies the
decidability of the sequentiality of a finite set of patterns .

Lemma 2 Let IT be a finite set of constraints such that STy (true) does not fail.
For every consiraint C' compatible with a pattern M € II there exists a label P
in STy (true) such that C = P and for every label P', if C = P' then P = P'.
P is named the mazimum prefic of C in STy (true). Furthermore, if P is not a
leaf, Dirgp(P) N Dirg (C) # 0.

Proof: Let C be a constraint such that there exists a pattern M € II compatible
with C. Let P be the set of labels M in STy (true) such that C' = M. P is not
empty because C = true. All the elements of P belongs to the same branch of
STrr(true) otherwise there exists a constraint D such that C' = D and C = -D
and thus, C' = false that contradicts the fact D T M. Clearly there exists P € P
such that for every P € P, P = P'.

Let D € Dirgz(P) such that P A D or P A =D or both are labels of STy (true).
Knowing that D € Dirg(P) we prove that D € Dirg(C). C' % D otherwise
C = PAD that contradicts the maximality of P if PAD is a label of STi(true)
and the compatibility of C' with a pattern if not. The same argument proves
C # —D. By definition of STz (true), D is a direction of P and thus, Yu € U(D),
P = Occ(u). As C = P, then C' = Occ(u). The last property is a consequence
of the fact that C' = P impliess CAM = PA M. '

Lemma 3 (Equivalence of optimal Search Trees) Let IT be a set of pal-
terns. All the search irees bult using the algorithm STr(true) have the same set
of leaves.

Proof: Let T and 7" be two search trees ST 7(true) and F be a leaf of T". Notice
that Dirg (F) = 0, Inst(F) £ 0 and if F’ # F'is aleaf of T', Inst(F")NInst(F') = 0.
There exists by lemma 2 a leaf P’ of 7" such that F' = P’. The same reasoning
leads to the existence of aleaf F’ of T' such that P’ = F’. Thus, FF = F'.
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We deduce from this lemma that all the different trees STy (true) recognize
the same set of constraints which allows us to use STy (true) in order to denote
one of them.

Theorem 1 Let I be a finite set of constraints. II is sequential if and only if the
algorithm STr(true) terminates without any fail. Furthermore the sequentiality
of a fintte set of patterns is decidable.

Proof: If I is sequential each step in STy (true) is such that either there exists
a direction or a pattern matches the constraint. Conversely, let us suppose that
STrr(true) does not fail. By lemma 2, for every constraint C' compatible with
II such that for every M € II, C % M, there exists a maximal prefix P in
STy (true) such that Dirg(P)N Dirg(C) # 0. Therefore Dirg(C) # 0 and IT is
sequential. The algorithm ST /I (true) terminates because the depth of the tree
is bounded by the number of atoms in I7, and thus the sequentiality is decidable.

Lemma 4 Let [T = {My,..., M,} be o set of pairwise incompatible constraints.
For every integer i and every constraint C such that C = M;, there exist
Fy,..., Fy leaves of STy (true) such that C = \‘/1<j<,c F; = M;.

Proof: Let C be a constraint such that C = My for instance and P its maxi-
mum prefix in ST (true). The proof is by induction over the size of the subtree
of STy (true) with root P. If P is a leave there exists a pattern M; such that
C = P = M; that implies M; = M, because patterns are incompatible. Other-
wise, let D € Dirgg(P) such that PAD or PA—D or both are labels of STy (true).
First notice that C = (C A D}V (C A -D) because C = My = DV ~D. As
CAD (resp. C A=D) satisfies the inductive hypothesis, CAD =/, ; F; = M;
(resp. C A=D = V¢ 5o Fj = M) where J (resp. J') is a subset of [1, &]. Thus,
C = V;esup Fj = M. The last part follows straightforwardly.

Theorem 2 Let Il be a finite set of pairwise incompatible constraints. If Il s
sequential then the search tree STp(true) ts optimal.
Proof: The optimality is a consequence of lemma 4, by definition.

