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A Zero-Test and an Interpolation Algorithm forthe Shifted Sparse PolynomialsDima Grigoriev?1 and Marek Karpinski ??21 Dept. of Computer Science, the Pennsylvania State University, University Park,PA 168022 Dept. of Computer Science, University of Bonn, 5300 Bonn 1, and InternationalComputer Science Institute, Berkeley, CaliforniaAbstract. Recall that a polynomial f 2 F [X1; : : : ;Xn] is t -sparse, iff = P�IXI contains at most t terms. In [BT 88], [GKS 90] (see also[GK 87] and [Ka 89]) the problem of interpolation of t-sparse polynomialgiven by a black-box for its evaluation has been solved. In this paper weshall assume that F is a �eld of characteristic zero. One can consider a t-sparse polynomial as a polynomial represented by a straight-line programor an arithmetic circuit of the depth 2 where on the �rst level there aremultiplications with unbounded fan-in and on the second level there isan addition with fan-in t.In the present paper we consider a generalization of the notion of spar-sity, namely we say that a polynomial g(X1; : : : ;Xn) 2 F [X1; : : : ;Xn] isshifted t-sparse if for a suitable nonsingular n�n matrix A and a vectorB the polynomial g(A(X1; : : : ;Xn)T + B) is t-sparse. One could con-sider g as being represented by a straight-line program of the depth3 where on the �rst level (with the fan-in n + 1) a linear transfor-mation A(X1; : : : ;Xn)T + B is computed. One could also consider ashifted t-sparse polynomial as t-sparse with respect to other coordinates(Y1; : : : ; Yn)T = A(X1; : : : ;Xn)T + B.We assume that a shifted t-sparse polynomial g is given by a black-boxand the problem we consider is to construct a transformationA(X1; : : : ;Xn)T +B. As the complexity of the designed below algorithm(see the Theorem in which we describe the variety of all possible A;B andthe corresponding t-sparse representations of g(A(X1; : : : ;Xn)T + B))depends on dn4 where d is the degree of g, we could �rst interpolateg within time dO(n) and suppose that g is given explicitly. It would beinteresting to get rid of d in the complexity bounds as it is usually donein the interpolation of sparse polynomials ([BT 88], [GKS 90], [Ka 89]).The main technical tool we rely on is the criterium of t-sparsity based onWronskian ([GKS 91], [GKS 92]), the latter criterium has a parametricalnature (so we can select t-sparse polynomials from a given parametricalfamily of polynomials) unlike the approach in [BT 88] using BCH-codes.? Work partially done while visiting the Dept. of Computer Science, University ofBonn. On leave from the Steklov Mathematical Institute, Fontanka 27, St. Peters-burg, 191011 Russia?? Supported in part by Leibniz Center for Research in Computer Science, by the DFGGrant KA 673/4-1 and by the SERC Grant GR-E 68297



We could directly consider (see the Theorem) the multivariate polyno-mials (section 3), but to make the exposition clearer before that we �rststudy (see the proposition) the one-variable case (section 2). First at allwe recall (section 1) the criterium of t-sparsity and based on it interpo-lation method for t-sparse multivariable polynomials.In the last section 4 we design a zero-test algorithm for shifted t-sparsepolynomials with the complexity independent on d.1 A Criterium of t-sparsity and the InterpolationLet p1; : : : ; pn be pairwise distinct primes and denote by D a linear operatormapping D : X1 ! p1X1; : : : ; D : Xn ! pnXn. We recall a criterium of t-sparsity (cf. also [BT 88]).Lemma 1. ([GKS 91], [GKS 92]) A polynomial f 2 F [X1; : : : ; Xn] is t-sparseif and only if the WronskianWf (X1; : : : ; Xn) = det0BBB@ f Df : : : DtfDf D2f : : : Dt+1f... ... ...Dtf Dt+1f : : : D2tf 1CCCA 2 F [X1; : : : ; Xn]vanishes identically.An interpolation method from [BT 88] (see also [KY 88]) actually considersthe Wronskian Wf (1; : : : ; 1) at the point (1; : : : ; 1) and is based on the followingLemma 2. ([BT 88]) If f is exactly t-sparse (i.e., f contains exactly t terms),then the reduced Wronskian does not vanish�Wf (1; : : : ; 1) = det0B@ f(1; : : : ; 1) (Df)(1; : : : ; 1) : : : (Dt�1f)(1; : : : ; 1)... ... ...