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A Zero-Test and an Interpolation Algorithm for
the Shifted Sparse Polynomials

Dima Grigoriev*! and Marek Karpinski **2

! Dept. of Computer Science, the Pennsylvania State University, University Park,
PA 16802
2 Dept. of Computer Science, University of Bonn, 5300 Bonn 1, and International
Computer Science Institute, Berkeley, California

Abstract. Recall that a polynomial f € F[X1,..., X,] is t -sparse, if
f =" arX’ contains at most ¢ terms. In [BT 88], [GKS 90] (see also
[GK 87] and [Ka 89]) the problem of interpolation of ¢-sparse polynomial
given by a black-box for its evaluation has been solved. In this paper we
shall assume that F' is a field of characteristic zero. One can consider a t-
sparse polynomial as a polynomial represented by a straight-line program
or an arithmetic circuit of the depth 2 where on the first level there are
multiplications with unbounded fan-in and on the second level there is
an addition with fan-in ¢.

In the present paper we consider a generalization of the notion of spar-
sity, namely we say that a polynomial g(X1,...,Xn) € F[X1,...,Xy]is
shifted t-sparse if for a suitable nonsingular » X n» matrix A and a vector
B the polynomial g(A(Xi,...,Xn)T + B) is t-sparse. One could con-
sider g as being represented by a straight-line program of the depth
3 where on the first level (With the fan-in n + 1) a linear transfor-
mation A(Xl,...,Xn)T + B is computed. One could also consider a
shifted ¢-sparse polynomial as t-sparse with respect to other coordinates
(Yi,..., V)T = A(Xy,..., X,)T + B.

We assume that a shifted ¢-sparse polynomial g is given by a black-box
and the problem we consider is to construct a transformation
A(X1, ..., Xn)T 4+ B. As the complexity of the designed below algorithm
(see the Theorem in which we describe the variety of all possible A, B and
the corresponding t-sparse representations of g(A(X1,..., X»)T 4+ B))
depends on d™" where d is the degree of g, we could first interpolate
¢ within time d°™ and suppose that g is given explicitly. It would be
interesting to get rid of d in the complexity bounds as it is usually done
in the interpolation of sparse polynomials ([BT 88], [GKS 90], [Ka 89]).
The main technical tool we rely on is the criterium of ¢-sparsity based on
Wronskian ([GKS 91], [GKS 92]), the latter criterium has a parametrical
nature (so we can select ¢-sparse polynomials from a given parametrical
family of polynomials) unlike the approach in [BT 88] using BCH-codes.
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burg, 191011 Russia
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We could directly consider (see the Theorem) the multivariate polyno-
mials (section 3), but to make the exposition clearer before that we first
study (see the proposition) the one-variable case (section 2). First at all
we recall (section 1) the criterium of ¢-sparsity and based on it interpo-
lation method for ¢-sparse multivariable polynomials.

In the last section 4 we design a zero-test algorithm for shifted t-sparse
polynomials with the complexity independent on d.

1 A Criterium of t-sparsity and the Interpolation

Let pi1,...,pn be pairwise distinct primes and denote by D a linear operator
mapping D : X7 — p1Xq,...,D : X, — p,X,. We recall a criterium of ¢-
sparsity (cf. also [BT 88]).

Lemma 1. ([GKS 91], [GKS 92]) A polynomial f € F[X1,...,X,] is t-sparse
of and only if the Wronskian

f Df ...Dy
Df D2f ... Ditlf

Wi(X1,..., X,) = det € F[X1,..., X,

Dif D DYy
vanishes identically.
An interpolation method from [BT 88] (see also [KY 88]) actually considers
the Wronskian W;(1,...,1) at the point (1,...,1) and is based on the following

Lemma 2. ([BT 88]) If f is exactly t-sparse (i.e., f contains exactly t terms),
then the reduced Wronskian does not vanish

F(,...1) (DA, ..., (DO, 1)
We(l,...,1)=det | : : : #0

(DA, D) (DU, 1) (D22, 1)
at the point (1,...,1).
Thus, if f = a; X! is exactly t-sparse and if a (characteristic) polynomial
x(Z)= 3. 7,77 € Z[Z] has as its t roots p! for all exponent vectors I occuring

0<j<t
in f (where for I = (i1,...,i,) we denote p! = pi*---pir), then > 4, DIf =0
0<j<t
and hence

f Df ...D'f
(70aa7t>T:0
Dif DIt f . D¥f
Therefore, a linear system
f(1,...,1) (DA(L,...,1) ...(D'H(A,...,1)
: : (Yo,..., Y =0

(DAY, ..., D) (DA, ) (DA, 1)

has (up to a constant multiple) a unique (by lemma 2) solution (Yg,...,Y;) =
(70, - - -,7¢) which gives the coefficients of x, thereby its roots p! and finally I.