Definition 11 Let I7 = {M,} o set of pairwise disjoint constraints and s be
a search tree corresponding lo II. A {erm t is recognized by s if it belongs to
the instances of one of the leaves of s. The partial function Search thot follows
assoctates to a pair (s,t) an integer i such that t € Inst(M;).

Search((C,1),t) =i ift € Inst(C)
Search(C(7),t) = Search(r;,1)
if t € Inst(label(7;))
Search((C, 1),t) = fall otherwise.

We present now several instances of the general match problem which can be
classed in two groups: Those based on the match operation and those based on
the unification operation. The former can be used in term rewriting systems and
in functional programming; the later group is oriented to the implementation of
logic programiming languages.
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4 Compilation of Pattern Matching in ML

For the first group, let us consider different variants of the match construct of
the ML language whose semantics can be defined by the following conditional
rewriting rule in the style of [6].

Definition 12 (Semantics of match in ML) Let E be a set of expressions of
the ML language containing functions defined by cases “(fun p; — e1|...|pn —
en)” and the match construct below that corresponds to the application of a
function to an ezpression ‘match e with py — eq]...|p, — €, = (funp; —
e1]...lpn — en)e” . The set P of language potterns and the relalion i =
match=y(v) where {P,} C P will be defined for each of the proposed vari-
ants of the match construct. The substitution operation e;[p; — v] produces a
partially evaluated expression in which the variables in pattern p; are replaced by
the corresponding parts of the value v. Finally, e = v is the relation that holds
if the value of expression e is v, which is defined on the siruclure of expressions
and contains the rule

e > v i=matchip(v) efpi —v] =0
{match)

match e with py — eq|...|p, — e, =V

The goal of each of these presentations is to define, for each of the instances of
the problem, a representation of patterns Iy = {Pn} as constraints [T = C(1Ip)
which, by lemma 2, wili lead to the definition of a search tree s = STr(true)
such that for any value v, matchy,(v) = Search(s,v). Under these conditions,
the rule above can be replaced by its equivalent compiled version.

5= STc(ﬁ) (true)

e=>v i=Search(s,v) ep; —v] = (match’)

match e with py —e1|...|pn — e, = V'

4.1 Maich of linear non ambiguous patterns

This is a restriction to the match construct of the ML language in which patterns
must not have common instances. It correspond to the original work of Huet and
Lévy [1]. For this instance of the problem the set P of language patterns is the
set T of terms (definition 1); the evaluation of the match construct

match e with p; —e1|...|[p, = e, =V

is only defined for sets of patterns II = {p,} such that for any term t € T,
pi <t and p; <t if and only if i = j; finally, the match predicate is defined by
matchg(v) =1 if p; <.

To each pattern p € P is associated the constraint

Cp)= J\ u=F
u € O(p),
plu = F(7m)
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The translation of a set Il of patterns is defined by
C(Ho) = {C(p)lp € o}

Example 2 Let eg,e1,€e3,e5 be ML expressions :: be a binary constructor in
infix notation, Nil, 1 be constants, z,y, z be variables and e be the expression

match ey with (1::y::2) — ey | (22 Nil) — eg | Nil — e3.

The set of patterns of e is Ily = {1 :: y :: 2z, - Nil, Nil}. The translation of these
patterns produces the constraints

Ci=e=unnl=la2E
Cy = €= = A 2 =Nil

C3 = ¢=Nil and

= {Cl, Cg, 03}

3

The optimal search tree associated to this problem is

true
€= —E= 1
e St e=Nil
b1 2 &Nl

Another search tree for the same set of patterns could be

true
/\
£ o me=
/\ l
11 -l e=Nil
PaN |
2 - .. -2 -2 ZNil
2 ZNil

Compared to the optimal search tree below, this search tree has an additional
step for instances of the second pattern, which means that there are instances
of terms that can be recognized by the former and not by the later. That is the
case of the term z :: Nil.
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4.2 Match of linear patterns ordered by priority

This instance has been studied by its own by Laville[4] and by Puel and Sudrez [7].
The presentation proposed here does not cover completely those works; in par-
ticular, the strictness characterization of a match problem is not treated here.
This instance of the general match problem correspond to the original match
construct of the ML language.