(Dt�1f)(1; : : : ; 1) (Dtf)(1; : : : ; 1) : : : (D2t�2f)(1; : : : ; 1)1CA 6= 0at the point (1; : : : ; 1).Thus, if f =P�IXI is exactly t-sparse and if a (characteristic) polynomial�(Z) = P0�j�t
jZj 2 Z[Z] has as its t roots pI for all exponent vectors I occuringin f (where for I = (i1; : : : ; in) we denote pI = pi11 � � �pinn ), then P0�j�t
jDjf = 0and hence 0B@f Df : : : Dtf... ... ...Dtf Dt+1f : : : D2tf 1CA (
0; : : : ; 
t)T = 0 :Therefore, a linear system0B@ f(1; : : : ; 1) (Df)(1; : : : ; 1) : : : (Dtf)(1; : : : ; 1)... ... ...(Dtf)(1; : : : ; 1) (Dt+1f)(1; : : : ; 1) : : : (D2tf)(1; : : : ; 1)1CA (Y0; : : : ; Yt)T = ohas (up to a constant multiple) a unique (by lemma 2) solution (Y0; : : : ; Yt) =(
0; : : : ; 
t) which gives the coe�cients of �, thereby its roots pI and �nally I.



2 One-variable Shifted Sparse PolynomialsA polynomial g 2 F [X] is called shifted t-sparse if for an appropriate b a poly-nomial g(X � b) is t-sparse (so the origin is shifted from 0 to b). If t is the leastpossible, we say that g is minimally shifted t-sparse, this notion relates also tothe multivariable case. Let F = Q. Usually we take b from the algebraic closure�Q (we could also consider b from R). Assume that the bit-size of the (rational)coe�cients of g does not exceed M .Consider a new variable Y and an Q(Y )-linear transformation of the ringQ(Y )[X] mapping D1 : X ! p1X + (p1 � 1)Y . DenoteWg(X;Y ) = det0B@ g D1g : : : Dt1g... ... ...Dt1g Dt+11 g : : : D2t1 g1CA 2 Q[X;Y ]Lemma 3. g is shifted t-sparse if and only if for some Y = b a polynomialWg(X; b) vanishes identically. Moreover in this case a polynomial g(X � b) ist-sparse.Proof. If g(X � b) is t-sparse, then the expansion g =Pj �j(X + b)j into thepowers of (X+b) contains at most t terms. Lemma 1 implies thatWg(X; b) van-ishes identically. The other direction follows also from lemma 1 which completesthe proof.Observe that for almost every b the polynomial g(X � b) has exactly (d+ 1)terms, where d = deg(g), since in the polynomial g(X � Y ) 2 Q[X;Y ] thecoe�cient in the power XS is a polynomial in Y of degree exactly d � S, 0 �S � d.Lemma 3 provides an algorithm for �nding t such that g is minimal shiftedt-sparse which runs in time dO(1) (trying successively t = 1; 2; : : :), moreover thisalgorithm �nds all Y = Y0 such that g(X � Y0) is t-sparse. Namely, one writesdown a polynomial system in Y equating to zero all the coe�cients in the powersof X, thus the system contains dO(1) equations of degrees at most dO(1). So, onecan prove the following proposition.Proposition. There is an algorithm which for one-variable polynomial g �ndsthe minimal t and all Y0 for which g(X � Y0) is t-sparse in time (Md)O(1). Thenumber of such Y0 does not exceed dO(1).One of the purposes of the sparse analysis is to get rid of d in the complexitybounds. We can write down a system in b with a less (for small t) number ofequations, when b is supposed to belong to R. So, assume that the expansiong = Pj �j(X + b)j contains at most t terms for some b 2 R. Then for any�xed Y = Y0 2 R a polynomial (DK1 g)(X;Y0) = Pj �j(pK1 (X + Y0) � Y0 + b)jfor K � 0. Therefore the polynomial Wg(X;Y0) has at most 2O(t4) real rootsbecause of [Kh 91] since one can consider (2t+ 1)t powers of linear polynomials(pK1 (X+Y0)�Y0+b)j ; 0 � K � 2t as the elements of a Pfa�an chain [Kh 91].