2 One-variable Shifted Sparse Polynomials

A polynomial ¢ € F[X] is called shifted t-sparse if for an appropriate b a poly-
nomial g(X — b) is ¢-sparse (so the origin is shifted from 0 to b). If ¢ is the least
possible, we say that g is minimally shifted t-sparse, this notion relates also to
the multivariable case. Let F' = Q. Usually we take b from the algebraic closure
Q (we could also consider b from R). Assume that the bit-size of the (rational)
coefficients of ¢ does not exceed M.

Consider a new variable Y and an Q(Y)-linear transformation of the ring
Q(Y)[X] mapping D1 : X — p1 X 4+ (p1 — 1)Y. Denote

g Dig ...Dig
We(X,Y)=det | : ; : € Q[X,Y]
Dig Ditly ... D'y

Lemma 3. ¢ is shifted t-sparse if and only if for some Y = b a polynomial
W,y (X, b) vanishes identically. Moreover in this case a polynomial g(X — b) is
t-sparse.

Proof. 1If g(X —b) is t-sparse, then the expansion ¢ = Z]' B;(X +b) into the
powers of (X 4b) contains at most ¢ terms. Lemma 1 implies that W, (X, b) van-
ishes identically. The other direction follows also from lemma 1 which completes
the proof.

Observe that for almost every b the polynomial g(X — b) has exactly (d+ 1)
terms, where d = deg(g), since in the polynomial g(X — V) € Q[X,Y] the
coefficient in the power X* is a polynomial in Y of degree exactly d — S, 0 <
S <d.

Lemma 3 provides an algorithm for finding ¢ such that ¢ is minimal shifted
t-sparse which runs in time d°1) (trying successively ¢ = 1,2, ...), moreover this
algorithm finds all Y = Y} such that ¢(X — Yp) is t-sparse. Namely, one writes
down a polynomial system in Y equating to zero all the coefficients in the powers
of X, thus the system contains d°(1) equations of degrees at most d°(1). So, one
can prove the following proposition.

Proposition. There is an algorithm which for one-variable polynomial g finds
the minimal t and all Yy for which g(X —Yy) is t-sparse in time (Md)°). The
number of such Yy does not exceed d°V).

One of the purposes of the sparse analysis is to get rid of d in the complexity
bounds. We can write down a system in b with a less (for small ¢) number of
equations, when b is supposed to belong to R. So, assume that the expansion
g = > B;(X + b)) contains at most ¢ terms for some b € R. Then for any

J

fixed Y = Yy € R a polynomial (DX ¢)(X,Yp) = Zﬁ] (PE(X +Y5) — Yo + by
j

for K > 0. Therefore the polynomial W,(X,Yy) has at most 20(t") teal roots
because of [Kh 91] since one can consider (2t + 1)t powers of linear polynomials
(PE(X+Yo)=Yo+b)/, 0< K < 2t as the elements of a Pfaffian chain [Kh 91].



Thus Y satisfies the conditions of lemma 3 if and only if it satisfies the
following system of polynomial equations (cf. lemma 5 below)

W,(0,Y) =W, (1,Y)= ... = W,(2°) v)=0.

Each of the polynomials from the latter system can be represented by a black-
box for its evaluation. As each of these polynomials W, (s,Y) contains (2¢ 4+ 1)t
powers (pf(s +Y) =Y +b), 0< K < 2t the system has at most 20(") 1eal
solutions (by the same argument relying on [Kh 91] as above), thus the number
of such Y = Yy that g(X — Yp) is t-sparse is less than 200"

3 Multivariate Shifted Sparse Polynomials

Consider now n’+n new variables Z; ;,Y;, 1<1i,j <nanda@Q({Z;,Yi}i<ij<n)
linear transformation D, of the ring @({Zi;, Yi}i<ij<n)[X1,. .., X] mapping

DX =ZPZ Y X -Y)4+Y

where vectors X = (X1,..., X,,)T,Y = (V1,...,Y,,)T, matrices Z = (Z;5), P =
pr 0

. Similarly, as above denote

0 Pn

g Dng ...DLg

W,(X,Y, Z) = det € Q2)X,Y].

