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Abstract .  Tile average path length over the family of binary search trees with 2r+1 
nodes, built from randonfly choosen permutations of r distinct keys, is O(r log(r)). On 
the other hand, if the probability that the r keys are already sorted, tends towards 1, 
the resulting family of binary search trees degenerates, until it consists of the single 
linear list - tree with a worst case path length of r(r -k 1). 

Subject of the paper is the gap between the orders of growth of the expected path 
lengths of these two models. We systematically deform the probability model of binary 
search trees using three different kinds of deformers which are controlled by a real 
constant c and, using singularity analysis, we obtain the surprising result, that under 
two deformations the expected path length of a tree of size 2r -I- 1 is either O(r log(r)) 
or O(ra).The same result is valid under the third deformation for special values of c. 

Keyword: Algoritluns and Data Structures 

1. Int roduct ion and Basic Definitions 

Let T = (I(T), L(T), r(T))  be an unlabelled rooted planar tree with the set of internal 
nodes I(T), the nonempty set of leaves L(T) and the root r(T).  The one node tree 
is denoted by "[3". For any two nodes u, v E I(T) U L(T), let d(u, v) be the distance 
from u to v, which is defined as the length of the shortest path from u to v (= 
number of nodes on the path minus 1). A node w E I(T)U L(T) with d(r(T), w)= I 
is said to be at level l. The tree T has height h, if the maximum level of a node 
in the tree is equal to h. The total path length pl(T) of the tree T is defined as 

pl(T) := ~veI(T)uL(T)level(v), where level(v) denotes the level of node v. 

A t-ary tree, t _> 2, of size tr + 1 is an unlabelled rooted planar tree with r E /N0 := 
/NU {0} internal nodes and (t - 1)r + 1 leaves, in which each internal node is of 
degree t. The family of t-ary trees, t > 2, is denoted by .T't, its subfamily of trees of 
size tr + 1 is denoted by ~ ' t ( t r  + 1), t _> 2, r E/No. A h-tree, A E/No, is a tree with 
root degree A. 

The traditional model of binary search trees (BST) of size 2r + 1, r E /No, is 

characterized by the family ~2(2r  + 1), in which the probability prob(T) of a tree 
T E ~'~(2r + 1) is recursively defined as follows: 

prob(T) := if T = D then 1 
else ~ prob(T1) prob(T2), 

where T1 and T2 are the two subtrees of T of sizes 2ri -b 1, i E {1, 2}, respectively, 
with 2(r,  + r2 + 1) = 2r (see [8]). Each of the r internal nodes holds one of the r 
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distinct keys of a randomly choosen permutat ion of r distinct keys. The r + 1 leaves 
represent the r + 1 NIL-pointers of the r internal nodes. 

Under the BST-model ,  balanced trees are more likely than long skinny trees, which is 
the reason for the "good" average path  length over the family of binary search trees 
of size 2r + 1, which is O(rlog(r)).  This is better  than under the uniform model, 
where all trees of size 2r + 1 are assumed to be equally likely, and where the average 
pa th  length is O ( r ~ ) ( s e e  [8]). 

Our aim is to systematically deform the B S T  - model and investigate the influence of 
this deformation upon the average total path  length under the deformed model. This 
deformation is controlled by an external nonnegative real number c, which can range 
from 0 to co. In order to explain how the deformation is done, let us first summarize 
the basics of a concept introduced by Kemp [6] in 1987, which can be viewed as an 
alternative way to describe the BST-mode l  and even more sophisticated families of 
trees with a nonregular probability distribution: 

D e f i n i t i o n  1. Let gZt(n) C :Trt be the family of t-ary trees of size n. A tree T E g:t(n) 
with subtrees Ti, 1 < i < t, is said to be of type < (n, t); (mx, dx) , . . . ,  (m,, dr) >, if 
subtree Ti is a di-tree, dl E {0, t}, with mi nodes, 1 < i < t. Let ~',,,t(r~, d-) be the 
family of trees T E ~ of type < (n, t); (ml,  d l ) , . . . ,  (rnt, dr) >. Let p,(n, rb, d) be the 
probability that a tree T E Jrt(n) is of type < (n, t); (rnl, d~) . . . .  , (mr, dr) >, and let 
us assume that pt(n, Tfi, d) has a representation of the form 

p t ( n , ~ , d )  = Iq(n,t)l -~ H q~t)(mj'dJ) , (1) 
l<_j<_t 

(t) I E (0, t}, I < j <_ t, are called characteristics of Jzt. Note that always Qj,o(Z) = z. 