We keep in this instance the same set P of language patterns, and change
the match predicate as follows:

matchp(v) =4 ifp; <vandforanyj<ip Av

To each pattern p € P is associated the constraint
cp)= J\ u=F
u € O(p),
plu = F(7m)

The translation of a set Il of patterns is defined by

C(I) ={Cp) A N\ —Clp;)l1 <i<n}

1<j<i

Example 3 Let eg,eq,e9,e3 be ML expressions, f be a constructor, a,b be
constants and z,y be variables and e be the expression

match e; with f(a,b) —e; | f(e,z) — ez | flz,b) — es.
The translation of the patterns of this problem produces the constraints

Cr=e=f A fl=aA 220,

Cy = e=f A f2=b,
Cs=e=fAf2=bA-fl=a A-fl=c and
I ={Cy,Cs,Cs}.

The optimal search tree associated to this problem is

fli(; fI:a —|f1£a/\—|f1£c
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4.3 Match of non linear non ambiguous patterns

This is a variant of the match construct of ML in which variables in patterns
might appear several times. The set P of language patterns in this instance is the
set of non linear terms that can be represented with the notation (p with z; =
Y,---,Em = Ym) which indicates that in the linear pattern p variables z; and
y; should correspond to the same value. The match predicate of this instance,
defined only for non ambiguous sets of patterns is

matchp(v) =i
ifp; = (p with s), p<v
and for any pair x = y € s,z[p — v] = y[p — v]

We introduce now, new atoms that will represent the non linear part of
patterns.

Definition 13 Let A be the set of atoms of the form u=F as in definition &
compleled with equality constraints which are expressions of the form ulv where
u and v are occurrences and U(ulv) = {u,v}. The valuation function defined
for terms as follows:

V(ufv)(t) = true if u incompatible with t
or v incompatible with

V(ufv)(t) = ulv if u overpass ¢ or v overpass ¢
V(ulv)(t) = false if t/v = F(...) and t/u € Var(t/v)
V(ulv)(t) = false if t/u = F(. .._,t/v =G(_.Jand F£QG
V(ulv)(t) = (Alglgnu.F’Tv.F‘)(t)

’ . ift/u= F({,) and t/v=F(',)
V(uTv)(t) = ulv otherwise.

Fouality constraints can be translated into a call to a general equality function
often available in functional languages.

To each pattern “r with s € P” is associated the constraint

C(r with s) = /\ u=F A /\uTv

u € Of1), T=YyEs,
Tiu = F(Tm) T/u ==,
T/’U =y

The translation of a set /1y of patterns is defined by
C(Mo) = {C(p)lp € o}

Example 4 Let eg,e1, €3, e3 be ML expressions, f, g, be constructors, & be a
variable and e be the expression

match eq with fg(z), h(z)) — e
[ f(g(a:), r) — 9
| flz,z) — es.
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The original patterns associated to this example are

(f(g(z), h(y)) with z = y),
Ho=19 (flg(z),y) with z = y),
(f(z,y) with z = y)

The translation of these patterns produces the constraints
Cv=e=fAf =g A P2=h A fLg' 20t
Bo=e=f A Egn g f?,
3=e=f A fITf? and

!

JU = {Cl, Cg, 03}
The optimal search tree associated to this problem is
true
e=f
N ﬂfll-*g
FZh ~f=h aTs

fLg'1fimt =fLglif2nt flgltfr —flgtis
frgtif? !