D;g D;‘Hg ...Dfltg

Lemma 4. g s shifted t-sparse if and only of for some Zy, Yy such that detZy #
0, the polynomial Wy(X, Yy, Zy) vanishes identically. Moreover, in this case a
polynomial g(Zy X +Yy) is t-sparse.

The proof is similar to the proof of lemma 3 taking into account that

(Dng)(ZX +Y)=g(ZPZ N ZX +Y = Y)+Y)=g(ZPX +Y).

As in section 2 lemma 4 provides a test for minimal shifted ¢-sparsity trying
successively + = 1,2,...running in time don™ (see [CG 83] for solving system of
polynomial equations and inequalities). Moreover, the algorithm finds algebraic
conditions (equations and inequality det Z # 0) on all Z,Y for which ¢(Z7X +Y")
1s t-sparse.

So, these Z,Y form a constructive set U C Q”2+” given by a system h; =
..o = hy = 0, det Z ;é 0 where hl, R hy € Q[{Zij,}/i}lgi,jgn], then
deg(hy), ..., deg(hy) < d°M k < d°M). Applying the algorithm from [CG 83]
one can find the irreducible over @ components U = | J U of the closure (in the

]
Zariski topology) U. For each component UW the algorithm from [CG 83] pro-

duces firstly, some polynomials h(ll), Cel hg\l,)(l) € Q[{Z;;,Y;}] such that v —



{h(ll) = ... = hg\l,)(l) = 0} and secondly, a general point of U() namely the
following fields isomorphism

QU ~ Q(Ty, ..., T,n)[6]

where Q(U") is the field of rational functions on U® m = dim(UW), lin-
ear forms Ty,...,7,, in variables {Zij,Yi}lgiijn constitute a transcendental
basis of QUW) and @ is algebraic over Q(Ti,..., ). The algorithm pro-
duces a minimal polynomial ¢(7) € Q(T1,...,Tn)[Z4] of #, the linear forms
Ts({Z;;,Y:}), 1 <5 < m, alinear form #({Z;;,Y;}), and the expressions for the

coordinate functions Z; ; (14, ..., T, 6), Yi(Th, ..., Ty, 0) as rational functions in
T1,...,Tm, 8. The degrees of the polynomials h(ll), ce hg\l,)(l) do not exceed do("2),

the bit-size of any of the (rational) coefficients occuring in these polynomials can
be bounded by MOMO™n*) and the algorithm runs in time MO o™,
Denote U = U\ {det Z = 0} (some of U") can be empty), remark that
U= U U
]

For any point (Zy, Yy) € U the polynomial 9(Zu X +7Yy) is exactly ¢-sparse,
therefore by lemma 2 the following linear system

g(XOaYOaZO) Dng(XOaYOaZO) ...D;g(XO,YO,Zo)

: : : (70a"'ﬁ7t—1a1):0
D! g(Xo, Yo, Zo) DT g(Xo, Yo, Zo) ... D2 g(Xo, Yo, Zn)

has a unique solution, where the vector Xy = Z;'((1,...,1)T — Y5). As
Yo,y Yti—1 € Z (see section 1) and 7g, ..., v:—1 can be represented as the ratio-
nal functions in (Z,Y) € U, we conclude taking into account the irreducibility
of U®W that 7o, ..., —1 are constants on U(). Thus, the exponent vectors I (see
section 1) are the same for all the points (Z,Y) € U,

So, for (£,Y) € UM one can write t-sparse representation of the polynomial

9= CillZYNZTHX =Y)) (1)

where the coefficients C7(Z,Y) depend on Z,Y. The equality (1) is equivalent
to a system of equalities

gq(ZX D +Y)=>"Cr(2,Y)( 271X = v))

where X(%) runs over all the vectors from {0,...,d}". Adding to the latter system
the system det 7 # 0, h(ll) =...= hg\l,)(l) = 0 determining U® we come to a
parametrical (with the parameters {Z;;,Y;}) linear in C7 system which one can
solve invoking the algorithm from [H 83] (see also [CG 84]) in time MOMom™),