Some basic properties of the characteristics shown in [6] are summarized in the 
following 

P r o p o s i t i o n  1. Let Qt(z) : :  ~n>t+l q(n, t )z  '~ be the generating function of the 
numbers q(n, t) of Definition 1. Then 

~j,l ~ J" (2) 
l<j_<t ~e{o,t} 

Each tree T E ~ t (n)  belongs to exactly one class C(T)  := ~mt(rfi, d), with dE  {0, t} t, 
and ~-]q<i<t ml = n - 1, and the probability pt(T) of a tree T E 2:,(n) is given by 
p,(T) = I-IT, eSW(T)P(C(T')), where p(C(T'))  is the probability of the class C(T') ,  
and S U B ( T )  denotes the set of all subtrees of T (including T itself). [] 

In addition to the definitions above we need the concept of additive weights (see [7]). 

D e f i n i t i o n  2. Let a E [0,1] be a real number, and let g : ~oo ~ IR be a given 
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mapping, the so-called weight function. For a given tree T E Jrt, the weight wa,a(T) 
is recursively defined by 

wa,g(T) := if T=t3 then 0 
else ~ [a wa,a(Ti) + g(ml, di)], 

l<i<t 

where subtree Ti o f T  is a di-tree, di E {0, t}, with mi nodes, 1 < i < t. 

Choosing appropriate weight functions g and real numbers a, tile resulting weights 
w~.g(T) of a tree T E .T't correspond to well known parameters like 

- the total path length (choose g(m, d) := m, a := 1), 
- the total degree path length (choose g(m, d) := tin, a := 1). 

The following relation holds (see [6]): 

P r o p o s i t i o n  2. Let t E 1N, t >_ 2, ~t  be the family of trees with the characteristics 
Qj,t(z), l E {0, t}, 1 <_ j <_ t, let a E fit, and g be a given weight function. 
Furthermore, let E(z)  := E,_>,+I 1E[w~,a(n)]z" be the generating function of the 
average weight/E[w~,g(n)] over the family 3rdn ). Then 

Qt(z) r , .  
E(z)  | Qt(z) = Z Z fr-~j,t(z)[g(l, O)z + {a E(z)  -b Gt(z)} (D Qj,t(z)], (3) 

i<j<_t 

where Gt(z) = En>,+l g(n, t )z ' ,  and hi (z) @ h2(z) denotes the Hadamard product of 
the two series hi(z) -=- )"]n>o hin zn, i e {1,2}, which is defined by h,(z) | h2(z) := 
)"~n>o hinhzn zn. D 

Choosing appropriate characteristics, it is possible to describe well known probability 
models such as (see [6]): 

z 3 
- Binary search trees (choose Q1,2(z) = Q2,2(z) :-- 1---:~-~ ), 
- t-ary digital search trees (choose Ql,t(z) . . . . .  Qt,t(z) := zexp(z  L) - z), 
- Patricia trees (choose Qi,2(z) = Q2,2(z) := ~(exp(z 2) - 1) - z), 
- Regularly distributed t-ary trees (choose Ql,~.(z) . . . . .  Qt,t(z) := T(z)  - z, 

where T(z) denotes the enumerator of the family -~t)- 

For instance, in [2], R. Casas, J. Dfaz and C. Martfnez presented a probability model 
for simple families of trees, under which balanced trees are more likely than long 
skinny trees. Under this Balanced Probability Model (BPM),  the average behaviour 
of two parameters, a so-called occupancy and the size of the intersection of two trees, 
are analyzed and compared with the uniform probability model. In order to get a 
better feeling about the concepts introduced above, let us summarize from [2] the 
basic definitions of the B P M  in the following 

E x a m p l e  1. Let .T" be an arbitrary family of simply generated trees [10]. For any 
tree T E -~', in which the degree of the root r (T)  is equal to k E/No, the "frequency" 
f (T )  is recursively defined as follows: 

f ( T ) : = i f T = [ ]  then 1 
else I(T1).. . /(Tk), 
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where ITI denotes the number of internal nodes and T t , . . . ,  Tk denote the k subtrees 
of T. 

In order to obtain a probabili ty distribution over the subfamily of ~" of trees with 
the same number of internal nodes as T has, the probability p(T) of T is defined by 

/(r) p(T) := ~-~e.~.l-,=la'l I~-)" Furthermore, let F(~)(z) = ~']~Te3::t f (T)  zlTI = ~r>o f (t)z', 

t > 2, be the "frequency" - generating function of the trees T E ~'t. Then, the 

frequency - function is given by F(t}(z) = (1 - (t - 1)z) -'~--z. For t = 2, the B P M  
coincides with the BST-model .  t:] 

A full average case analysis of additive weights of unlabelled rooteci planar t-ary 
trees with polynomial weight functions under the B P M  is presented in [11]r using 
the characteristics Qt,t(z) . . . . .  QL,~(z) = zf(~)(z t) - z. 

In the sequel let [zr]T(z) denote the r- th coefficient of the series of T(z) around 
z = 0. Symbols like E or .~ are always used to denote families of trees with some 
probabili ty distribution. 

