Skip to main content

Fixed-parameter complexity and cryptography

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 673))

Abstract

We discuss the issue of the parameterized computational complexity of a number of problems of interest in cryptography. We show that the problem of determining whether an n-digit number has a prime divisor less than or equal to n k can be solved in expected time f(k)n 3 by a randomized algorithm that employs elliptic curve factorization techniques (this result depends on an unproved but plausible number-theoretic conjecture). An analogous computational problem concerning discrete logarithms is directly relevant to some proposed cryptosystem implementations. Our result suggests caution about implementations which fix a parameter such as the size or Hamming weight of keys. We show that several parameterized problems of relevance to cryptography, including k-Subset Sum, k-Perfect Code, and k-Subset Product are likely to be intractable with respect to fixed-parameter complexity. In particular, we show that they cannot be solved in time f(k)n α, where α is independent of k, unless a similar result holds for the well-studied and apparently resistant k-Clique problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone: An implementation for a fast public-key cryptosystem, J. Cryptology, vol. 3 (1991), pp. 63–79.

    Google Scholar 

  2. J. Buss and J. Goldsmith: Nondeteriminism within P, SIAM J. Computing, to appear.

    Google Scholar 

  3. J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance: Factoring integers with the number field sieve, to appear.

    Google Scholar 

  4. E. R. Canfield, P. Erdös, and C. Pomerance: On a problem of Oppenheim concerning “Factorisatio Numerorum,” J. Number Theory, vol. 17 (1983), pp. 1–28.

    Google Scholar 

  5. R. G. Downey and M. R. Fellows: Fixed-parameter tractability and completeness, Congresses Numerantium, vol. 87 (1992), pp. 161–178.

    Google Scholar 

  6. R. G. Downey and M. R. Fellows: Fixed-parameter intractability, Proceedings of the Seventh Annual IEEE Conference on Structure in Complexity Theory, 1992, pp. 36–49.

    Google Scholar 

  7. R. G. Downey and M. R. Fellows: Fixed-parameter tractability and completeness I: basic results, to appear.

    Google Scholar 

  8. R. G. Downey and M. R. Fellows: Fixed-parameter tractability and completeness II: on completeness for W[1], to appear.

    Google Scholar 

  9. M. R. Fellows and N. Koblitz: Self-witnessing polynomial-time complexity and prime factorization, Proceedings of the Seventh Annual IEEE Conference on Structure in Complexity Theory, 1992, pp. 107–110.

    Google Scholar 

  10. M. R. Fellows and N. Koblitz: Kid krypto, Advances in Cryptology — Crypto '92, Springer-Verlag, to appear.

    Google Scholar 

  11. M. Garey and D. S. Johnson: Computers and Intractability: A Guide to the Theory of N P-Completeness, W. H. Freeman, 1979.

    Google Scholar 

  12. D. Gordon: Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete Math., to appear.

    Google Scholar 

  13. D. Gordon: Discrete logarithms in GF(p n) using the number field sieve, Preprint.

    Google Scholar 

  14. N. Koblitz: CM-curves with good cryptographic properties, Advances in Cryptology — Crypto '91, Springer-Verlag, 1992, pp. 279–287.

    Google Scholar 

  15. H. W. Lenstra, Jr.: Factoring integers with elliptic curves, Annals Math., vol. 126 (1987), pp. 649–673.

    Google Scholar 

  16. H. W. Lenstra, Jr. and C. Pomerance: A rigorous time bound for factoring integers, J. Amer. Math. Soc., vol. 5 (1992), pp. 483–516.

    Google Scholar 

  17. A. Menezes and S. A. Vanstone: The implementation of elliptic curve cryptosystems, Advances in Cryptology — Auscrypt '90, Springer-Verlag, 1990, pp. 2–13.

    Google Scholar 

  18. J. Nesetríl and S. Poljak: On the complexity of the subgraph problem, Cornmen. Math. Univ. Carol., vol. 26 (1985), pp. 415–419.

    Google Scholar 

  19. A. Odlyzko: Discrete logarithms and their cryptographic significance, Advances in Cryptology — Eurocrypt '84, Springer-Verlag, 1985, pp. 224–314.

    Google Scholar 

  20. C. Pomerance: Fast, rigorous factorization and discrete logarithm algorithms, in D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. Wilf, eds., Discrete Algorithms and Complexity, Academic Press, 1987, pp. 119–143.

    Google Scholar 

  21. K. Rosen: Elementary Number Theory and Its Applications, 3rd ed., Addison-Wesley, 1993.

    Google Scholar 

  22. P. van Oorschot: A comparison of practical public-key cryptosystems based on integer factorization and discrete logarithms, in G. Simmons, ed., Contemporary Cryptology: The Science of Information Integrity, IEEE Press, 1992, pp. 289–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Teo Mora Oscar Moreno

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fellows, M.R., Koblitz, N. (1993). Fixed-parameter complexity and cryptography. In: Cohen, G., Mora, T., Moreno, O. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1993. Lecture Notes in Computer Science, vol 673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56686-4_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-56686-4_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56686-1

  • Online ISBN: 978-3-540-47630-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics