
A combining mechanism for parallel computers

Citation
Valiant, Leslie G. 1992. A combining mechanism for parallel computers. Harvard Computer
Science Group Technical Report TR-24-92.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506437

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506437
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20combining%20mechanism%20for%20parallel%20computers&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=466b2f0fa42147fd9e0921c849b906dc&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

A Combining Mechanism for Parallel

Computers

Leslie G. Valiant

TR-24-92

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

A Combining Mechanism for Parallel

Computers

�

Leslie G. Valiant

Aiken Computation Laboratory

Harvard University

Cambridge, MA 02138

Abstract

In a multiprocessor computer communication among the components may

be based either on a simple router, which delivers messages point-to-point like

a mail service, or on a more elaborate combining network that, in return for

a greater investment in hardware, can combine messages to the same address

prior to delivery. This paper describes a mechanism for recirculating messages

in a simple router so that the added functionality of a combining network,

for arbitrary access patterns, can be achieved by it with provable e�ciency.

The method brings together the messages with the same destination address in

more than one stage, and at a set of components that is determined by a hash

function and decreases in number at each stage.

�

This research was supported in part by a grant from the National Science Foundation, NSF-

CCR-89-02500.

1

1 Introduction

A general purpose parallel computer needs to have a mechanism for realizing concur-

rent memory accesses e�ciently. Several or all of possibly thousands of processors

may wish to read the same memory address at the same time. Alternatively, several

or all may wish to write a value into the same address, in which case some convention

needs to be adopted about the desired outcome. In either case, the requests will have

to converge from the various parts of the physical system to the one location.

If each request is sent directly to the component containing the relevant address,

then this component will require time to handle them proportional to the number

arriving there. In general, this becomes unacceptable if the number of processors p is

large. This overhead, potentially linear in p, can be overcome by implementing the

requests in more than one stage. In the �rst stage, for example, the requests to any

one ultimate destination will converge in groups at various intermediate components,

where each group is combined into a single request to be forwarded in the next stage.

In the last stage all extant requests to an address �nally converge to the chosen

location. Thus the requests can be viewed as owing from the leaves of a tree to the

root. In some instances, as when the concurrent requests implement a read statement,

a ow of information in the reverse direction, from the root to the leaves, needs to

follow. In these instances, whenever requests are combined at a component, the

sources of the requests in that stage are stored at that component, so that a complete

record of the structure of the tree is maintained. In a general pattern of requests,

accesses to several memory addresses may be present. In that case a combining tree

has to be maintained for each address.

What is the most e�cacious way of providing a multiprocessor computer with a

combining facility that is acceptably e�cient for the widest range of concurrent access

patterns? In this paper we shall describe one proposed solution, and provide some

analytic, experimental and, also, qualitative arguments in its favor.

In [14] we proposed the bulk-synchronous parallel (BSP) model of parallel compu-

tation in which the basic medium of inter-processor communication is a router, that

delivers messages among the components point-to-point, but performs no combining

or other computational operations itself. In this context a router means any device

that can deliver a set of messages. It may be, for example, an optical device that

transmits messages physically point-to-point. It was shown that shared memory with

arbitrary concurrent accesses could be simulated on a p-processor BSP machine with

only constant loss in e�ciency asymptotically, if the simulated program had p

1+"

fold

parallelism for some positive constant ". One important advantage of having as the

communication medium this simplest option of being merely a message transmitter,

is that it makes possible a competition for the highest throughput router among the

widest possible range of technologies. In contrast, a medium that is required to per-

form more complex operations, such as combining (e.g. [4], [12], [13]) imposes more

constraints on the technology. The crucial question is whether the extra capabilities

of more complex hardware can be simulated in practice on the simple router, with

acceptable loss of e�ciency.

In this paper we lend support to the position that simple routers can indeed

2

implement concurrent accesses e�ciently, by describing an algorithm for this that

is apparently more e�cient and practical than previous solutions [8], [15]. We give

analytic results that show that p

1+1=m

requests to p units, with an arbitrary pattern of

combining, can be realized in timemp

1=m

asymptotically as p!1. A certain natural

charging policy is used here for measuring time, and only the minimal assumptions

are made on the uniformity of the requests among the components. Perhaps more

signi�cantly, the algorithm is of the form of a simple natural heuristic. Experiments

suggest, for example, that for p = 4096 and with each processor making 32 requests,

the cost of realizing arbitrary concurrency patterns as compared with patterns with

no concurrency, is no more than a factor of about 3.5, even if nothing is known about

the pattern. If the degree of concurrency is known then this factor can be made

smaller.