2. D e f o r m a t i o n  o f  t h e  B S T  - M o d e l  

Let L,  be the list - tree with r internal nodes, in which each internal node (with the 
exception of the root) is the right son of its father. Furthermore, let E2(2r q- 1) be 
the family of binary i~rees of size 2r + 1, r E ]No, in which the linear list - tree L, 
appears  with probability 1 and all other trees appear  with probability 0. This " E  - 
model" is induced by the classical binary tree insertion algorithm, if the probability 
that  r distinct keys are already sorted, is equal to 1. The average total path  length 
p/(2r + 1) over the family E2(2r + 1) is equal to pl(L,) =- r ( r  + 1). This rather trivial 
result can also be obtained by the methods presented above: 

z ~ P r o p o s i t i o n  3, Let Ql,o(Z) = Q2,o(Z) := z, Q1,2(z) :~  0 and Q2,2(z) := 
be given characteristics. Then the probability model induced by these characteristics 
coincides with the E-model, and, under this model, the expected total path length 
p/(2r + 1) of a tree qf size 2r + 1, r C ]No, is equal to the total path length pl(Lr) of 
the linear list - tree Lr,  which is equal to r ( r  + 1). 

P r o o f .  The generating function Q2(z), which is defined in Proposition 1, is equal 
to Q2,2(z). This means, that  the probability p2(2r -b 1, (1, 2r - 1), (0, d2)), that  a 
tree of size 2r q- 1 is of type < (2rq-  1 , 2 ) ; ( 1 , 0 ) , ( 2 r -  1,42) > (the left subtree 
consists of one leaf, the right subtree has 2r - 1 nodes), is equal to 1. With  G2(z) := 

~ , > 1 ( 2 r  -t- 1) z 2"+1, we find by relation (3) of Proposition 2: 

z z 2 0 z 2 2z s 
E(z) = ~ ~ 2 r  z ~" . . . . .  

,>1 1 -  z ~ Oz 1 -  z 2 ( l - z 2 )  s" 

The expected total  path  length pl(2r + 1) is then equal to the coefficient [z2r+l]E(z) 
of z 2"+1 of the generating function E(z), hence, equal to r ( r  + 1). n 
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The Z=-model is a "worst case" - model, which differs from the B S T  - model by the 
z 3 fact that  Ql,z(z)  -~ 0 instead of 1--:7r. This observation leads to the following 

Def in i t i on  3. Let e be a nonnegative real number. Let Ql,o(z) : Qg.,o(Z) := z and 
z3 

Q~,2(z) :=  ~ be characteristics. 

CZ 3 
1) Let the BST( t ) (c )  - model be defined by choosing Qx,2(z) :=  1 - z z ; 

z z ;  II) Let the BST(H)(c )  - model be defined by choosing Ql,z(z) :=  1 - cz 2 

III)  Let the BST(HZ)(c)  - model be defined by choosing Qx,2(z) :=  - -  

(1 - z~)" 
Z.  

Obviously, if c = 0, all models coincide with the s - model, and, if c = 1, all models 
correspond to the traditional B S T  - model. 

Using Formula (1) in Definition 1, it is a simple matter  to obtain expressions for the 
probability p2(2r q- 1, (2rl -t- 1, 2r2 q- 1), (dl, dz)), that  a tree of size 2r q- 1, r > 2, has 
2rl q- 1 nodes in its left subtree and 2r2 q- 1 nodes in its right subtree, a parameter, 
which makes the nature of each particular model clear: 

P r o p o s i t i o n  4. Let c be a nonnegative real number. Then the probability p:(2r + 
1, (2rl + 1, 2rz + 1), (dl, d2)), r > 2, dl, d2 C {0, 2}, that a tree of size 2r + 1 has a 
left subtree of size 2ri + 1 and a right subtree of size 2r2 + 1, under the three models 
defined above, is given by: 

C 1 -~ r l , o  

I) pz(2r + 1, (2rl + 1,2r2 + 1), (dx, d2)) - 1 + c(r - 1) '  

1 - c  
II} pz(2r + 1, (2rl + 1, 2rz + 1), (dl, d2)) = 1 - e ~ c'~' 

r(r)r(e+ 1) r(c+ rl) 
HX) V2(2r + 1, (~r, + 1, 2r~ + 1), (dl, d~)) = r(e + r) r(rl + 1)r(c)' 

where rl can range from 0 to r - 1. Here ~ denotes the Kronecker symbol and F 
denotes the Gamma function [1]. 

P r o o f .  In each of the cases we have to compute Q2(z) and to plug the required 
coefficients into formula (1): 

Z 3 e z  5 

I) Q2(z) = ~ + (1 - z2) - ' - - - - ~  = ~ ( 1  + c(r - 1)) z 2~+1. The coefficient ql(2rl + 
r > l  

1, dl) is equal to el-$' , .  ~ and q2(2r2 q-1, d2) = 1. 

