
Testabil i ty of a communicat ing sys tem through
an environment

K. DRIRA 1, P. AZEMA 1 , B. SOULAS 2 and A.M. CHEMALI 2

1 LAAS du CN[~S, 7 avenue du Colonel Roche, F-31077 Toulouse Cedex
2 EDF-E)ER, Renardi~res, BP1 F-77250 Moret sur Loing

Abs t rac t . Testing of a component embedded in a whole system is ad-
dressed. The component is not as easy to check as when taken in isolation.
The notion of conformance, as introduced by E. Brinksma and G. Scollo,
is extended to formalize testing through an environment that does not
allow some non conforming implementations to be discarded. A method
enabling embedded systems testability to be characterized is proposed. It
is based on the refusal graph whose arcs are labeled by events and nodes
by subsets of events. An approach is presented to identify erroneous
implementations. In particular, the least erroneous implementations dis-
carded by testing through environment are defined and computed.

1 I n t r o d u c t i o n

Formal Description Techniques, and particularly, process algebra, like CCS
[MI 80], CSP [HO 85], ACP [BK 85] and LOTOS [LOT 88], are a well-known
mathematical framework permitt ing communicating systems to be specified by
composition and transformation of elementary behaviours. To verify the equiva-
lence of two specifications of the same system, many algebraic relations have been
proposed. The best known relations are presented and compared in [DN 87].

The use of formal specifications as a reference model to validate implemen-
tations, prompted the introduction of testing equivalences and especially imple-
mentation relations (validity or conformance) [AB 87, DH 84, LE 91]. This led,
within the framework of LOTOS, to a formal definition of conformance and a the-
ory for the derivation of corresponding tests [BSS 87, BR 88]. From a system's
specification a tester is generated. Applying this tester to an implementation
ends with a verdict ('fail', 'pass') that distinguishes nonconforming implementa-
tions from the others.

This paper deals with the analysis of the testability of a system embedded
in an environment. Such analyses are important because specific constraints are
imposed for testing a module embedded whithin a system: The different compo-
nents (processes or modules), that cooperate to implement the global behaviour,
are specified. The delivered system comprises all the components already inte-
grated. It can be shown, by testing, that the global behaviour conforms to the
expected one. But what conclusion may be drawn about the conformance of a
given component to its specifcation ?

530

Suppose we are particularly (or only), interested in a component whose im-
plementation and specification are I and M respectively. The problem, to be
solved here, can be summarized as follows: what can be decided about the con-
formance of this component to its specification, M, assuming the global system
('I within E', E being the environment: i.e. the other components are intercon-
nected) passes the tests 3 of the specification 'M within E'. M testability through
its environment, E, is said to be good, if testing the whole system ('I within E')
discards as many nonconforming M implementations as direct testing of M (i.e.
without environment) would.

Here an approach is proposed for the analysis of a component testability
when it can only be tested within the whole system. Intuitively this testing is
less powerful than the one that has direct access to the isolated component. In
practice, this is expressed by non-detection of some erroneous implementations
that would have been discarded by directly testing this system. This will be
called testability degradation.

Testability analysis is easily understood in the idealistic case :
conformance is a total ordering, _>, that places the specification M and its
implementations 4 at the same axis: {I < M} U { / } U {I > M} ;
testing an implementation I can lead to either of the conclusions: I > M (I
conforming) or I < M (I nonconforming).
In this idealistic case, testability (degradation) analysis consists of searching the
new reference model, M'(< M), such that only 'I < M" can be checked when
testing I through the environment. M' is called the limit of testability degra-
dation (or shortly the limit of testability). Testability degradation is expressed
by the widening of the margin of nonconforming implementations not detected
through the environment: {I, M' < I < M}

This paper encompasses this introduction and three sections.

Section 2 describes conformance and other relations as defined in [BR 88]
and characterizes erroneous implementations that conformance testing can dis-
card. Testing through an environment is then presented. Testability analysis and
related problems are detailed. Finally, the limits of testability are characterized.

Section 3 introduces a behaviour representation structure, referred to as "Re-
fusal graph", providing composition and restriction operators together with test-
ing relations (con f, red, ~g) consistent with those initially defined in [BR 88].

Section 4 provides a method for testability analysis based on the refusal
graph. An ordered characterization of erroneous implementations allows identi-
fication of the least erroneous implementations that testing through an environ-
ment can discard.

3 or part of these tests that aim at activating this component
4 rather than physical implementations, we consider models of these implementations

described in the same formalism as the specification. This allows us to compare im-
plementations as well as implementation to a given specification. This identification
is discussed in [LE2 91].