We conclude that, when building a parallel computer, it may be e�cacious to

invest the bulk of the resources to be used for communication, in a simple router

having maximal throughput. Although every general purpose parallel machine needs

to have mechanisms for implementing arbitrary patterns of concurrent accesses, if, as

it appears, di�cult access patterns occur rarely enough, then our proposed mechanism

for dealing with them is e�cient enough that substantial investments in combining

networks are not warranted.

2 Multi-Phase Combining

We consider a system consisting of p components, each of which has some memory

and processing capabilities. A (q,r)-pattern among the p components is a set of

communication requests in which each component sends at most q requests, each

request has a destination that is a memory address in a particular component, and at

most r requests are addressed to any one component. In this paper we shall charge

maxfq; rg units for executing directly a (q; r)-pattern on a router (as in the variant

of the BSP model considered in [2].) This charging policy is intended to capture the

basic idea that the requests made by any one component are processed sequentially

as they are injected into the router, as are the requests arriving via the router at any

one component. Thus q and r de�ne the maximum cost of these two processes over

all the components. Taking maxfq; rg to be proportional to the overall time taken

by the router is justi�ed if the router has low latency, or if its latency is hidden by

pipelining and its message load is high enough.

Distinct components contain disjoint sets of memory addresses. Several requests

may share the same address (and therefore by implication also the same component.)

We call the set of requests sharing the same address a group. The degree of a re-

quest is the number of elements in its group, and the degree of the pattern is the

maximum degree of its elements. Thus if the pattern consists of n groups, of re-

spective sizes d

1

; � � � ; d

n

and destinations t

1

; � � � ; t

n

; then the degree of the pattern is

d = maxfd

1

; � � � ; d

n

g:

The proposed multi-phase combining algorithm implements patterns of high degree

by decomposing them into a sequence of patterns of low degree. At the end of

3

each phase, the requests having the same destination address that arrive at each

component, are combined so that they can be transmitted as a single request in the

phase to follow. For example, if every processor wishes to read the same word in

memory then the requests form a (1; p)-pattern consisting of a single group, and has

degree p. If implemented directly our charging policy would charge it p units of time.

It can be decomposed, however, into a sequence of two (1;

p

p)�patterns, each costing

p

p units. The �rst allows each of

p

p sets of

p

p requests to converge to a separate

component. Each of these components combines the

p

p messages arriving, into one

message, that is charged as one unit when it is sent on in the second phase. This

second phase sends the

p

p requests, that are so formed from the original p request,

to their common destination. This decomposition into two phases, therefore, reduces

the total charge from p to 2

p

p units. This example illustrates the software combining

tree method proposed by Yew et al. [16] for dealing with a single hotspot.

For simplicity we shall assume that any two requests to the same destination

address are combinable. This is true if, for example, we are executing at any one

time either read or write statements, but not both. Our algorithm and analysis can

be easily extended to cases in which more than one species of request cohabit.

We shall now describe our multi-phase algorithm for implementing arbitrary pat-

terns on a simple router e�ciently. For concreteness we shall describe the two in-

stances that we analyzed, one of which we implemented. Many variants with compa-

rable performance are possible and we shall discuss some of these in Section 5.

The algorithm has a basis sequence (b

1

; :::; b

m

) of integers such that �

m

i=1

b

i

= p.

We also give analytic results that show for two variants of the algorithm. Sup-

pose the space of possible addresses is denoted by M and that the components are

numbered f0; :::; p � 1g. Suppose also that fh

1

; :::; h

m

g are hash functions where

h

i

:M ! f0; :::; b

1

� � � b

i

� 1g and fk

1

; :::; k

m�1

g are random functions where k

i

: �!

f0; :::; b

i+1

� � � b

m

� 1g. The important distinction is that for each pattern the hash

functions h

i

are chosen once, randomly from certain sets of hash functions, while

the random functions k

i

have values that are independently chosen randomly at each

invocation, and do not depend on any argument. The i

th

phase of the algorithm will

at each component combine into one all the requests it has to any one destination

t

j

and send it to component h

i

(t

j

)b

i+1

� � � b

m

+ k

i

. Note again that the requests to

the same t

j

will have the same value of h

i

(t

j

), but will have k

i

chosen randomly and

independently for each of them at each component. It can be easily veri�ed that,

after i phases, among the requests destined for any t

j

, sets of up to b

1

� � � b

i

may

have been combined into one. Also, if i < m, the resulting requests have been scat-

tered randomly over b

i+1

� � � b

m

components, whose identities are determined by the

hash function h

i

. In particular after the last phase the request destined for t

j

has

been delivered to the hashed address h

m

(t

j

). It turns out that the most promising

mechanisms known for simulating a shared memory (PRAM) or BSP model on multi-

processor machines use a hashed address space (e.g. [14], [15]). Hence the algorithm

as described implements hashing exactly as required in that context. As noted in

Section 5, however, the algorithm can be adapted easily to deliver to physical rather

than to hashed addresses.