Thus Y satis�es the conditions of lemma 3 if and only if it satis�es thefollowing system of polynomial equations (cf. lemma 5 below)Wg(0; Y ) =Wg(1; Y ) = : : : =Wg(2O(t4); Y ) = 0 :Each of the polynomials from the latter system can be represented by a black-box for its evaluation. As each of these polynomialsWg(s; Y ) contains (2t+ 1)tpowers (pK1 (s + Y ) � Y + b)j ; 0 � K � 2t the system has at most 2O(t4) realsolutions (by the same argument relying on [Kh 91] as above), thus the numberof such Y = Y0 that g(X � Y0) is t-sparse is less than 2O(t4).3 Multivariate Shifted Sparse PolynomialsConsider now n2+n new variablesZi;j ; Yi; 1 � i; j � n and aQ(fZij ; Yig1�i;j�n)-linear transformation Dn of the ring Q(fZij ; Yig1�i;j�n)[X1; : : : ; Xn] mappingDnX = ZPZ�1(X � Y ) + Ywhere vectors X = (X1; : : : ; Xn)T ; Y = (Y1; : : : ; Yn)T , matrices Z = (Zij); P =0B@ p1 0.. .0 pn1CA. Similarly, as above denoteWg(X;Y; Z) = det0B@ g Dng : : : Dtng... ... ...Dtng Dt+1n g : : : D2tn g1CA 2 Q(Z)[X;Y ] :Lemma 4. g is shifted t-sparse if and only if for some Z0; Y0 such that detZ0 6=0, the polynomial Wg(X;Y0; Z0) vanishes identically. Moreover, in this case apolynomial g(Z0X + Y0) is t-sparse.The proof is similar to the proof of lemma 3 taking into account that(Dng)(ZX + Y ) = g(ZPZ�1(ZX + Y � Y ) + Y ) = g(ZPX + Y ) :As in section 2 lemma 4 provides a test for minimal shifted t-sparsity tryingsuccessively t = 1; 2; : : : running in time dO(n4) (see [CG 83] for solving system ofpolynomial equations and inequalities). Moreover, the algorithm �nds algebraicconditions (equations and inequality detZ 6= 0) on all Z; Y for which g(ZX+Y )is t-sparse.So, these Z; Y form a constructive set U � �Qn2+n given by a system h1 =: : : = hk = 0, detZ 6= 0 where h1; : : : ; hk 2 Q[fZij; Yig1�i;j�n], thendeg(h1); : : : ; deg(hk) � dO(1); k � dO(1). Applying the algorithm from [CG 83]one can �nd the irreducible over Q components �U = Sl U (l) of the closure (in theZariski topology) �U . For each component U (l) the algorithm from [CG 83] pro-duces �rstly, some polynomials h(l)1 ; : : : ; h(l)N(l) 2 Q[fZij ; Yig] such that U (l) =



fh(l)1 = : : : = h(l)N(l) = 0g and secondly, a general point of U (l), namely thefollowing �elds isomorphismQ(U (l)) ' Q(T1; : : : ; Tm)[�]where Q(U (l)) is the �eld of rational functions on U (l), m = dim(U (l)), lin-ear forms T1; : : : ; Tm in variables fZij; Yig1�i;j�n constitute a transcendentalbasis of Q(U (l)) and � is algebraic over Q(T1; : : : ; Tm). The algorithm pro-duces a minimal polynomial �(Z) 2 Q(T1; : : : ; Tm)[Z] of �, the linear formsTS(fZij; Yig); 1 � S � m, a linear form �(fZij ; Yig), and the expressions for thecoordinate functions Zi;j(T1; : : : ; Tm; �); Yi(T1; : : : ; Tm; �) as rational functions inT1; : : : ; Tm; �. The degrees of the polynomialsh(l)1 ; : : : ; h(l)N(l) do not exceed dO(n2),the bit-size of any of the (rational) coe�cients occuring in these polynomials canbe bounded by MO(1)dO(n2) and the algorithm runs in time MO(1)dO(n4).Denote ~U (l) = U (l) n fdetZ = 0g (some of ~U (l) can be empty), remark thatU = Sl ~U (l).For any point (Z0; Y0) 2 ~U (l) the polynomial g(Z0X+Y0) is exactly t-sparse,therefore by lemma 2 the following linear system0B@ g(X0; Y0; Z0) Dng(Xo ; Y0; Z0) : : : Dtng(X0; Y0; Z0)... ... ...Dtng(X0; Y0; Z0) Dt+1n g(X0; Y0; Z0) : : : D2tn g(X0; Y0; Z0)1CA (