531

2 C o n f o r m a n c e t h r o u g h e n v i r o n m e n t

2.1 P r e l i m i n a r y D e f i n i t i o n s

This section recalls conformance related definitions first introduced by Brinksma,
Scollo and Steenbergen in [BSS 87]. The equivalent definitions used are also
employed by Leduc in [LE 90]. This section also presents new relations dealing
with non conformance.

Labeled Transition System
A finite Labeled Transition System (LTS) is a quadruple: 8 = (S, 27, A, so)
where:

�9 S is a finite set of states, and so, so E S, is the initial state of S.
| 27 is a finite set of visible actions, or labels
, A C_ S • (S U {r}) • S : the transitions set, r ~ 27 is called internal or

invisible action. An element (x, p, y) E A is denoted: x ~ y
t~

Another transition relation, {~}uE~u{,} is defined in a standard way by:

�9 S ~ S ' : S = S ' o r s f f ~ S l r.~.., r---~Sn r---~s '
�9 s =gs' : s = ~ s l L s l ~ s '

The following notations are used:

~ s =~ means 3s' s =~ s'. s 7~ means -~(s :=~).

~ out(s) = {it E 27] s =~} denotes the set of visible actions that can be
performed by the system at the state s

This relation is extended to sequences (i.e. words or strings over E: a E 27*) by:

�9 i f a is the sequence tq "'" P- write s ~ s ~ when s ~z Sl =~ ... uS ' sn ~ s ~
The empty sequence is denoted c. As in the case of a state output, "traces of
a state" refer to the .'~et of all sequences of visible actions, a E ~*, that can be
performed from this state: Tr(s) = {a e 27*] s ~ } . The traces of LTS are those
of its initial state.

Conforming implementations
In the sequel, A is a ,;at of actions: A C_ 27 ; ~ is a sequence of actions: a E Z:*.
P (rasp. P~, I, M ...) denotes a behaviour expression associated with a finite
Labeled
Transition System whose initial state is P (rasp. P~, I, M ...).

�9 P re f A when Va E A P 7~. P has no derivate by any action a among A. Then
it is said that P refuses A. Note that if P refuses A then P refuses all subsets of
A (i.e. B C_ A implies; P r e [B)

�9 P after ~={P~ : P =~ P '} : set of all derivates of P via sequence er.
If a ~ T r (P) then P has no derivate via a and then P after a = 0.
�9 (P after cr) re[A when (3P' E P after a , P ' ref A)
at least one of the derivates of P refuses A.
When ~r r Tr(P), there exists no element in (P after ~) and then
(P after ~) ref A has 'false' as logical value. This substanciates the equivalence
of the following two definitions of the conformance relation.
�9 c o n f o r m a n c e : implementation I is said to be conforming to specification M
when I deadlocks less often than M when placed in an environment whose traces

532

are limited to those of M. Formally I conf M =--d] Vcr E Tr(M) O Tr(I), VA C
: if (I after ~) ref A, then (M after or) ref A. Or equivalently:

Wr E Tr(M), VA C s : if (I after a) ref A, then (M after ~) ref A
r e d u c t i o n : A reduction is a conforming implementation with less traces than
the specification. Formally: I red M =--d] (I eonf M) A Tr(I) C_ Tr(M)
| ex t ens ion :An extension is a conforming implementation that has more traces
than the specification. Formally: I ext M ~d] (I eonf M) A Tr(I) D Tr(M)
* i m p r o v e m e n t : An improvement is a conforming implementation possessing
the same traces as the specification. Formally: I >_ M ~-d] Tr(I) = Tr(M) and
I conf M. We also say that I is more deterministic than M. The symbol < is

used to denote >-1 : I < M ~=~ M > I. I < M means: I is less deterministic
than M.
Note that (I >_ M) de f> (I red M) A (I ext M).
. t e s t i n g e q u i v a l e n t It is these implementations which are as deterministic as
the specification. Formally: I te i iff (I red M) A (M reel I).
Non conforming implementations

D e f i n i t i o n I D i s t o r t i o n . Every nonconforming implementation with the same
traces as the specification. I is said to be a distortion of M and is denoted
i dis M when Tr(I) : T r (i) and I -~conf M.
Def in i t i on 2 D e g r a d a t i o n . Every implementation (strictly) less deterministic
than the specification. I is said to be a degradation of M and is denoted I < M
when I < M and -~(M t_e I). Equivalently: A degradation I of M is a distortion
such that M con f I.

Summary of the different relations
Let 2. denote the implementation set of a specification M. A conformance test
splits 2" into two subsets:
| Z r is the set of conforming implementations: {I E 2. : I eonf M} = Conf(m)
(upper zone of Fig. 1). These implementations pass the conformance test.
. 2.0 is the set of nonconforming implementations: {I E 2. : I -~eonf M} =
-~Conf(M). (lower zone of Fig. 1). These implementations fail the conformance
test.