II) Here, O~(z) = z~ a 1 ~ 1 - e" 2,+1 ' 
1 - z 2 1 - c z  2 -- i - - c  a n d q l ( 2 r l + l ' d x ) = c r ' "  
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III) By [1, formula 6.1.21], 
r ( c +  r) ~2,+,, r c c +  r) z2,+,.  

Q,Cz) = ~ rcr)r(c  + I) and Q~,~(~) = Z rcr + 1)rcc) [] 
r_>, r>l 

coro ,    etc be a no=egati e real n mber the   roba,,ty 

o �9 (I,H, IZt}, that, under  the BST(~  - model, the f irst  o f t  > 2 dist inct  keys 
is the smallest  (largest) one, is given by: 

/) -(:)r  = 1 [ (:)'c" -(X)r 
. . . .  ' ' l + c ( r - 1 ) '  [Pt,r[ I = c , - , . , ~  ,1; 

= ~  (pl f l  r - ,  (It) ,  ,'~ l - . c  )(c) = e P,,r re)); m P!,~/)(e) i - c , '  

r ,.,. , - ,  = P(c + r) ' . c + 7 - i  " 

P r o o f .  The corollary follows from Proposition 4 by setting r l  := 0 (rl := r - 1). fl 

Note tha t  (o) (o) {I, I I ,  I I I } ,  because if e a ps,r(0) 1 and E = 0, given = p~,, (0) = 0, o 
sequence of r distinct keys is assumed to be already sorted. If e = 1, we find that  

p,.,(1)(~ = P (~ ~ / = ;,1 o C {I,  I I ,  I I I } ,  which corresponds to the traditional B S T  
model, under which all rl permutat ions of r distinct are assumed to be equally likely 

(it) (Po,r (1) = t follows by Hospital 's  rule). Clearly, if r = 1, then all the probabilities 
r 

defined in Corollary I are equal to 1. 

Figure 1 shows the graphs of the probability functions (o) p.,,(c),  (. ,  o) �9 { s , l }  • 

{ I ,  I I ,  I I I } .  The fund.ions p!:~(c) are monotonically decreasing, the functions pl~ 

are monotonically increasing, o �9 { I ,  I I ,  I I I } .  As the graph shows, model B S T ( H ) ( c )  
causes the strongest deformation, an observation which we shall verify in the next 

1 Furthermore, section. For instance, consider the B S T ( I } ( e )  - model, and let e = ~. 
let the r distinct keys be choosen from {i I 1 < i < r}. A short computat ion shows, 
that  the probability, that  the first key is 1, is equal to 2 VTi" The probability, tha t  the 
first key is i, i E [2 : r], is equal to l 74-/' This causes a "deformation" of the B S T  - 
model " to  the right side". 

0 1 e 

Figure 1. The monotonically decreasing probability functions p!,O~ (c) and their 
corresponding monotonically increasing probability functions pl~ ) (c), o C .[I, II ,  I l l } .  
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3. T h e  E x p e c t e d  T o t a l  P a t h  L e n g t h  

In this section, we shall consequently make use of relation (3) of Proposition 2. In 
each particular case, the function Q~(z) can be picked from the corresponding proof 
of Proposition 4. We shall focus our attention to the main order of growth of the total 
path length, because the equations that  are satisfied by the intervening generating 
functions cannot always be solved explicitly. 

3.I. The BST(I)(c)  - model 

The main result is, that ,  unless c =- 0, the value of c has no influence upon the 
dominant  term of the asymptot ic  equivalent to 'the expected total path  length: 

T h e o r e m  1. Let c be a positive real number. Then, under the BST(I)(c)  - model the 
expected total path length pl(2r + 1) of a tree of size 2r + 1, r --~ oo, is asymptotically 
given by: 

p/(2r + 1) = 4r log(r) + O(r). 

P r o o f .  Plugging the characteristics Qi.j(z), i E {1, 2}, j E {0, 2}, the function Q2(z) 
and the function G2(z) := ~ > 1  (2r + 1) z 2~+1 into Formula (3), dividing the whole 
resulting expression by z, replacing z 2 by z, setting e~ := p/(2r + 1) and using the 
identity ~ r > l ( 2 r  + 1) z" = 2z z + 1--~' we obtain by a lengthy computation:  

cz / / ' ( z )  + 1 - c - 2 z + z 2 - e z  ~ H(z)  = 2 z ( 1 - z + 2 e z )  
i - =  ( i -~)~  ' (4) 

where H(z)  := E ,> l  e, z ~, with H(0) -- 0. 
1 1 eL(-~--t)zt--- ~ 

The solution of the homogeneous equation (4) is a (1,,}2 , where a is an arbi trary 
constant. The classical variation of constant - method [4, p. 99] yields 

