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Abs t rac t .  In [3], McMillan described a technique for deadlock detection 
based on net unfoldings. We extend its applicability to the properties of 
a temporal logic with a possibility operator. The algorithm is based on 
Linear Programming. It compares favourably with other algorithms for 
the class of deterministic concurrent systems. 

1 I n t r o d u c t i o n  

Model checking has become a well established paradigm for verifying that  a con- 
current program satisfies a temporal logic formula. It views the program as a 
structure on which to interpret the considered logic and evaluates the formula 
on this structure. 
In most work on model checking, the structures are some sort of transition sys- 
tem obtained representing concurrency by arbitrary interleaving. It has been 
observed that  this contributes to a state explosion problem, and that  avoiding 
the enumeration of all interleavings could lead to more efficient algorithms. 
Several researchers have proposed such algorithms. Some of them use partial 
order notions to reduce the size of the state space, such as the stubborn sets 
method of Valmari (see, for instance [12]) or the trace automaton method of 
Godefroid and Wolper (see, for instance, [5]). Others work directly on partial 
order structures, such as the behaviour machines of Probst  and Li [10] and the 
Petri  net unfoldings of MeMillan [8]. We are particularly interested in the latter. 
McMillan's method is based on the net unfoldings introduced by Nielsen, Winskel 
and Plotkin in [9] as a partial order semantics of Petri nets (closely related to 
event structures) and further studied by Engelfriet in [3]. For verification pur- 
poses, these unfoldings have the problem of being infinite even for systems with 
a finite number of states. McMillan shows how to construct a finite prefix of the 
unfolding large enough to be able to detect deadlocks. 
In this paper, we make deeper use of the theory of unfoldings to extend M- 
cMillan's approach to model checking: we propose a verification algorithm for a 
logic closely related to $4 [7], which extends propositional logic with a possibility 
operator,  and permits to express safety properties such as the reachability of a 
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Figure 1: A finite 1-safe system. 

state or the liveness of a transition. 
Since the unfolding does not contain any explicit representation of the states 
of the system, our algorithm is very different from the traditional traversing 
algorithms of the state space. It uses Linear Programming to identify certain 
particularly important states. 
Our algorithm is adequate for deterministic or nearly deterministic concurrent 
net systems, with applications to the design of asynchronous circuits. In the 
deterministic case (no conflicts) our algorithm is polynomial in the size of the 
prefix. For the class of conflict-free net systems [6,13] it is even polynomial in 
the size of the system, whereas the algorithms of [5,10,12] are either exponential 
or not applicable. 
This paper is a shortened version of [4], where the proofs omitted here can be 
found. The paper generalises results of [1]. There, a model checker was given for 
the class of 1-safe Petri nets in which places have at most one input transition 
and at most one output transition. Here we generalise this model checker to 
arbitrary 1-safe Petri nets. 

The paper is organised as follows. Section 2 is devoted to basic notations and 
results. Section 3 introduces the syntax and semantics of our logic. Section 
4 shows how to reduce the model checking problem to two simpler problems. 
Algorithms for these problems are given in sections 5 and 6. Finally, Section 7 
considers the case of deterministic concurrent systems. 

2 Bas i c  N o t i o n s  

We assume that  the reader is familiar with the basic notions and notations of 
Petri nets, as given for instance in [2]. We use finite 1-safe Petri nets as system 
models. We denote a Petri net by P~ = (S, T, F, Mo), where (S, T, F)  is a net 
and M0 its initial marking. A place of a 1-safe Petri net can contain at most one 
token. In the sequel, we call 1-safe Petri nets 1-safe systems, or just systems. 
Figure 1 shows a 1-safe system. 
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Our execution model are Engelfriet's branching processes [3]. Branching process- 
es are unfoldings of net systems containing information about both concurrency 
and conflicts. 
Let (S,T,F) be a net and z t ,  z2 E SUT. zl and z2 are in conflict, denoted by 
z l#x2 ,  if there exist distinct transitions t l ,  t2 E T such that  I 'tlI M I't21 # 
and both (tl, zl), (t~, z2) belong to the reflexive and transitive closure of F .  We 
define now occurrence nets, which are the nets underlying branching processes. 
To differentiate the system and execution levels, places of occurrence nets are 
called conditions, and their transitions are called events. 
A net (B, E, F)  is Chilled occurrence net if 

(i) for every b E B, I"bl < 1, 

(ii) the transitive c]iosure of F is irreflexive, and 

(iii) no event e E E is in conflict with itself (i.e., not e#e).  