On the other hand, 2. can be partitioned into the set of implementations
whose traces are comparable to those of M (inside of the circles of Fig. 1), and
its complementary: 2" = (A U/3) U (2" \ (A U B)) where
A = {I E 7. : Tr(I) C Tr(M)} is the set of trace reductions of M. This set is
denoted Red_tr(M) and is the left circle of Fig. 1.
B = {I E 2" : Tr(I) _D Tr(M)} is the set of trace extensions of M. This set is
denoted Ext_tr(M) and is the right circle of Fig. 1.

Intersection of these different sets is summarized in the following tables and
illustrated in Fig. 1.

2.2 T e s t i n g t h r o u g h an e n v i r o n m e n t

Here lhe test of a system through an environment is formalized using Lotos
operators as a basis for behaviour composition. The system is a finite Lotos

533

conformance zone: 0
designation Symbol Notation]
Conforming 2 -~9 Conf(M)]
Reductions A O I ~) Red(M)l
Extensions B n Z e Ext(M)
Improvements A O B n Z e Imv(M)

nonconformance zone :
designat ion Symbol Notatlon I
Nonconforming 2 "e -,Conf(M)]
Distortions A n B n I e Dis(M)[
Degradations C (AN Deg(M)l

B n/e) I

con/(M)

-,cony (M)

Fig. 1. Zones of the implementations domain

process (which can be represented by a finite LTS). The environment is the
particular context hide F in (oI[FIIE), where E is finite Lotos process.

We suppose that the global implementation results from the composition of
an implementation of M (i.e. another process I) with an environment identical s
to E: Implementation under test is hide F in (II[F]IE)

The conforming/nonconforming (pass/fail) verdict is considered as a verdict
directly concerning M. In other words, a failure only involves the implementation
of component M (which is then called component under test).

D e f i n i t i o n 3 C o n f o r m a n c e t h r o u g h an e n v i r o n m e n t . An implementation
I conforms to a specification M through E if hide F in (I[[F]IE) conforms to
hide F in (MI[F]IE), This will be noted: I confE M

2.3 T e s t a b i l i t y Ana ly s i s

Analysis of M testability through environment E is tantamount to introduc-
ing, in the implementation domain zones, a new partition of 77 given by the
conformance verdict when testing implementations through the environment.
This leads us to compare M testability after embedding in environment E, and
testability of isolated M.

Adopting the intuitive idea that testing through an environment can only
degrade testability r leads to the following paradox: testing through an environ-
ment may evaluate a.s n o n c o n f o r m i n g some conforming implementations.

Indeed extensions (right upper half of the circle in Fig. 1) may become non-
conforming when testing through an environment. This can be explained by
considering the objective of conformance testing: conformance testing aims at

This hypothesis can be relaxed without affecting the results : 'identical' can be
replaced by 'observationally equivaient' or also another equivalence stronger than
testing equivalence and which is a congruence w.r.t, hiding and composition operators
(hide and II).
i.e. nonconforming implementations are erroneously evaluated as conforming

534

verifying the correct functioning of the implementation with respect to the spec-
ified behaviour: A conformance tester accepts implementations that extend the
specification traces as soon as they conform to the specified behaviour. Without
making any assumptions on the environment behaviour, the latter may have a
superset of traces (relativeto synchronization actions) of the specification. The
environment therefore participates in robustness testing ~ [BR 88]. And testing
through this environment rejects conforming implementations that are not re-
ductions of the specification.

This paradox vanishes when the synchronization traces of the environment
are restricted to those of the specification.

On the other hand, without assuming that hiding synchronization actions
creates no divergence, reductions as well as improvement might be evaluated as
nonconforming when checked through an environment.

In Figure 2, the E-conformance boundaries (continuous line) cross the con-
formance boundaries (horizontal dashed line), which result from a test of the
isolated component.

The general case, depicted in part (a) of Fig. 2, illustrates the incomparability
of these two conformance tests, because some conforming implementations will
be regarded as nonconforming when tested through the environment. These are
nonconforming implementations depicted by the horizontally dashed regions in
part (a) of the figure.