2 r - + 2cz) 
H(z) dz, (5) 

where the constant a must be set to 0, because H(z)  is equal to 0 and analytic at 
z = 0. Unfortunately, there doesn' t  seem to be a closed solution of (5) for an arbi trary 
value of c. However, it is not hard to see, that  the integrand has exactly one simple 
pole a t  z = 1. The expansion of the integrand around this dominant  singularity is of 
the form 2ce(1-{)(1 - z) -1 + 0(1) .  Hence, H(z)  has a singular expansion of the form 

, 
H ( z ) -  (1-z)21og + O 

The theorem follows by the fact that  [zr]~TF~ log(i~lz) = (r + 1)(Hr+l - 1), where 

Hr denotes the r- th harmonic number Hr := ~l_<iKr ii (see [3, Eq. 7.43]). [:] 

It  would be nice to have a better estimate of the O-term, however, this would require 
the knowledge about  the coefficient of (1 - z )  ~ in the expansion of the solution of the 
integral around z = 1. 
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3.11. The BST(ZZ)(c) - model 

As we shall see, this model resembles to the Z~ - model, if c ~ 1: 

T h e o r e m  2. Let e be a nonnegative real number, c 9~ 1. Then, under the BST(H}(c) 
- model, the expected ~otal path length p/(2r Jr 1) of a tree of size 2r Jr 1, r ---r o o ,  is 
asymptotically given by: 

(1-c)r  ~+O(r) ,  i f  c< I, 

p l ( 2 r + l )  = l ) r 2 0 ( r ) ,  i f  > 1. ( i -  ~ + c 

P r o o f .  Let c < 1. By an analogous computation as in the proof of Theorem 1, we 
find with H(z) :=  ~r_>l er zr: 

H(~) = 2(i - c ) 4 i  - e~ 2) (i - ez): 
( 1 - z ) ~ C l - e ~ )  + ~ i - ~  HCe~). 

Iterating this equation i E / N  times yields 

H ( ~ )  = HCe'~) _ + ( I - ~ ) '  

and for i -~ c~ we obtain 

2 4 i - c ) [  t - = 2  
H(z)  

(i - ~)~ [ ( i  - ~)(i - e~) 

c'(1 - e2'+lz 2) 

0<a_<i-I 

c '(1 - eZ'+iz z) 
+ 

E-" 

(I - c ' z ) ( i  - e '+ ' z )  

The first part  of the theorem follows by Darboux's  Theorem [4]. 

For c > 1, we repeat the whole procedure, but now with H(ez) instead of H(z). 

3.III. The BST(XII)(c) - model 

[] 

In this section we first derive a difference differential equation, using relation (3). 
This equation turns out to be an ordinary m-th order differential equation, if c is 
equal to some positive integer m. An asymptotic solution of this differential equation 
can be found for odd m or for m = 2. 

L e m m a  1. LetF(c,z)  be the generating function F(c,z) : -  ~,>1_ e r r - ~  where 

er :=  p/(2r + 1) is the unknown expected total path length under the BST(HD(c) - 
model. Then, if c > O, the function F(c, z) satisfies the following equation: 

e r(e Jr I) F(e, z) = r(e + 1)2(1 + ez) F(c, z) + F(1, z). 
(1 - ~)~+c + ~ ~ - ~  (7) 

P r o o f .  The lemma follows by relation (3) with [1, Formula 6.1.21]. O 
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C o r o l l a r y  2. Let e be equal to some positive integer m > 1, and let H(z) be the 
generating function H(z) :=  ~]r>, er z r+r"-i. Then, under the BST(tH)(c) - model, 
H(2:) satisfies the following ordinary differential equation (ODE): 

0 "  m 0 "*-i m! 2 mI (1 + mz) 
Ozm n(~) (i - 2:) 02:~-~ H(~) (i - z ) ~ - ~  H(~) = (I - ~)~+~ (s) 

P r o o f .  The proof follows from Formula (7) by repeated applications of the Gamma 
Function's recurrence formula F ( z +  1) = zF(z)  (see [1, Formula 6.1.15]) and the fact 
that  P(z + i) = z!, if z is an integer value. El 

If m = 1, the solution of ODE (8) is (see[6]): 

( f •  2:)5 log (i - ~)~' 

and the expected total path length p/(2r + 1) of a tree of size 2r + 1 is 

p A ( 2 r + l )  = 4 ( r + l ) ( H . + ,  - i )  - 2 r .  

For larger values of m, there doesn't  seem to be a closed expression for the solution 
of ODE (8), with the exception of m = 2" 

T h e o r e m  3. Let m = 2. Then, under the BST(HI)(2) - model, the expected total 
path length p/(2r + 1) of a tree of size 2r + 1, r -4 oo, is asymptotically given by: 

pA(2r + i) = 4r log(r) + O(r) .  