Min(N) denotes the set of minimal elements of B U E with respect to the tran- 
sitive closure of F.  
A branching process of a system E = (S, T, F, M0) is a pair ~ = (N',  p) where 
N ~ = (B, E, F )  is an occurrence net and p: B U E ~ S U T a labelling function of 
N ~ satisfying certain properties that  make (N~,p) an unfolding of the system t 
Figure 2 shows a branching process of the system of Figure 1. The names of the 
events have been written within the boxes, while the transitions associated to 
them have been written close to them. The names of the conditions have been 
omitted to keep the picture simple. 
In [3] an approximation relation is defined between branching processes. The 
exact definition is not necessary for the purpose of this paper. Intuitively, /31 
approximates ~ if ~1 is isomorphic to an initial part of ~2. It was proved in 
[3] that  a system has a unique maximal branching process (up to isomorphism) 
with respect to the approximation relation. The maximal branching process of 
the system of Figure 1 is infinite. Loosely speaking, it consists of a periodic rep- 
etition of the initial part of the branching process of Figure 2 obtained 'cutting' 
the net by a vertical line just to the right of the event e4. 

Let (B, E, F)  be an occurrence net. By definition, the transitive closure of F 
is a partial order. We denote it by -~. ~ denotes the reflexive and transitive 
closure of F.  Given x E B U E and X _C B U E, we say z -~ X if there exists 

i x l  z ~ E X such that  z --, 
A subset E '  C E is a configuration if it is left-closed with respect to _ and no 
two elements of E '  are in conflict. In the branching process of Figure 2, the set 
{el, e2} is a configuration, while the sets {e4} and {el, e3} are not ( {e4} is not 
left-closed, and el#e3). X C B is a co-set if Vxl, x2 E X:-~(Xl -~ x2) A -~(x2 -~ 
zl) .  A maximal co-set with respect to set inclusion is called a cut. It is well 
known [2,3] that  if e is a cut of a branching process Z = (N',p), then p(c) is a 
reachable marking of' E. The converse holds for the maximal branching process. 

1 The  exact definition is not  relevant for this paper .  It can be found in [3]. 
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Figure 2: A branching process of the system of Figure 1 

We associate to a configuration C a set of conditions Cut(C) in the following 
way: 

Cut(C) = (Min(N) U C') \ "C 

It is easy to prove that  Cut is a bijection between the set of finite configurations 
of a branching process and its set of cuts. 

Cuts will be used in the definition of the satisfaction relation of our logic. Howev- 
er, we shall mainly work with finite configurations, because they have a simpler 
mathematical structure, and cuts can always be retrieved via the Cut mapping. 

3 A Modal  Logic for 1-Safe Systems 

We define in this section the syntax and semantics of a modal logic tailored for 
finite 1-safe systems. 
We fix for the rest of the paper a finite 1-safe system P~ = (S, T, F, M0) such that 
every element of S U T has a nonempty preset or a nonempty postset. 
As pointed out in Section 2, ~ has a unique maximal branching process up to 
isomorphism. We fix a representative of the isomorphism class, denoted by 

t~rn = (Bin,Era,Fro,pro). 