0; : : : ; 
t�1; 1) = 0has a unique solution, where the vector X0 = Z�10 ((1; : : : ; 1)T � Y0). As
0; : : : ; 
t�1 2 Z (see section 1) and 
0; : : : ; 
t�1 can be represented as the ratio-nal functions in (Z; Y ) 2 ~U (l), we conclude taking into account the irreducibilityof U (l) that 
0; : : : ; 
t�1 are constants on ~U (l). Thus, the exponent vectors I (seesection 1) are the same for all the points (Z; Y ) 2 ~U (l).So, for (Z; Y ) 2 ~U (l) one can write t-sparse representation of the polynomialg =XI CI(Z; Y )(Z�1(X � Y ))I (1)where the coe�cients CI(Z; Y ) depend on Z; Y . The equality (1) is equivalentto a system of equalitiesg(ZX(0) + Y ) =XI CI(Z; Y )(Z�1(X(0) � Y ))IwhereX(0) runs over all the vectors from f0; : : : ; dgn. Adding to the latter systemthe system detZ 6= 0; h(l)1 = : : : = h(l)N(l) = 0 determining ~U (l) we come to aparametrical (with the parameters fZij ; Yig) linear in CI system which one cansolve invoking the algorithm from [H 83] (see also [CG 84]) in timeMO(1)dO(n4).This algorithm yields some disjoint decomposition of ~U (l) = SS U (l)S where eachU (l)S is a constructive set and also yields the rational functions �C(l)I;S(fZij; Yig) 2



Q(fZij ; Yig) such that CI = �C(l)I;S(fZij ; Yig) for every point fZij; Yig 2 U (l)S (thuseach CI is a piecewise-rational function on ~U (l)).The algorithm yields also polynomials h(l)S;0; : : : ; h(l)S;N(l)S 2 Q[fZij; Yig] suchthat U (l)S = fh(l)S;0 6= 0; h(l)S;1 = : : : = h(l)S;N(l)S = 0g. >From [H 83] (see also [CG 84])we get the bounds on the degrees deg(h(l)S;q); deg( �C(l)I;S) � dO(n2) and the boundMO(1)dO(n2) for the bit-size of every (rational) coe�cients of all the yieldedrational functions.Thus, we have proved the following theorem (cf. proposition above).Theorem. There is an algorithm which �nds a minimal t and producesa constructive set U � �Qn2+n of all fZij; Yig1�i;j�n such that g(ZX + Y ) ist-sparse, in the form U = Sl U (l) and for each constructive set U (l) the algorithmproduces polynomials H(l)0 ; : : : ;H(l)N (l) 2 Q[fZij; Yig] such that U (l) = fH(l)0 6=0; H(l)1 = : : : = H(l)N (l) = 0g. Also the algorithm produces t exponent vectorsand for each exponent vector I a rational function C(l)I (fZij; Yig) 2 Q(fZij ; Yig)which provide t-sparse representations ofg =XI C(l)I (fZij; Yig)(Z�1(X � Y ))Iwhich is valid for every point (fZij; Yig) 2 U (l). The degrees of all producedrational functions H(l)S ; C(l)I do not exceed dO(n2), the bit-size of the coe�cientsof these rational functions can be bounded by (Mdn2)O(1) and the running timeof the algorithm is at most (Mdn4)O(1).Again when Zij; Yi belong to R we could write down a polynomial system onZ; Y with a less number of equations. For this purpose we need the followingLemma 5. If g is a shifted t-sparse polynomial, then for any Z0; Y0 suchthat detZ0 6= 0 for at least one of X(0)1 = 1; : : : ; nO(n)2O(t4), a polynomialWg(X(0)1 ; X2; : : : ; Xn; Y0; Z0) 2 R[X2; : : : ; Xn] does not vanish identically, pro-vided that