C~tgr.0 ~ ~
~176176 , , , , ~176176 , ~ 1 7 6

s d s~ ~ ~

~176 ,.o"~ ~ . , . , ~176176

(a) general case

Fig. 2. Conformance through environment

o.,.o.... ,,,o, , , . ,~ o.,,o,
,.* ,,q~ o ,

S s ~ '4
t

, ~q, ~176
'~176o~176176 *' ,,, '~

(b) wh/m hiding d o e s n o t create divergence

Tracing regularity, in the trace inclusion zone, of part (b) of Fig. 2 shows
that, in the absence of divergence, conforming implementations with at the most
the same traces as the specification (reductions) remain conforming when tested
through the environment. This expresses the so-called conformance preservation.
It can be formalized as follows

7 i.e. testing implementation against an environment that behaves incorrectly. This
kind of test guarantees that the implementation does not possess unspecified traces.

535

P r o p o s l t i o n 4 . conformance preservation
In the absence of divergence:
�9 I f I red M then I reds M (and then I confE M) [LE 87]
where I redE M -~! (hide F in II[r]lE) red (hide r in MI[r]IE),
Reductions are conforming implementations that remain conforming when tested
through the environment.

2.4 Limi ts of test'2ng t h rough an env i ronmen t

No proposition can be established about the existence of nonconformance de-
tection limits by testing through an environment. This strongly depends on the
specification of the component under test and on its environment. Nevertheless,
they may have a meaning when they exist.

A limit is an erroneous implementation which may be detected when testing
through the environment and such that: only 'more erroneous' implementations
will be detected.

The 'more erroneous' relation will be expressed by the pre-order < ; and I1
is said to be more erroneous than I2 when It < /2 .

It can now be stated that the limits are the least erroneous implementations
that testing through environment can discard:

An erroneous implementation, I, is a limit of nonconformance detection if
(i) nonconformance oF I is detected (through the environment).
(it) nonconformance of (strictly) less erroneous implementations (i.e. I ' > I) is
not detected (through the environment).

Assuming that hiding creates no divergence, the following proposition shows
that implementations that are more erroneous than a detected erroneous imple-
mentation (and particularly a limit) will also be detected.

P r o p o s i t i o n 5 . non conformance detection
Given two implementations, I and I ~ , of specification M
if (I ~eonf~ M) then, (I' <_ I) ~ (I' ~confE M)
if I is detected by testing through E, then all implementations, which are more
erroneous than I, will also be detected.

3 Refusal Graphs for computing limits of testability

Labeled transition systems are the initial semantics of LOTOS. Another semantic
model (Rooted Failure Tree with divergence) was defined in [LE 90] and pro-
posed to interpret LOTOS specifications. This model was useful for enriching the
basic model (Failure tree) of the theory for tests derivation of [BR 88] with com-
position and restriction (or hiding) operators. The model referred to as Refusal
Graph presented here., makes the approach for the testability analysis (presented
in the next section) operational.

In this section, the refusal graph structure is defined along with the com-
position and restriction operators. Finally, conformance (con f), reduction (red)

536

and equivalence (~g) relations are defined directly on the refusal graph struc-
ture. These relations are (bi)simulation-like defined [PA 81, MI 80] and therefore
easier to check than the initial definitions on transition systems.

3.1 Re fus a l G r a p h

The Refusal Graph is a structure specifying the failures of a communicating
system [HO 85] (a failure is a couple made up of a sequence of actions in which
the system may engage, and a set of actions it can refuse after this sequence).

D e f i n i t i o n 6 R e f usa l G r a p h . A refusal graph, denoted RG, is a bilabeled
graph represented by a 5-tuple (S, S , A, Re f, So) where:
�9 S is a finite set of states, so E S is an element, of S called initial state.
�9 S _C L is a finite set of actions (edge labels), also called the alphabet of RG,
�9 A C (S • Z' • S) is a set Of transitions. An element (s, a, s') E Z' is denoted: s ::~
s r. Transitions described in A must verify the following determinism property:

V s E S , V a E Z ; 3 a t the most o n e s I E S s u c h t h a t s : ~ s I.
�9 R e f : S , J~(~(L)) is an application which defines for each state, the sets
of actions that may be refused after the sequence leading to this state.

To avoid redundancy, refusal sets must be minimal w.r.t, set inclusion: Vs E
S, VX, Y E Ref(s) : (Y C_ X) ~ (X = Y). Or equivalently ~X, Y E Ref(s): (X #
v) ^ (Y c_ x).
i.e. no subset of an element of Ref(s) is in Ref(s). In other words, all elements
of a refusal set are pairwise incomparable (w.r.t set inclusion C_).

And to avoid describing imaginary systems, one of the following hypothesis
is imposed on the refusal graph structure:
hl. VX E Ref(s), X C_ out(s). Only refused parts of the output s set are consid-
ered. Or
h2. VX E nef(s) , X tO (L \ out(s)) E Ref(s). Refused parts are saturated with
respect to output complement. This second hypothesis is used in [BR 88, LE 90]

The changeover from a refusal set, R, built according to hl, to its representa-
tion according to h2 is possible by the completion transformation complete(Ref(s
)) = {X U (L \ out(s)), X E Ref(s)}. (The reverse changeover corresponding to
the reverse transformation uncomplete(R) = {X f3 out(s), X E Ref(s)}.)