The logic is essentially $4 [7] interpreted over the set of configurations of tim, with 
elementary propositions tailored for Petri nets. The logic extends propositional 
logic with a possibility operator. The set of formulas over ~ is generated by the 
following grammar: 

The operator [] is defined by [] = -~O-~. The logic $4 is interpreted over a set 
of worlds having a preorder structure (or stronger). In our case, it is the set of 
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finite configurations of/3r~. 
The satisfaction relation ~ is defined as usual for the propositional connectives. 
Moreover, for a finite configuration C we have: 

C ~ s if s E p,~(Cut(C)). 
C ~ O r  if there exists a finite configuration C I _D_ C such that C ~ ~ r 

Finally, we say that ~] satisfies r also denoted by E ~ r if 0 ~ r 
Loosely speaking, C t= s if after the occurrence of the events of C a marking is 
reached in which the place s contains a token. For instance, in the branching 
process of Figure 2, -[el, e2} ~ s2. We have C ~ O r  if C can be extended to 
a configuration C ~ (lying therefore in the 'future' of C) such that C I satisfies r 
Notice that  (~r means 'possibly r and not 'eventually r 
The logic permits one to express safety properties such as the teachability of 
a marking (the system of figure 1 satisfies <)(-~sl A s2 A --s3 A s4 A --s5 A --s6) 
iff the marking {s2, s4} is reachable), the liveness of a transition (the system 
satisfies []  (~s4 iff transition t5 is live) or the fact that a marking is a home 
state (the initial marking can always be reached again if[ the system satisfies 
aO(s  A - s2 ^ A s4 A -m ^ 
We study in the sequel the model checking problem for this logic, i.e. whether 

~ r for a formula r It is immediate to see that the model checking problem 
reduces to the problem for formulas of the form ~ r  (formulas without modalities 
can be easily checked using directly the definition of ~) .  
We denote by Sat(C) the set of configurations of/3m that satisfy r It follows 
easily from the definitions that E ~ ~ r  iff Sat(C) ys ~. Therefore, the model 
checking problem further reduces to deciding for a formula r if Sat(f) is empty. 

4 T h e  F i n i t e  P r e f i x  

The maximal branching process tim may be infinite, and therefore unsuitable 
for verification. We define in this section a finite prefix of it. We say that a 
branching process fl = (B, E, F,p) of ~ is a prefix of tim if/3 approximates/3m, 
and moreover B C_ Bm and E C_ Era. 
The finite prefix/3I is chosen to ensure that all reachable markings of E are rep- 
resented by cuts of 8/ .  This is necessary if we wish to base a model checker on 
/31; otherwise, for the formula r corresponding to the reachability of a marking 
not represented in/3/,  we would have Sat(C) r 0 but we could hardly decide it 
using information from/3I only. 
The branching process /3Y was defined and used for deadlock detection by M- 
cMillan in [8]. Its definition is based on the notion of set of causes of an event. 
Given a branching process/3 = (B,E,F,p) and e e E, the set [e] = {e' e E ] 
e / _ e} is the set of causes of e (in/3). In the branching process of Figure 2, we 
have [eh] = {e2, e3, e4, eh}. 
It follows immediately from the definitions that the set of causes of an event is 
a finit e configuration. Moreover, for every configuration C, either C does not 
contain e or it includes [e]. 
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Def in i t i on  4.1 The prefix/3] [8] 

An event e of 8m is called a cut-off event if there exists a set of causes 
[e'] C [e] (proper inclusion) such that  

) = ) 

(i.e. [e'] and [e] correspond to the same reachable marking). /3/is the max- 
imal prefix of 8m with respect to the approximation relation that contains 
no cut-off events. 
E] denotes the set of events of 8! �9 Given a cut-off event e, we denote by e ~ 
an arbitrarily selected event of [e] such that 

) = ) 

This event exists by the definition of cut-off event. �9 4.1 

The finiteness of 8] follows from the finiteness of the number of reachable mark- 
ings of E [8]. Also, in [8] an algorithm is described for the construction of/3/ .  
The algorithm searches for minimal cut-off events with respect to the relation 
--4. When a minimal cut-off event is found, its succesors need not be explored, 
because they cannot be part of the prefix. The search is continued until all 
minimal cut-off events with respect to the relation ~ have been identified. The 
reader is referred to [8] for a detailed pseucode description of the algorithm and 
an evaluation of its performance. 
The finite prefix of the system of Figure 1 is the one with {el, e2, e3, e4, eh, eT} 
as set of events as events (see Figure 3). The unique minimal cut-off event is e6 
(shaded in Figure 3). We take e6 ~ = e2, because e2 e [e6], and 

) = 8 4  = p(c @4) ) 

(these two cuts are represented in Figure 3 by straight lines that  cross the con- 
ditions of the cut). 