P r o o f .  Two linear independant solutions of the homogeneous equation of ODE (8) 
are given by: 

2: 
hl(~)  . -  and h~(~) .'= 

(1 - z ) '  
1 _ 21og(2:)). (1 - ;)~ (2: - 

The corresponding Wronski - Determinant w(z) is given by ( l - z )  -2. By the variation 
of constant - method, we find that the solution of ODE (8) for m = 2 is: 

H(~) = alh,(~) + a=h~(z) + 2 
22:1og ( l i - ~ ) -  1 - 4 2 : -  2zlog(2:) 

(I - z )  z 

where ai and a2 are some well choosen numbers. This means that  the local expansion 
of H(z) around z = 1 is of the form 

H(2:) - (1 --2:)2 log + (1 - 2:)------~ + ~ log ~ + O ~ , 

where bl is a constant depending on a 1 (we need not worry about a2, because h2(z) 
is analytic at z = 1). [] 
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Note tha t  under the B S T  (lIt) (2) - model, the dominant te rm of the expansion of 
H(z )  is the same as under the B S T  - model. This is not the ease for larger m, m 
odd. However, before we shall prove this, let us first s tate the following lemma, which 
can be proved by elementary computations.  

L e m m a  2. Let a be an arbitrary constant, and let L I'll be the linear operator 

0 m m 0 m-I  m! 
L[m][A(z)] ~z  ~Atzj' ~ 1 - z Oz m-1A(z )  (1 - z)'~z "*-1 A(z), m E 15I. 

Then the following idcntities hold: 

r az  m -  1 - 1 ) ! ( 1  + mtt,,,_l) a~ 
= a ( m  ( l - z )  m+2 + ~ ( l Z z )  v '  

3<v<m+l 

where H~ is the r . th  harmonic number and the a.  are computable constants; 

a z m - 1  l 
b) Lt~l L~J ~- O; 

m! d) Lt~l [az"-'(1 - z) k] = -a (1 - ~)~-~ + 

where the bk.~ are computable constants; 

2m! 
- a l  - z 

e) L t' 'l [ a z " - ' ( 1 -  z)r,,-,] -- 

azrn-1 1 m! 
e) Lt'"l L ~__zT J = _a  0 _ z),-+x ; 

bk,~(1- z) ", 0 < k < m - 2 ,  
-l<_v<k 

+ ~ eo,.(1-z) ~, modd, 

ce,.(1 - z) -, 
0<v<ra-1 

m even, 

where the c.,,,  | E {o, e}, are computable constants; 

f )  L [m] [ a z m - l ( 1 -  z) k] = 

= a ( ( - l ) ~  H ( k + 0 - ~ ' ) ( 1 - z ) k - ' +  E d.,.(1-z)., 
2--rn<i<l k-mTl<u<k-I 

where k >_ m,  and where the da.v are computable constants. [] 

With  Lemma 2 we are able to construct approximations to a particular solution of 
ODE (8), if m is odd, and from these approximations we obtain the following 

T h e o r e m  4. Let m > 3 be an odd integer. Then, under the BST( I I I ) (m)  . model, the 
expected total path length p/(2r + 1) of a tree of size 2r + 1, r --~ oo, is asymptotically 
given by: 

2 r e ( m + 1 )  rlos(r)  + O(r), 
p / ( 2 r + l )  -- l + m H m _ l  
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where Hr denotes the r-th harmonic number. 

P r o o f .  Readers who are unfamiliar with the theory of ODE's  are referred to relevant 
books like [5,12]. We find that  the homogeneous equation of ODE (8) has a so-called 
"regular-singular" point at  z = 1. The corresponding "indicial equation in a "  is: 

( a +  1 ) a C a -  1 ) . . . ( a -  m +  2) = 1, if m is even, 

( a + l ) a ( a - 1 )  .... ( a - m + 2 )  = - 1 ,  i f m i s o d d .  

Similar equations appear  in [9]. The solutions of them have the following properties: 

- a = - 2  is always a solution, a = m - 1 is a solution, if rn is even; 
- other solutions are conjugated complex numbers with real par t  larger than - 2 ;  
- if rn is odd, no pair of solutions differs by an integer. 

This means, that,  if m is odd, the general solution of ODE (8) is of the form: 

ei 
= A, (x - z )  + P ( z ) ,  

l<_i<m ~ko 

where the ei and tlle fl,v, i E [1 : m], are constants, the cq, i E [1 : m], are the 
rn solutions of the indicial equation, and P(z) is a particular solution of ODE (8). 
If m is even, we do not know, whether this is true, because, if two solutions of the 
indicial equation differ by an integer, there could be non-logarithm-free solutions of 
the homogeneous equation of ODE (8). Therefore, let m be odd for the rest of the 
proof. 

In order to obtain a particular solution of ODE (8), we have to solve 

2(m + 1)! 2m rn! 
i ImJ[p(z)]  :=  LImJ[p( )] + - 0. (9) 

Approximations to the solution P(z) of (9) can be constructed step by step using 
Lemma 2. In each step j ,  j C /No, we have to achieve cancellation of the coefficient 
of ~ left by the step j - 1. 