Let G1 = ($1, Z'l, A1, R e f 1, s~) and G2 = (S~, ~2, A~, Re f2 , sg) be two re-
fusal graphs such that Re f l and Re f2 are defined with respect to the comple-
tion hypothesis (h2.) with alphabet L = L'I U $2 as superset of Z'l and L'~. Let
F(C Z1 U ~2) be a set of actions such that Z'I N L:2 C F. 9
De f in i t i on 7 re fusa l g r a p h c o m p o s i t i o n . The composition of G1 and G2 is
the refusal graph G = (S, Z', A, Re f , so) defined by:
�9 Set of states S C S1 • $2 is such that (so 1, so ~) E S, and every couple of elements

8 out(s) = {a e Z, 3s' e S : s =], s'} is called output of state s.
9 This hypothesis allows the definition of the composition operator to be simplified

compared to the RFT model of [LE 90]. It is equivalent to assuming that only syn-
chronization gates may have the same name in the system and environment specifi-
cations which is not restrictive in the framework of testing through an environment.

537

of $1 and $2 which may follow an element of S by one of the transition rules (i),
(ii), (iii), given below, is an element of S,
�9 Z = 571 U S~ is the set of actions,
�9 A is defined by: Va E F, Va E (Z1 \ F), Vb E ($2 \ F) :

ot I o t i a I b t

(i) (',,'~)=~(',,'~) (',,'~)=~(',,'~)
ot i i a t ' I

($1,$2)::~($1 ,'2)
�9 (V(r, s) e ,S') Ref((r, s)) = {((X, U X2) n r) u (X, n X2), x, e Res x2 e
ReJ'~(,)}
�9 so = (4 , 4) is the i~ state.

To define the restriction operator on refusal graphs, it is assumed that the
restriction creates no divergence. In the opposite case, only upper and lower
bounds may be obtained as in [LE 90].

Given a refusal graph G = (S, 57, A, Re f , So) and a set of actions F C_ Z,
D e f i n i t i o n 8 r e fusa l g r a p h r e s t r i c t i o n . The restriction of F in G, is the re-
fusal graph G' = (S', 57', A', Ref ' , S~o) denoted G \ F and defined by:
* s0 = {si : so ~ s i ,7 �9 F*} is the initial state. It is the set of all the states
reached from so by a sequence of actions in the restriction set.
�9 S' C T'(S) : whose ,elements are defined by the series (gn)n>0 : Sn' = 6(S~-1)
where:

~(s') = U,~ , , ~(s), ~(s) = U o ~ r ~o(s), ~o(s) = {t �9 s , 3 ~ , , ~ �9 r ' : s ~ ~ t}
states of G ~ are sets of G states that may be reached from S~o by a sequence where
actions in F are cons:idered as internal.
�9 57~ = 57 \ F : the alphabet of G ~ is restricted to 57 \ F
�9 A' is such that: Ya �9 (57 \ F) s~ ~ s~ iff 3s~ �9 s~,3s~ �9 s~,371,72 �9 F* �9
81 7 ~ 82

�9 Ref'(s') = {X \ [' ,X �9 Ref(s)et C C X,s �9 s'} \ { Y �9 Ref'(s')3X �9
Ref f (s ') : Y C X}

5 a
{ [a,b,c,8} } / ~ , {b c,a,~,8}} Z

(~) (~) G : G~ II,x,lS,~]1%

~ {{b.c}}

@ {{b}.{c}}

~ { (* . b } . { * . r

G\[a,~,8]

Fig. 3. composition and restriction

538

Notations: If L is a finite set, then
* P (L) denotes the power set of L, i.e. the set of subsets of L
. f o r a E P (7 ~ (L)) we n o t e M i n (A) = A \ { X , 3 Y E A : XC_Y, e tXTkY} .
* for R C 7 ' (P(L)) we note Min(R) = {Min(A), A E R}.
. the minimal refusal sets on alphabet L' _C L are elements of Min('P(7:'(L')))
. for every minimal refusal set A, X E A - - a t 3 Y E A : X_CY.
* A C : B = a t VX, (X E A) ~ (X E B)
| A C : , B - a ! (AC:B) A(ATkB)
. Application Reft defines the refusal sets for the states of refimal graph I.
| Application Ref t defines the refusal sets for the states of refusal graph
(IJ[r][E) \ C.