Define ~ e as the branching process containing all nodes z of 8,n such that  
for some b E Cut([e]), b -~ x (it is routine to check that  (~ e is a branching 
process). Loosely speaking, ~e contains the events and conditions after [el, or, 
in other words, the "future" of the system from the marking corresponding to 
Cuff[e]). Since Cut([e]) and Cut([e~ correspond to the same markings, ~ e 
and ~e ~ are isomorphic branching processes. Using this fact, we can prove that  
every reachable marking is represented in 8J. For every reachable marking M 
of E, there exists some configuration C such that  pro(Cut(C)) = M.  If C is a 
configuration of 8 / ,  then we are done. Otherwise, C contains some cut-off event 
e. Since ~e is isomorphic to ~e  ~ there exists another configuration C ~ after e ~ 
with the same associated marking, and containing less events than C, because 
][e]l > I[e~ If C'  is not a configuration of fl/, then we iterate the procedure. 

4.1 S h i f t s  

We introduce some notions that  allow us to formalise arguments like the one of 
the previous paragraph. 
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Figure; 3: The finite prefix of the system of Figure 1 

Def in i t i on  4.2 Shift of a configuration 

Let e be a cut-off event of tim and let Ie be an isomorphism from ~e ~ to ~e. 
Let C be a configuration of ~,~. 
The e-shift of C, denoted by S~(C), is the following configuration: 

f c if e ~ c 
S~(C) 

[ e ] U I , ( C \ [ e ~  i f e  ~  

�9 4.2 

It is easy to prove 1:hat S~(C) is a configuration, and therefore well defined. A 
configuration and its e-shift have associated the same reachable marking. In 
Figure 2, we have S~6({el, e~}) = [e6] U I~6({el}) = {e2, e3, e4, e6} U {es}. Both 
{el,e2} and S~6({el,e2}) have associated the marking {s2,s3}. We also have 
ISe(C)l > Iq, and the equality holds only if $e(C) - C. 
For a set of configurations C, we define Se(C) = {S~(C) [ C E C}. 

We show that Sat(C) can be generated from a subset of it, namely the set of 
configurations that  satisfy r and are contained in the finite prefix. Formally, we 
define Saty(C) = Sat(C) f3 .T, where ~" denotes the set of configurations of fl$ 
This will reduce the model checking problem to deciding the emptyness of this 
subset. 

De f in i t i on  4.3 The mapping S 

Let C be a set of configurations of/?m. The set of configurations S(C) is 
given by: 

s(c)=cu U s~ 
eEOff 
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where Off denotes the set of minimal cut-off events of tim. 
We define: 

#s.c = U s (c) 
n)_O 

� 9  

Clearly, S is a monotonic function on the complete partial order of sets of con- 
figurations of/?m. It is easy to see that  #S.C is the least fixpoint of S containing 
C; this is the reason of the notation. 
We can now state the first important result of the paper. Crudely speaking, it 
states that  every configuration of Sat(e) can be obtained by repeated shifting 
of some configuration of Sat I (r 

T h e o r e m  4.4 

Let r be a formula. Theu: Sat(e) = #S.SaQ(r  �9 4.4 

In particular, we have Sat(e) = 0 if and only if SaQ(r = 0. That  is, for every 
formula r if some configuration satisfies it, then some configuration of the finite 
prefix satisfies it as well. Therefore, the model checking problem can be reduced 
to deciding whether or not Satf (r is empty. 

In Section 6, we shall show how to compute - using Linear Programming - 
the maximal elements of SaQ (r for a simple subclass of formulas. In order 
to extend this to all the formulas of the logic, we obtain in the next section 
compositional equations for the maximal elements of Sail (r 

4.2 Compositional equations 

We introduce first a normal form for the formulas of our logic. It is a generali- 
sation of the disjunctive normal form of propositional logic. 