4.4 Match of non linear patterns ordered by priority

This is an extension of the match construct of ML in which both, priorities and
non linear patterns are used. The constraints are defined on the set of atoms of

definition 13.
To each pattern + with s € P is associated the constraint

C(r with s) = /\ u=F A /\ ufv

u € O(7), T=YEs,
T/u = F(Tm) T/u =z,
T/v=y

The translation of a set ITy of patterns is defined by

C(Io) = {Cp) A N\ —Clpi)I1 < i< n}

1<5<i
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Example 5 Let ep,eq,e2,e3 be ML expressions, f be a constructor, z,y be
variables and e be the expression

match ey with f(z,y,y) — e
|f($,y]1') - €3
| f($7$7y) - €3.

The translation of the patterns of this problem produces the constraints
CIZGif/\fZ:Tfsa .
Co=e=f APITL AP,
Cs = = A P12 A=f21f2 A=f' 7 and

I ={Cy,Cs, Cs}.
The optimal search tree associated to this problem is
true
eif

P —fAre
e =R
e

Another possible instance of the general match problem leading to the com-
pilation of an extension of ML is the use of patterns of the form (¢ with s) in
which s is any arbitrary predicate. The result will be a matching algorithm in
which those predicates and the other matching operations are embedded and
launched in the best possible order.

5 Compilation of Resolution in Prolog

The following examples represent different variants of the calling mechanism of
logical programming languages. They are based on the unification as a pattern
recognition operation.

Definition 14 (Semantics of the calling mechanism of Prolog) Let I =
{Pn} be a set of patterns and i = matchy (t) be a relation representing the pattern
matching operation that will be defined for each of the instances of the problem.
A goal is a term {an element of T). The set Cl of Prolog clauses is defined by

clauses
Cli=p:i—q1..qn-pE PG €T,n>0
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The relation o = mgu(t,t’) holds if the substitution o is @ most general unifier
of termst and t'. We note “I' - g = ¢'”, a resolution step of a set of goals ¢
given the set of clauses I' producing a sel of goals g'. This operalion is defined
by the conditional rewriting rule below in which ¢,91 ..., gn denote sets of terms
representing goals

He)=F I'= F=qe(p1:—=¢1---Pn :—gn)
i = matehypry (t) o = mgu(t, p;)

: (Resolv)
THE{ttUg = o(g;) Uolg)

Given an appropriate compilation function C for patterns, the predicate rule
above can be replaced by a compilation rule for definitions of relations and a
new rule for the resolution.

8 = STe(py(true) (Cmpl)

F(Fpr:i—g1...pn:—gn) =
FU{F :Cmp (syleg].)"')pﬂJgn)}

t(E):F Fz}F:CHlp (s)legla"'Jpﬂ»;gﬂ)
i = Search(s, ) o = mgu(t, p;)

IE{t}ug = o(g:)Ualy)

(Resolv')

5.1 Resolution with linear patterns ordered by priority

The first instance is variant of Prolog in which only linear patterns are allowed.
A disambiguating rule, priority in this case, is necessary because unification as a
pattern matching operation is intrinsicly ambiguous for terms that are prefixes
(with respect to <) of patterns.

In this instance of the general match problem, the set P of language patterns
is the set T of terms and the match function is defined as follows:

t matches p if and only if p and ¢ are unifiable
match(t) = i if p;, matches ¢
and for any j < 4,7 does not match p;

The following atomic constraints will be used for the representation of patterns.

Definition 15 ( Var Constraint) To each u € O s associated a constraint
Var(u) defined by:

V(Var(u))(t) =true  ifu € O(t) end t(u) € X
= Var(u) ifu overpasst
= false fu€O(t) andt(u) e X
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To each pattern p € P is associated the constraint

Clp) = /\ (Var(u) Vu=F)
u € O(p),
plfu=F(Tm)

The translation of a set [l of patterns is defined by

C(Ily) = {Cp) A\ —~Clop)Il <i < n)

1<5<i

Example 6 Let g, g2 be sets of terms, g, h be constructors, x,y be variables
and f be the Prolog predicate defined by

flz,9(y) :— g1 fla(z),h(y) : = ga.
The constraints associated to this definition are

Cy = (Var(e) v e=f) A (Var(f%) v f2=g),

Cqy = (Var(e) Ve=f) A (Var(f1) v f1=g)A
(Var(f2) V f2=h) and

I = {C1,Cs}.