3.2 B i n a r y r e l a t i o n s o v e r r e fu sa l g r a p h s

Consider two refusal graphs defined over the same alphabet 1~ L: I = (St, L, At,
Reh , I) and M = (SM, L, AM, helM, M).

D e f i n i t i o n 9 .
* conformance I conf M =-at

(i) Refi(I) q= RefM(M)
(ii) Va E out(I) f3 out(M) : i f I ~ I' then M ~ M' andI' eonf M'.

o reduction I red M ==-d!
(i) Rey1(I) r ReyM(M)
(ii) V a E L : i f I ~ I' then M ~ M ~ andI' red M ~.

. testing equivalence I ~a M -at I red M et M red I

The refusal graph corresponding to a transition system is obtained by making
deterministic the transition system considered as an automaton whose every
state is terminal. This provides a mapping, newState, which associates each state
of the refusal graph with a set of states of the transition system. The refusal sets
of a state g are given by: Per(g) = Min({out(g) \ out(s), s e newState(g)}).

Proposition 10 is related to the compatibility of the composition and restric-
tion operators of the refusal graphs with those defined on transition systems.
The latter are similar to basic LOTOS operators: a transition system is viewed as
a set of processes, S, executing actions in Z:U {i = r} according to the transition
rules defined by A. The initial behaviour being the initial state of the transition
system, i.e. so.

For any transition systems, $1 and S~, we have:

P r o p o s i t l o n l 0 . operator compatibility
. composition: rg(S~l[r]ls2) ~g rg(Sl)l[r]lrg(S2)
. reslrietion: rg(hide F in S1) ~g rg(S1) \ F

Relations _, <, and dis are also defined over refusal graphs, by replacing the
definition of conf of transition systems by its dual relation of refusal graphs. For
these two types of relations the same symbols are kept.

10 in practice L is the union of the alphabets of the two refusal graphs

539

4 Testability through an environment

This section is dedicated to the use of the refusal graphs structure for computing
the limits of nonconformance detection when testing through an environment.

4.1 O r d e r e d e r r o n e o u s i m p l e m e n t a t i o n s

This section introduces the transformations employed to simulate the three types
of implementations presented earlier (paragraph 2.1), namely, 'improvements',
' degradationY, and 'distortions '11.

With respect to testability analysis, we want particularly to order the erro-
neous implementations (degradations and distortions) such that they can then
be classified in agreement with the degradation relation (<). Thus an approach,
based on an ordered analysis of erroneous implementations, can be developed to
identify the limits.

As illustrated in Fig. 4, testability analysis consists of tracing limits (painted
ovals) of nondetection of degradations (and distortions) over the set of ordered
erroneous implementations.

tes~& M lhtouSh E

aoBdetecla~l~ It~tOllf~h E I d e t e c ~ IJ~'~*h E

-o , o i . . .o4-o.- -

o U
.~ all erroneous imploaeatatioas are detectable

t~ti~ M dir~cdy

Fig. 4. testability Degradation

For every state, i, of the specification refusal graph, M : (S, 2], A, Re f, so), a
mapping, gri is defined associating with each refusal set, A C Min(7~(7)(out(i)))),
an erroneous implementation (degradation or distorsion), or a conforming imple-
mentation (improvement). Let G denote the set of implementations having the
same refusal graph as M except for the refusal sets (i.e. the same state space,
the same edge labels, but not the same state labels).

Let (7- ,C) denote the lattice (Min(7:'(~P(out(i)))),C). 12 And VA e 7-,
vgc_ 7-
4...4_ = {B e 7-, B C, A}, A = {B e 7-, A C, B} et in.f(S) = {A e S, , a B e
s A}.

11 For the latter, we consider only those which may not be captured as degradations.
12 In practice it is possible to use the same ordered set Min(7~(7~(22))), C, for all the

states.

540

g'i : 7- >~
A > ~'~(A) = (S, ~ , A, Re.,", ~o) such that:

Vj E S, j 7~ i, R e f ' (j) - ReS(j)
ReS'(i) - A

Thus a lattice (r _>) isomorphic to (T, ~2) is built. In particular we
verify that: B ~2 A iff ~ti(B) > ~i(A), meaning: ~i(B) is more deterministic
than ~ (A) . When B C , A then g',.(B) > ~'~(A) and ~t~(A) is a degradation of
~,(B).

- I E ~ti(Ref(i)) implies I > M. These are M improvements.

- I E r) implies I < i . These are i degradations.
- I ~ ~,i(7- \ (Ref(i) u Re$(i) u {Re$(i)})) implies I dis i . These are i

distortions.