D e f i n i t i o n  4.5 Normal form 

A formula is in normal form if it is generated by the following grammar: 

7 ::= t r u e [ f a l s e ] 8 [ - ~ s [ T h 7  

r ::= 7 t e A O r 1 6 2  

�9 4.5 

In the sequel, as was done in this definition, the symbol 7 is used to denote 
conjunctions of literals. 

Let r -- r be two formulas. r is equivalent to r denoted by r --- r if they 
have exactly the same models. We can prove the following proposition: 
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Propos i t i on  4.6 

Let r be a formula. There exist formulas r  Cn in normal form such 
n 

that r = Vi=I r �9 4.6 

By this result, Sat(C) = Ui~=I Sat(r for a set of formulas {r Cn} in normal 
form. It follows that deciding the emptyness of Sat(C) for an arbitrary formula 
r reduces to the problem of deciding the emptyness of Sat(C) for a formula r in 
normal form. 
It must be remarked that the length of the conjunction of formulas in normal 
form equivalent to a given formula r may be exponential in the length of r 
This makes our algorithm exponential in the length of the formula (however, as 
shown in [1], this cannot be avoided unless P = NP). 

We show how to compositionally express Sat(C) when r is in normal form. First, 
we generalise the definition of Sat(C) by introducing some more parameters. 

Defini t ion 4.7 

Let C be a configuration and C a set of configurations. We say C < C if 
there exists C' 6 C such that C C C '. 
Let r a formula and C1, C2 two sets of configurations. C 6 Sat(C1, r C2) if 
C ~ r  a n d C < C 2 .  � 9  

Clearly, taking C1 as the empty set and C2asthe set of all configurations offlm, 
we recover Sat(C). 

Before obtaining our set of equations, we need some properties of the relation 
defined above. 

L e m m a  4.8 

Let C be a configuration and C1, C2 two sets of configurations. 

(1) C ~ ~ r  i f fC < Sat(C). 

(2) C < C1 and C <<_ C2 iff C < C1V C2, where 

Cl VC2 = {C1 nC2 [ C1 E Cl,C2 E C2}. 

(3) C ~ Ca and C ~ C2 iff C ~ Cl tJC2. �9 4.8 

We have now: 
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T h e o r e m  4.9 Compositional equations for Sat(el, r C2) 

Let Ct, C2 be two sets of configurations of ~rn, and let r r be two formulas. 

Sal( CI, r A ~r  C2 ) = Sat( CI, r C2 V Sat(r ) 
Sat(el, fJ A ~ r  C2 ) = Sat( C1U Sat(r r C2 ) 

Proof: We only prove the D inclusion of the first equation. The rest is similar. 
Let C E Sat(C~, r C2 ~7 Sat(t)). By definition 4.7, C ~ r C/~ C~ and 
C ~ C~VSat(r By Lernma 4.8(2), C < C~. and C ~ Sat(t). By Lemma 
4.8(1), C ~ ~ r  So C G Sat(C1, r A~r �9 4.9 

By exhaustively applying these equations, we can express Sat(t) in terms of sets 
Sa1(7 ) for conjunctions of literals 7. 

It is easy to adapt these equations to Sat](r Instead of doing that, we shall go 
one step further. Since the set Sat] (r can be large, and we are only interested 
in deciding if it equals the empty set, it suffices to compute its largest elements. 

Defini t ion 4.10 Last sets of configurations 

Let max{C} denote the set of maximal elements of a set of configurations C 
with respect to set inclusion. 
We define Last(C)= max{Sail(t)). 
More generally, let C1, C2 be two sets of configurations of/~]. 
We define Last(C1, r C2) = max{Sat](C1, r C~)}. �9 4.10 

Clearly, Sat] (r = @ if and only if Last(t) = @. Moreover, we have 
Last(t) = Last(O, r bY). We obtain the following equations for Last(C). 

T h e o r e m  4.11 Compositional equations for Last(C1, r C2) 

Let C1, C2 be two sets of configurations of fly, and let r r be two formulas. 
Let C = ,S.Last(r V {Ej}.  