This algorithm yields some disjoint decomposition of Um = U Uél) where each
5

Uél) is a constructive set and also yields the rational functions C}DS({ZU,YZ'}) €



Q({Z;;,Y:}) such that Cr = C}{)S({Zij ,Y;}) for every point {Z;;,Y;} € Uél) (thus
each C7 1s a piecewise-rational function on U(l))
The algorithm yields also polynomials h(Sl)O, .. h(l) NO € Q{Z;;,Y:}] such

that Uél) = {h(Sl?O #0, h(Sl?l =...= h(l) N = =0}. (JFrom [H 83] (see also [CG 84])

we get the bounds on the degrees deg(h(S)q), deg(C}l)S) < d°(*) and the bound

MOM O™ for the bit-size of every (rational) coefficients of all the yielded
rational functions.
Thus, we have proved the following theorem (cf. proposition above).
Theorem.  There is an algorithm which finds a mintmal t and produces
a constructive set U C Q7 +n of all {Z;,Yit1<ij<n such that g(ZX +7Y) is
t-sparse, in the form U = UZ/{(I) and for each constructive set UV the algorithm

produces polynomials Hé),...,H.(,\l,)(,) € Q{Z;;,Y:}] such that u = {Hg)
0, H(ll) = Hg\l/)(l) 0}. Also the algorithm produces t exponent vectors

and for each exponent vector I a rational function C}l)({ZZ»]',YZ'}) € Q{Z;, Vi1
which provide t-sparse representations of

9= Z;, iz U X —Y))

which is valid for every point ({Z;;,Y:}) € UD . The degrees of all produced
rational functions H(Sl), Cgl) do not exceed do(”2), the bit-size of the coefficients
of these rational functions can be bounded by (Md”Q)O(l) and the running time
of the algorithm is at most (Md”4)o(1).

Again when Z;;,Y; belong to R we could write down a polynomial system on
Z,Y with a less number of equations. For this purpose we need the following
Lemma 5. If g is a shifted t-sparse polynomial, then for any Zy,Yy such
that det Zy # 0 for at least one of XEO) = 1,...,no(”)20(t4), a polynomial
Wg(XEO),Xz, coy X0, Yo, Z0) € R[Xa, ..., Xy] does not vanish identically, pro-
vided that W, (X, Y0, Zy) € R[X] does not vanish identically.

Proof. Let for some Z(9 V(9 a polynomial g(Z(O)X + Y(O)) be t-sparse, i.e.

s=3 0 T (20 e -vo

1<i<n

where J = (j1,. .., jn) and the sum has at most ¢ items (by ((Z(®)~1(X =Y (O)),
we denote i-th coordinate of the vector (Z(O))_l(X — Y(O))). Then

(DX g)(X, Y0, Zo) = ZﬁJ [T (27 (20 P 251 (X =Yo)+Yo)-Y )l for 0 < K < 2t.
1<i<n

Thus W,y(X, Yy, Zy) is a polynomial in (2¢ 4+ 1)t products of the form like in
the latter expression and these products can be considered as the elements of a
Pfaffian chain. [Kh 91] entails (cf. also [GKS 93]) that the sum of Betti numbers



of the variety {W,(X, Yy, Zo) = 0} C R” is less than nO(m200t")  Agin particular
(n — 1)-th Betti number 5"~! < nO(m200") we conclude the statement of the
lemma (cf. [GKS 93]).

Thus, Y, Z satisfy the conditions of lemma4 if and only if det Z # 0 and
they satisfy the following nO(n*)90(nt*) equations.

WXV xO v zy=0, X9 X® e {1,... n0m200y

4 Zero-test for shifted sparse polynomials

Let g be shifted ¢-sparse polynomial. Then (see lemma5) for at least one of
XEO) =1,..., 0002 4 polynomialg(XEo),Xz, o Xpn) € Q[Xa, ..., X,] does
not vanish identically. Thus for zero-test one can compute g(XEO), .. .,Xr(lo)) for
nO(n*)0(nt?) points (XEO), e XT(LO)) e{l,..., no(”)QO(tQ)}”. Then g vanishes
identically if and only if all the results of computation vanish. Thus, the com-
plexity of zero-test does not depend on d.

Acknowledgement. The authors would like to thank C. Schnorr for initiat-
ing the question about the shifted sparse polynomials.
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