The construction algorithm works as follows: 

i) set j := - 1 ;  and set Pj(z):_= 0; 
ii) set 3" ;= 3" + 1; 

iii) compute I['n][Pj_t (z)], and extract  its coefficient of ~ ;  

iv) depending on j ,  set R(z) to: 

~" - '  log (i-~1), i f j  = O, and z"*-l(1 - z)J-2, i f j  > _ 1; 

v) set Pj(z):= Pj-l(z) + aR(z), where the constant a 

is choosen such that  the coefficient of ~ in I['~][Pj(z)] vanishes; 
vi) goto ii). 

The theorem follows by the fact that  P(z)= Pco(z). [] 
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Note that  the algorithm doesn't  work for even m, because case e) of Lemma 2 shows, 
that  we cannot achieve cancellation of the coefficient of T~-~" Note also that  Theorem 
4 remains valid for m = 1 and m = 2, because the 0-th harmonic number H0 is equal 
to 0. 

4. Algorithms 

The first three sections are molded by mathematical considerations. At this point, 
it is worth summarizing the process employed above and giving an interpretation of 
our models and results. 

We started with the traditional model of binary search trees B S T .  Under this model, 
all r! permutations of r distinct keys are assumed to be equally likely. For instance, 
if r = 3, the 6 permutations are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), and 
the probabilities of the resulting search trees are given by the first line of Figure 2. 
The probability, that  the left tree is of size 2rl + 1 ,  0 _< rl  _< r -  1, is equal to �89 in 
this special case, and ;1 in the case of r distinct keys. This term ;* can be viewed as 
the granularity of  the tree type probability distribution, where the term tree type is 
used in the sense of Definiton 1. 

The B S T  - model can be described by generating functions, the characteristics. 
Using an externM nonnegative real number c, one of these characteristics has been 
deformed. The deformation induces a deformation of the distribution of the tree type 
probabilities. 

For instance, let us consider the B S T( I ) ( c )  - model, and let c = __1 or c = m, where 
~ t  

m 6 /N is an arbitrary positive integer. In the case c = ~ ,  the probability that  a tree 
of size 2r + 1, r > 2, has a left subtree of size 1 is equal to ~---4~,- I ,  and the probability 
that  the left subtree is of  size 2r, + I, 1 < rl _< r - 1, is equal to 1 

r e + P - - 1  " 

i I t 1 I 

~ ~ B S T  

20 ~ 2o ~o 2?,,+ 

~-" + Y t '  ' BST(O( �89  

f 3 g 

27 ~ 12 3 1 

i5 I-5 I-5 BST(II) t~I" " 

Figure 2. Binary seaxch trees built from multisets of permutations of 
{1,2,3} together with their probabilities and "tree type probabilities" 
under various models. 
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This recursive "splitting law on tree types" can be translated in a natural way into an 
algorithm. For a given a real number c = ~ ,  m E /N, Program 1 generates a multiset 
of  permutations of  r distinct integer keys, such that the probability distribution over 
the resulting family of  binary search trees is equal to that under the B S T ( I ) ( ~ )  - 
model,  provided that all permutations of this multiset are choosen equally likely. In 
this program, the data type "permutation of length l", I E /No, is an object of  the 
form (I, i h . . . ,  il), where the i j  E / N  are pairwise distinct integers. 1 

If we start Program 1 with m := �89 and keyset  := {1, 2 ,3} ,  we finally obtain the 
following multiset  ("i* ( . . . )"  means,  that permutation ( . . . )  occures i times): 

{ t ,  (3, 9,1) ,3,  (3,1, (2,3,1),3,  (2,1, 3), 3,  0,  3, 2), 9,  (1, 2, 3)}, 

and this induces the probability distribution given in the second line of Figure 2. 
This means, tha t  the probabili ty that  the left subtree is of size 1, is equal to 3, and 
the probability, tha t  it is of size 2rl + 1, rl  E {1, 2}, is equal to ~, a finer granularity 
than under the B S T  - model. 

program model:; 

type p*eI = multiset  of permutation; 
iset = set of integer; 

function model (m: integer; ke~set: iaet): p,et; 

va t  j,r: integer; 
ptmp: peet; 

begin r := ]keyJet[; 

irr = o then model := {(0)}; 
else if kell,et = {k,} then model := {(1,kt)} 

else begin 

model := O; 
sort the v keys kii of keltset, such that  kl  < k2 < . . .  < kr; 

for j : = l  to r do begin 
p t m p  := model  (m, ke~,et\{ki}); 
pgmp := m ~i,1 copies ofptmp; *) 
for each ( r -  1,k G . . . .  , k i t _ l )  ~ ptmp do 

model . . . .  del U {(,,ki,k, . . . . . .  k,._, )} 
end 

end 
end; 

var modelJet: p~et; 
key~et: iset; 

begin kev, et := {k I 1 _< k 5 "}; 
modelset := model (m, keyset) 

end. 