Last(C1, r A ~r  C2 ) 
Last( C1, r A -~0r C2 ) 

= Last(C1, r max{C2 V C}) 
= Last( max{C1 U C}, r C2) 

�9 4.11 

This is the result we have been aiming for. Using these recursive equations, we 
can reduce the problem of deciding the emptyness of Last(t) to the following 
two problems: 

�9 Computing #S.C V {El } for an arbitrary set C C .T. 

�9 Computing Last(C1,7, C2) for Ct, C2 C ~P and a conjunction of literals 7. 
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Notice that,  by definition of V, the configurations of ]tS.C ~7 {El } are subsets 
of El ,  and therefore contained in the finite prefix. 

We give algorithms for these two problems in the following two sections. Let us 
first see how to compute, assuming these algorithms are available, if the formula 
[] Os~ holds in the system of Figure 1. 
The formula is equivalent to -~O--Os2. We check if O-~Os2 holds by deciding 
the emptyness of Last('~Os2). 
First, we write -~Os:~ as a disjunction of formulas in normal form. In this case, 
-~Os2 - ( t r u e  A -~Os2), which is in normal form. 
We compute Last(true A -~Os2) by means of the second equation of Theorem 
4.11. The first step :is the computation of Last(s2). 
We get 

Last(s ) = { {e:, e2}, e3, e4, es} } 

Then, we have to compute #SI.Last(s2 ) ~7 {El}. In this case, there exists one 
single cut-off event (e6) and we obtain 

#S l.Last(s2) V {El } = { {e:, e2}, {e2, e3, e4, es}, {e2, e3, e4, ez} } = max{J:} 

Finally, we compute Last(max{:7:},true, Y:). Since max{U} is the set of the 
largest configurations of fir, no configuration C of/31 satisfies C ~ max{Y:}, 
and therefore we obtain 0 as result. So Last(true A -~Os2) = 0. Then, we have 
E ~: O-~Os2 and, finally, E ~ -~O-~Os2. 

5 C o m p u t i n g  #S.C V {EI} 
We start  by showing how to compute the following mappings. 

De f in i t i on  5.1 Finite versions of the mappings Se and S 

Let C e jr, and let e be a cut-off event. We define SIe(C ) = Se(C) N E l . 
Also, we define for a set of configurations C 

sl(c)=cu [_J sl (c). 
eEO~ 

where Off denotes the set of minimal cut-off events of tim. 
Finally, we define 

~.Sy(C ) = [_J ST(C) 
n>0  

" 5 . 1  

Let Ie be an isomorphism between ~ e ~ and ~ e. When constructing the finite 
prefix/3f, it is easy to compute 'on the fly', for every cut-off event e, the pairs 
(z,Ie(z)) such that I~(z) C E$. We start with the pairs (b, b') such that b E 
Cut([e~ b' E Cut([el), pro(b) = pm(b'). Then, whenever we add a new node 
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y' e Ie(z)* to the prefix, we look for the node y E x ~ such that  pro(y) = Pm(Y'), 
which exists and is unique. Then we add (y, y~) to the set of pairs. 

Using these pairs, 8]e(C) can be easily computed using the definition of 8e(C). 

We show now how to compute #~q.C V {E/}. 

T h e o r e m  5.2 

For every set C C_ .T" and every n > 0, sn (c )  • {El}  = S'](C) . 
• particular, , S  C V { } = , S j  .C . �9 5.2 

The set 8] (C) can be stepwisely computed for increasing values of n. 

Let C be a configuration of 8}~(C) \ 82-1(C) for n > 0. Then, C is obtained by 
shifting some configuration C ~ C E l and intersecting the result with E/. This 
implies [C[ >_ lC']. 
Since E/  is finite, we eventually reach an n such that  82+1(C) = 8'](C). Once 
this point is reached, the computation can terminate, because $~n(C) = 8)~(C) 
for every rn >_ n, and therefore/z,.q] .C = S]  (C). 

The size of the set pS I.C can grow quickly with the number of cut-off events; 
in turn, this number can be high if the system is very nondeterministic. This 
limits the applicability of our method to systems with an small amount of non- 
determinism, as is tipically the case in asynchronous circuits. 