By way of example, consider the state 2 of the refusal graph M represented by
G1 in the Fig. 3. out(2) = {c~,/3} et ReS(2) = {{}}

According to the lattice depicted in Fig. 5, M has four degradations 13:M1,1
is the one having {{a}} as refusal set at the state 2. M2,1 has {{/3}} as refusal set.
M2,2 = M1,2 have {{a}, {t3}} as refusal set. And finally M~,3 = M1,3 = Mmln
have {{a, fl}} (i.e. {out(2)}) as refusal set.

{{ l l

{{a},l~})

1= {{a,~}}

I l i l l Imll ~1111 Il i l l I0111

,,, , , , ,

i , , l , , , @ @ , , , , / - _ _ ,

I"'
Fig. 5. Ordered refusal sets and induced Ordered degradations

4.2 Use o f r e fusa l g r a p h s for l imi t s l oca t i o n

Refusal graphs allow erroneous implementation characterization problem to be
reduced to elementary operations on the refusal set structure. Just as in the case
of testability degradation limit identification. Indeed, the definition on refusal
graphs of the composition and restriction operators allows us to decide if an
error is detectable through the environment by comparing (two) refusal sets
w.r.t, order relation ffZ.

13 to simplify we present refusal sets according to the first hypothesis 11 of refusal
graphs definition

541

Let Deg(i) = RefM(i), Imv(i) = RefM(i), Dis(i) = "T \ (Deg(i) U Imv(i) t.J
{UefM(i)}), and Err(i) = Deg(i) U

Simulating an error related to state i, consists in replacing the refusal set at
this state, RefM(i), by one, say A, of the lower bounds of Err(i).

To verify whether this error is a limit (of conformance testing through envi-
ronment E) the following steps are executed:

�9 choose a state s of (MI[FllE) \ F which could have been "disturbed" by
this error, and which includes a couple of the form (i, *), (* matching
any E state).

- compute the new refusal set of s by replacing, RefM(i) by the (completed)
refusal set complete(A).

- test whether the obtained set is included (in the sense of ~U) in the initial re-
fusal set. If it is not (the corresponding erroneous implementation is a limit),
stop the exploration (of the matching states, s) and add this error to the set
of limits sought. Remove A and all its successors (i.e. all sets B such that
A C B) from set of errors to be explored. The new set to explore is then
Err(i) \ (A U {A}).
In the opposite cs~e (the erroneous implementation corresponding to A can-
not be detected in any state s), only A is removed from the set of errors to
be explored.

F o r m a l i z a t i o n : For every state, i, of the refusal graph, let (G, V) denote the
oriented graph structure that represents the lattice (Min(P(P(out(i)))), C).
�9 G is a set of nodes representing the lattice elements.
These refusal sets are candidate for replacing the refusal set Ref(i) that will be
referred to as ei.
�9 V is the set of edges representing the (strict) inclusion of two refusal sets.
�9 (G, V*) is the transitive closure of (G, V).

For every couple of (distinct) nodes (e, e'),
�9 (e, e S) E V means: ~ C e S and /~e" such that e ~U, e" C , e ~
�9 (e,e I) E V* means: 3el , . . ,ek : e r el Cs "'" Cs ek Cs e I

The search for the limits of degradations and distortions that cannot be
detected when testing through the environment can be formalized by the calculus
of the set L i m i t s returned by the following algorithm:

Distortions := G \ {e~)\ {e : (e, el) E V* ,or, (el, e) E V*)
Degradations := {e : (ei,e) E V*}
OrderedErrors := Distortions U Degradations
Limits := O
PotLimits:= inf(OrderedErrors)
wh i l e PotLimits r O do

fora l l e E PotLimits do
detected(e) := V e r l f y B y S u b s t i t u t i o n (i , e)
i f detected(e) t h e n

OrderedErrors:= OrderedErrors\{e}\ {ek : (e, e~) E V*}
Limits := Limits U{e}

542

else
OrderedErrors:= OrderedErrors\{e}

e n d i f
d o n e
PotLimits:=inf(OrderedErrors)

d o n e

Where:
�9 V e r i f y B y S u b s t i t u t i o n (i , e) is a procedure that returns t r u e if the replace-
ment of Ref(i) by e in the calculus of RefM(s) gives a refusal set r such that
r ~_ RefE M (s).
where s is a state (of MI[F]IE \ F) containing a couple (i , .) .
�9 for s = {el,e2,..,e,~} C_ G, inf(s returns the set {e E g :flek C s : (e,ek) E
v}

Ve E Limits, we have :
~/i(e) -~conf M, #i(e) "~confE M
~Pi(e) is an erroneous implementation of M detectable by the test through E.
re' E G : e ~ Cs e implies #i(e') confE M
No implementation less erroneous than #i(e) can be detected through E.
Ve I E G : e Cs e I implies k~i(e I) ~confE M
Any implementation more erroneous than !Iri(e) can be detected through E.