In order to save space in the representation of search trees, we will only represent
nodes that are not implied by all of their sons. This convention lead to the
representation of trees that are not binary. The optimal search tree associated
to this problem is

true
Var(e) e=f
Var(f?) f*=g [’=h

Var(fl) fl=h

5.2 Resolution with non linear patterns ordered by priority

This instance of the general match problem correspond to the usual pure Prolog
calling mechanism. As for pattern matching, we use the intermediate notation
“r with s” where s = {z1 = n1,...,%, = yn},n > 0 to note non linear patterns.
The match function is defined for this instance as:

t matches (7 with s) if and only if 7 and ¢ are unifiable
and for any pair x = y € s,
r and y are unifiable
match(t) = 7 if p;, matches ¢ and for any j < ¢,
t does not match p;
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Definition 16 (Unifiability Constraint) Ar unifiability constraint 15 an ex-
pression of the form uffv where u and v are occurrences and U(uﬂv) = {u,v}.
The valuation function for unifiabilily constraints is defined as follows:

V(ufiv)(t) = true if u incompatible with t

or v incompalible with t
V(uftv)(t) = true if u overpass t or v overpass t
V(uﬁv)(t) =true if t/fue X and t/v € X
V(ufo)(t) = true if t/u € X, t/v = F(%,)

and t/u & Var(t/v)
V(ufto)(t) = true if t/v € X,t/u = F(I,)

and t/v ¢ Var(t/u)
V(uftv)(t) = false if t/u = F(T,),t/v = G(Tn)

and F £ G
V(ufto)(t) = false if t/v = F(%,) and t/u € Var(t/v)
V(ufo)(t) = false if t/u = F() ond t/v € Vax(t/u)
Y(ufo)(t) = VAot Fo.F3)(0)

iftju=F(t,)

and t/v = F(t',)

V(ufrv)(t) — ufjv otherwise.

Unifiability consiraints can be implemented by o butlt-in unification procedure for
terms called as an atomic operation.

To each language pattern is associated the constraint

C(r with s) = /\ (Var(u) V u=F) /\/\ uftv

u € O(p), r=y¢€s,
plu=F(Tm) Tlu=z,
Tlv=y

The translation of a set IIy of patterns is defined by

C(Io) = {Cp) A N\ —C(pj)I1 < i< n}

1< <

Example 7 Let g1, 92,93 be sets of terms, a,b be constants, z,y be variables
and f be the Prolog predicate defined by

f(a':;b-wx):_gl- f(a,a7$):_92- f(x:aay):_g&
The constraints associated to this definition are

C1 = Var(©) V (2] A (Var(/%) V =) A F479),

Cy = (Var(e) V (e=f A (Var(f1) v fl=a) A (Var(f2) V f2=a))) A -Cy,
Cs = (Var(e) V (e=f A (Var(f2) v f2=a))) A =Cy A =C3 and

11 = {Cy,Ca, Cs).

Finally, the optimal search tree associated to this problem is
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true
Var(e)/\ei
fzf///\\ﬁf?ia
Var(f1) =g (=Var(f1) A= f=a) iare

Conclusion

We have given in this work the tools needed for the application of the sequential-
ity methodology for the resolution of different matching problems. We showed
that this is a practical approach for the meta-compilation of pattern matching
constructs in programming languages by the development of different variants
of the matching constructs of two different programming languages: ML and
Prolog. As part of this work, we also developed two interesting and practical
instances: the match of terms with non linear patterns and the use of unification
as a pattern matching primitive.
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