6 Computing La t(C1,7,C2) 

By the definition of Last(C1,7, C2), we have 

Last(el, 7, = max{ U Last((',t, 7, {C2}) }. 
C2EC~ 

Moreover, we have 

C E Last(el, 7, {C2}) iff C c= Last(@, 7, {C2}) and C ~ C1. 

C/~  Ct can be checked using the definition. So it suffices to solve the problem 
of computing Last(@, 7, {C2}). 

It is shown in [4] that  the set Last(@, 7, {C2}) contains at most one configuration. 
We show how to compute it (respectively, how to show that  it does not exist) 
using Linear Programming. A Linear Programming problem is a set of linear 
inequations, or constraints, over a set of real variables, together with a linear 
function on the same variables called the optimization function. A feasible so- 
lution of the problem is an assignation of values to the variables which satisfies 
all the constraints. A feasible solution is optimal if the value of the optimization 
function applied to it is greater or equal than the value for any other feasible 
solution. 
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Def in i t i on  6.1 The Linear Programming problem L(7 , C) 

Let C be a configuration of fi! and 7 a conjunction of literals. 
We associate to each event e E C a real variable X(e). X denotes a the 
vector whose components are these variables. 
For every condition b of C*, "b denotes the unique input event of b. 
Similarly, for every condition b of *C, b ~ denotes the unique output event 
of b contained in C. 
For every condition b of Min(fl]) U C*, M(b) is a shortening for: 

1 if b e Min(&) \ ' C  
1 - X(b ~ if b E Min(~]) n "C 

M(/,) = X(Ob ) if b E C* \ ' C  
X ( % ) - X ( b  ~ i f b E * C n C "  

The Linear Programming problem L(7 , C) consists of the following inequa- 
tions: 

(1) For every e 6 C: 0 _< X(e) <_ 1. 

(2) For every condition b of ' C  N C ' :  X(~ >_ X(b ~ (equivalently, 
M(b) >_ O) 

(3) For every 1Reral s of 7, E M(b)= 1, where B(s) is the set of con- 
beB(,) 

ditions of Min(•/) U C* labelled by s. 

(4) For every l: teral--s of 7, E M(b) = O. 
beB(,) 

and the optimization function: ~eec  X(e) I 6 . 1  

By the inequations (1), the value of the optimizing function is not greater than 
]C]. It follows that  if the problem has a feasible solution, then it has an optimal 
one. 

Intuitively, the Linear Programming problem encodes in linear inequations the 
conditions that  a vector has to satisfy in order to be the characteristic vector of 
a configuration satisfying 7. Also, it can be proved that  the optimal solution of 
the problem, if it exists, is integer. Then, the group (1) ensures that  the solution 
is in fact a characteristic vector; the group (2) that  the set corresponding to the 
vector is left-closed, and therefore a configuration; the group (3) that  the cut 
associated to the configuration contains some condition labelled s for every s of 
7; finally, (4) ensures that  this cut contains no condition labelled s for every --s 
of 7. 

Let us construct the system L(s4 A ~s2, {e2, ca, e4, es}) for the finite prefix of 
Figure 3. 



626 

Group  (1) 

Group  (2) 

Group  (3) 

Group  (4) 

Maximize  

0_< X(ei) _< 1 for i = 2,3,4,5 

x(e ) _> x(e4), x( 3) _> x( 4) _> x( 5) 
1 - X(e3) + X(e4) - X(es) = 1 

x(e l )  + x (es )  = 0 

X(e2) + X(e3) .-[- X(e4) + X(e5) 

The optimal solution of this problem is 

X ( e ~ ) = l  X ( e 3 ) = l  X ( e 4 ) = l  X(es)=O.  

The reader can check that {e2, e3, e4} is the largest configuration contained in 
{e2, es, e4, eh} that satisfies 84 A 782. 

T h e o r e m  6.2 

(1) I f  L(7, C2) has no solution, then Last(O, r {C~}) = 0. 

(2) / fL(% C~) has an optimal solution, then it is unique and it equals the 
characteristic vector in C~ of the unique element of Last(O, r {C2}). 