Wg(X;Y0; Z0) 2 R[X] does not vanish identically.Proof. Let for some Z(0); Y (0) a polynomial g(Z(0)X + Y (0)) be t-sparse, i.e.g =XJ �J Y1�i�n((Z(0))�1(X � Y (0)))jiiwhere J = (j1; : : : ; jn) and the sum has at most t items (by ((Z(0))�1(X�Y (0)))iwe denote i-th coordinate of the vector (Z(0))�1(X � Y (0))). Then(DKn g)(X;Y0; Z0) =XJ �J Y1�i�n((Z(0))�1((Z0PKZ�10 (X�Y0)+Y0)�Y (0)))jii for 0 � K � 2t:Thus Wg(X;Y0; Z0) is a polynomial in (2t + 1)t products of the form like inthe latter expression and these products can be considered as the elements of aPfa�an chain. [Kh 91] entails (cf. also [GKS 93]) that the sum of Betti numbers



of the variety fWg(X;Y0; Z0) = 0g � Rn is less than nO(n)2O(t4). As in particular(n � 1)-th Betti number bn�1 < nO(n)2O(t4) we conclude the statement of thelemma (cf. [GKS 93]).Thus, Y; Z satisfy the conditions of lemma 4 if and only if detZ 6= 0 andthey satisfy the following nO(n2)2O(nt4) equations.Wg(X(0)1 ; : : : ; X(0)n ; Y; Z) = 0; X(o)1 ; : : : ; X(0)n 2 f1; : : : ; nO(n)2O(t4)g4 Zero-test for shifted sparse polynomialsLet g be shifted t-sparse polynomial. Then (see lemma 5) for at least one ofX(0)1 = 1; : : : ; nO(n)2(t2) a polynomial g(X(0)1 ; X2; : : : ; Xn) 2 Q[X2; : : : ; Xn] doesnot vanish identically. Thus for zero-test one can compute g(X(0)1 ; : : : ; X(0)n ) fornO(n2)2O(nt2) points (X(0)1 ; : : : ; X(0)n ) 2 f1; : : : ; nO(n)2O(t2)gn. Then g vanishesidentically if and only if all the results of computation vanish. Thus, the com-plexity of zero-test does not depend on d.Acknowledgement. The authors would like to thank C. Schnorr for initiat-ing the question about the shifted sparse polynomials.References[BT 88] Ben-Or, M. & Tiwari, P., A deterministic algorithm for sparse multi-variate polynomial interpolation, Proc. 20 STOC ACM, 1988, pp. 301-309.[CG 83] Chistov, A. & Grigoriev, D., Subexponential-time solving systems ofalgebraic equations, Preprints LOMI E-9-83, E-10-83, Leningrad, 1983.[CG 84] Chistov, A. & Grigoriev, D., Complexity of quanti�er elimination inthe theory of algebraically closed �elds, Lect. Notes Comp. Sci. 176,1984, pp. 17-31.[GK 87] Grigoriev, D. & Karpinski, M., The matching problem for bipartitegraphs with polynomially bounded permanents is in NC, Proc. 28 FOCSIEEE, 1987, pp. 166-172.[GKS 90] Grigoriev, D., Karpinski, M. & Singer, M., Fast parallel algorithms forsparse multivariate polynimial interpolation over �nite �elds, SIAM J.Comput. 19, N 6, 1990, pp. 1059-1063.[GKS 91] Grigoriev, D., Karpinski, M. & Singer, M., The interpolation problemfor k-sparse sums of eigenfunctions of operators, Adv. Appl. Math. 12,1991, pp. 76-81.[GKS 92] Grigoriev, D., Karpinski, M. & Singer, M., Computational complexityof sparse rational interpolation , to appear in SIAM J. Comput.[GKS 93] Grigoriev, D., Karpinski, M. & Singer, M., Computational complex-ity of sparse real algebraic function interpolation, to appear in Proc.Int. Conf. E�. Meth. Alg. Geom., Nice, April 1992 (Progr. in Math.Birkh�auser).[H 83] Heintz, J., De�nability and fast quanti�er elimination in algebraicallyclosed �elds, Theor. Comp. Sci. 24, 1983, pp. 239-278.
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