P r o g r a m  1 genera tes  a m u l t i s e t  of key sequences induc ing  the B S T ( O ( - ~ )  - model .  

*The purpose  of the first (addi t ional )  l is to improve  the readab i l i ty  of the p rogram.  The  resu l t ing  
m u l t i s e t  of p e r m u t a t i o n s  is finally to be unders tood  wi thou t  the l. 
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If  we replace the star-marked line of Program 1 by the line 

p tmp  := rnl-~i,  1 copies of ptmp; , 

then we obtain the B S T ( D ( m )  - model, and, if m = 3, this leads to the probability 
distribution presented in the third line of Figure 2, and its granularity is -~. 

1 and c = m, we observe that,  with the exception of the case In both cases, c : m 
rl  = 0, the probabili ty that  a tree of size 2r + 1, r _> 3, has a left subtree of size 
2rl  + 1 and a right subtree of size 2r2 + 1, r2 >_ 1, is equal to the probabili ty that  
the left subtree is of size 2(rl  + 1) + 1 and the right subtree is of size 2(r2 - 1) + 1. In 
other words, with the exception of the ease that  the first key is the smallest one, the 
"tree type probabilities" reran.in equally distributed under the B S T ( I ) ( o )  - model, 
o C {-~, ra}. This is the reason for the fact, tha t  the expected total  path length 
doesn' t  increase significantly, as r --~ co. 

Under the B S T ( H ) ( ~ . )  - model, we are faced with a totally different situation. Au 
algorithm, which corresponds to this model, can be constructed by replacing the 
s tar-marked line of Program 1 by the line 

p tmp  := m r-3 copies of ptmp; . 

Instead of making ra copies of the recursively computed multiset of permutat ions of 
r - 1 distinct keys, iff the key, which has been splitted off, is the smallest one, as the 
original Program 1 does, the modified program now makes m r-J  copies, iff the key, 
which has been splitted off, is the j - th  smallest one. 

If we s tar t  the modified program with m := 3 and keyse t  := {1,2, 3}, we finally 
obtain the multiset 

{1 * ( 3 , 2 , 1 ) , 3 .  (3, 1, 2), 3 ,  (2, 3, 1 ) , 9 ,  (2, 1 , 3 ) , 9 ,  O, 3 , 2 ) , 2 7 .  (1,2,3)},  

and the resulting probabili ty distribution is given in the last line of Figure 2. We 
observe, that  the tree type probability grows exponentially in the size of the right 
subtree instead of remaining constant, as it is the case under the B S T ( I ) ( - ~ )  - model 
(with the one exceptiion mentioned above), which causes the O(1" z) order of growth 
of the expected total  path  length. 

If we replace the star-marked line of Program 1 by the line 

p tmp  := m J-1 copies o fp tmp;  , 

we obtaln the B S T (  zl} (m) - model, which behaves symmetrically to the B S T ( H ) ( - ~ )  

- model. 

Finally, let us consider the B S T f f H ) ( m ) -  model, m E/N. An inspection of Proposition 
4 shows, that  the probability, tha t  a tree of size 2r + 1, r E liV, has a left subtree of 
size 2rl + 1, rl  E/No, and a right subtree of size 2r~ + 1, r2 E IN0, is given by: 

m r l - l - k  
p2(2r + 1, (2rl + 1, 2r2 + 1), (dl, d2)) = - -  1-I 

r r + k "  l<k<ra-1 

This formula translates into the star-marked program line 
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p tmp  :---- [Io<_k<_m-2(J + k) copies of  pimp; . 

This means, that  the tree type probability grows polynomially in the size of the left 
subtree, where the degree of the polynomial is equal to m - 1, a moderate growth, 
compared with the B S T  (II) (m)  - model, causing only a modification of the dominant 
coefficient of the asymptotic equivalent to the expected total path length, but not a 
general modification of the order itself. 

5. C o n c l u d i n g  R e m a r k s  

We introduced three new probability models by choosing different characteristics. 
Clearly, the choice of these characteristics is artificial, and many other characteristics 
can be selected. However, as we have seen in Section 4, the three characteristics 
used in this paper represent three totally different probability distributions, while 
they are simple enough, so that  we are able to compute the resulting expected path 
length. They give us a feeling about the question, what must happen to the B S T  

- model in order to get "bad". Note that  although we are relatively free in the 
selection of a characteristics, the choice must be done carefully. For instance, we  

P - (1 - c)z,  0 < c < 1, because its expansion is Ql,z(z )  = cannot use Q1,2(z) :=  
( c - 1 ) z + ~ > l  c - r z  2r+1, but Definition 1 requires that  Qi,2(z) is of the form Q1,2(z) : 

~ >1 ar z~+'~" 
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