�9 6.2 

By the polynomiality of Linear Programming, Last(O, 7, {C2}) can be computed 
in polynomial time in the size of C2. It is well know that the simplex algorithm 
has better average performance than the known polynomial algorithms, in spite 
of having exponential worst-case complexity. Some experiments performed by 
Thomas Thielke 2 using simplex indicate that the computation time is approxi- 
mately 0([C2 l~'7). 

7 T h e  D e t e r m i n i s t i c  C a s e  

We summarise in this section the results of [4] for the systems in which the finite 
prefix /3] has exactly one maximal configuration; they are systems in which, 
if two transitions are simultaneously enabled, then they are concurrent (there 
are no conflicts). Although this is a small subclass of Petri nets, they play an 
important rhle in the verification of asynchronous circuits. As pointed out in 
[11], the transition systems of the nets of this class are semimodular Muller- 
diagrams, the classical formal tool for the description of self-timed circuits. This 
makes the class a suitable modelling tool for these circuits. 
It is shown in [4] that, in this particular case, Last(C) has at most one element 
for every formula r in normal form, and it can be computed solving a number 
of Linear Programming problems linear in the length of r This result proves 
that our model checker has linear complexity in the length of the formula and 
polynomial complexity in the size of the finite prefix. 

2Personal communication. 
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SO s2 s(2n) 

. t (n[~  
s l  s3 s(2n+l) 

Figure 4: A simplified model of a concurrent buffer. 

Conflict-free Petri nets are a class of net systems in which for every place s, 
Is*[ < 1 or s* C_ %. They have been thoroughly studied in several papers (see, 
for instance [6,13]). 
The family of net systems shown in Figure 4 is conflict-free. They are very 
simple models of a concurrent buffer of length n. A token in s2i means that  the 
cell i - 1 is empty, while a token in s2i+l means it is full. Items enter the buffer 
through the occurrence of to and leave it through the occurrence of tn. 

Using a result of [13], it is easy to prove that  the finite prefix of a 1-safe conflict- 
free system ~ = (S,T,F,  Mo) can be constructed in O([T[ 2. ]SI2). We get as 
corollary that  our model checker has polynomial complexity in the size of the 
system for this class of nets, in spite of the fact that  1-safe conflict free systems 
may have exponential state spaces (the family of Figure 4 has). In particular, for 
a buffer of length n we can check in polynomial time in n whether it is possible to 
reach a certain state (this is what has to be done in order to check that  all cells 
can be simultaneously full).  However, Valmari's reduced state spaces [12] cannot 
be used to solve these problems in polynomial time; the reason is that  for every 
state there is a formula which is true only of that  state; therefore, no reduced 
state space is equivalent to the full state space for this logic. The algorithm 
of [5] faces a similar problem: in the worst case it has to completely generate 
the state space before the property can be decided, and it can be exponential. 
Finally, the approach of [10] is not applicable. 

8 C o n c l u s i o n s  

We have shown that  it is possible to design model checkers that  work on a net 
unfolding, a well-known partial order semantics of concurrent systems very close 
to event structures. A model checker of this kind has also been described in [10]; 
however, it uses a non-standard semantics and does not handle the whole set 
of properties of a logic. Our verification algorithm can check several important 
safety properties; teachability of a marking, coverability problems and liveness 
of transitions. We have shown that  it is polynomial in the size of the system 
for a non-trivial class of systems with exponential state spaces, for which the 
algorithms of [5,10,12] are exponential or not applicable. 
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Verification algorithms for interleaving semantics usually traverse the state s- 
pace. In our approach there exists no explicit representation of the state space; 
we have used a new technique, in which we only compute some maximal states 
(in fact, maximal configurations) using Linear Programming. 
It is pointed out in [8] that  coverability problems can be solved 'on the f l y ' -  
i.e. while constructing the prefix. However, there existed so far no technique to 
reuse the prefix, once constructed, to solve new problems. This was annoying, 
because the size of the prefix can be much smaller than the computation time 
required to construct it. Our results solve this problem. 
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