5 Conclusion

In this paper, we have presented a formalization of the notion of degradation of
the testablity of a system when the latter is embedded in an environment that
prevents it from being directly tested. We relied on a formal definition of the
conformance of an implementation to a given specification. This conformance
definition supports automatic tests generation, for details see [BR. 88, LE2 91].
We explained the testability degradation by the existence of nonconforming im-
plementations (i.e. erroneous implementations which are discarded by confor-
mance testing when no constraints are imposed by an environment) that the
testing through an environment procedure cannot detect.

Assuming hiding synchronization actions creates no divergence, the notion of
testability degradation limits was put forward. Limitswas characterized as erro-
neous implementations before which nonconformance cannot be detected when
testing through an environment. An original presentation of the conformance
and related notions has been given. To simulate erroneous implementations and
determine these limits, we proposed transformations by 'degradation' and 'dis-
torsion' of the specification described by a bilabeled graph structure referred to
as refusal graph. Note that characterizing ordered erroneous implementations
can be used for more general purposes, e.g. for test selection. A framework for
test selection, proposed in [BTV 91], assumes error characterization as we de-
tailed in this paper.

The refusal graph structure yields composition and restriction operators that
lead to an operational approach for the testability analysis. Furthermore, this

543

structure, together with the bisimulation relation, ~g, defined on, facilitate
checking of testing equivalence of two systems.

Finally an approach for simulation of erroneous implementations and com-
putation of the so-called limits of testability has been presented.

Acknowledgment: We thank Guy Leduc of Universit~ de Liege for his relevant
comments on the draft version of this paper.

References

[AB 87] S. ABRAMSKY Observation equivalence as a testing equivalence Theoretical
Computer Science 53 (1987), pp. 225-241.

[BK 85] J.A. BErtGSTRA, J.W. KLOP Algebra of Communicating Processes with Ab-
straction. Theoretical Computer Science 37 (1985). 77-121

[BSS 87] E. BRINKSMA, G. SCOLLO AND C. STEENI3ERGEN Lotos Specifications, their
implementations and their tests. Protocol Specification Testing and Verification,
VI. B. Sarikaya and G.V. Bochmann (editors) Elsevier Science Publishers B.V.
(North-Holland) 1987

[BR 88] E. BRINKSMA A theory for the derivation of tests. Protocol Specification Test-
ing and Verification, VIII. S. Aggrawal and K.Sabani (editors) Elsevier Science
Publishers B.V. (North-Holland) 1988.

[BTV 91] E. BRINKSMA, J. TRETMANS and L. VERHAARD A Framework for Test
Selection Proceedings of tim l l th international IFIP WG6.1 Symposium on Pro-
tocol Specification, Testing and Verification. Stockholm, June 17-20 1991.

[DH 84] R. DE NmOLA, M.C.B. HENNnSSV Testing equivalences for processes. Theo-
rical Computer Science 34 (1984). 83-133.

[DN 87] R. DE NICOLA Extensional Equivalences]or Transition Systems. Acta Infor-
matica 24, (1987), pp. 211-237.

[HO 85] C.A.R. HOARE Communicating Sequential Processes. Printice-Hall Interna-
tional series in computer science, New York 1985

[LE 87] G. LEDUC The lnterwriting of Data Types and Processes in LOTOS. Protocol
Specification Testing and Verification, VII. H. Rudin and C.H. West (editors)
Elsevier Science Publishers B.V. (North-Holland) 1987

[LE 90] G. LEDUC On the role of Implementation Relations in the Design of Distributed
Systems using LOTOS. dissertation d'agr~gation, Universit~ de Liege, Juillet
1990

[LE 91] G. LEDUC A Framework based on implementation relations for implementing
LOTOS specifications. Computer Networks & ISDN Systems, 1991.

[LE2 91] G. LEDUC Conformance relation, associated equivalence, and new canonical
tester in LOTOS. Proceedings of the l l th international IFIP WG6.1 Symposium
on Protocol Specification, Testing and Verification. Stockholm, June 17-20 1991.

[LOT 88] INTErtNATIONhL STANDhRD ISO8807 Information processing systems, Open
systems interconnection, A formal description technique based on the temporal
ordering of observational behaviour

[MI 80] R. MILNER A Calculus of Communicating System, LNCS, Vol. 64, 1980.
[PA 81] D. PhRK Concurrency and Automata on Infinite Sequences, LNCS, Vol. 104,

1981.