An alternative algorithm with similar properties is obtained by replacing the ran-

4

dom function k

i

in the above by the deterministic function k

�

i

: f0; � � � ; p � 1g !

f0; � � � ; b

i+1

� � � b

m

�1g de�ned as k

�

i

(s) = s mod b

i+1

� � � b

m

, and in the i

th

phase send-

ing a request originating at component s and destined for address t

j

to component

h

i

(t

j

)b

i+1

� � � b

m

+ k

�

j

(s). This requires no randomization beyond the hash functions

h

i

, but evens out the load among the processors more slowly if the spread of the

original requests is uneven.

As an illustration of these two versions of the algorithm, consider the following

example consisting of 3 phases and having basis sequence (8,8,8), and, therefore,

applying to the case p = 512. We represent the components as nine-bit binary

numbers. The hash functions h

1

; h

2

and h

3

applied to a destination address t take

on values that are sequences of 3, 6 and 9 bits respectively. The packets destined

for address t, that could initially start from all of the 8

3

= 512 processors, will be

directed to addresses having a common value of h

1

(t) in their �rst three bits. Hence

these packets will have converged to at most 8

2

= 64 processors after the �rst phase.

The importance of having these 64 processors determined by a hash function, that

treats distinct destination addresses as independently as possible, is that it prevents

packets going to distinct addresses from creating hotspots. There remains the separate

problem that the packets going to the one destination t must be spread su�ciently

uniformly among these 64 processors that they do not create hotspots themselves. Our

�rst solution is to spread them out by determining the last six bits in their addresses

randomly and independently of each other, using a random function k

1

. The second

solution is to have as these last six bits the corresponding six bits of the source of

the request. The latter is an attractive option for implementation in combination,

for example, with h

1

(h) and h

2

(t) being pre�xes of h

3

(t). The performance of the

former solution is, however, independent of the source addresses. It is, therefore,

the more appropriate for deriving experimental results that generalize. In either case

the behavior of the second phase of the algorithm is similar to the �rst. The �nal

phase brings all the packets destined for address t to processor h

3

(t). The e�ect of

the overall algorithm is, therefore, to bring together the requests destined for one

address in a tree of depth three, where the nodes have approximately equal degree

and the processors that simulate them are chosen by a hash function in order to avoid

hotspots.

3 Asymptotic Analysis

We shall establish the following property of the multi-phase algorithm, that holds

asymptotically as the number of processors p!1, for all patterns of all degrees.

Theorem For any constant " > 0, any integer m � 1 + b"

�1

c, and any constant

� > 0, there is an m-phase algorithm that can realize any (q; r)-pattern with q � p

"

in a number of steps that exceeds (1 + �)mp

"

with probability less than e

�
(p

"�1=m

)

:

The result assumes that the address space is hashed, as previously described, and

for that reason does not depend on r. Also, the proof assumes that when choosing

5

the hash functions, we are choosing from a set of functions that allow the chosen

one to behave randomly and independently for the various arguments at which it is

evaluated.

The result as stated improves on the constant multiplier in the runtime of the

best previously known method based on integer sorting [8], [15]. In particular the

experimental results show that small values of � can be attained with probability

close to unity.

We shall use the following bound on the tail of the sum of independent random

variables given in [9] and [10], and also derivable from [11].

Lemma If �

1

; � � � ; �

n

are independent random variables each taking values in the

range [0; 1] such that the expectation of their sum is E, then for any � > 0,

Prob

n

X

i=1

�

i

� (1 + �)E

!

�

e

�

(1 + �)

1+�

!

E

:

Proof of Theorem

In the analysis we shall assume, for simplicity, that b = p

1=m

is an integer so

that we can choose as basis sequence (b

1

; � � � ; b

m

) where b

1

= b

2

= � � � = b

m

= b.

Otherwise the b

i

would be chosen so as to di�er by at most one from each other. We

consider how the algorithm behaves on an arbitrary (q,r)-pattern with q � p

"

, and

with n destination addresses t

1

; � � � ; t

n

and degrees d

1

; � � � ; d

n

, respectively. If we let

v =

P

n

i=1

d

i

then clearly v � qp � p

1+"

.

At the start of phase i the j

th

group of requests, namely those destined for t

j

, will

have been combined into at most

minfd

j

; p=b

i�1

g

requests, since these number at most d

j

at the start, and have converged to at most

p=b

i�1

processors by this time. For i > 1 they will be distributed randomly among

the p=b

i�1

components numbered h

i�1

(t

j

)b

m�i+1

+ x for 0 � x < b

m�i+1

.

Now consider some �xed component numbered yb

m�i

+ z where 0 � y < b

i

and

0 � z < b

m�i

. Let �

j

be the number of requests with destination t

j

arriving at this

component at the end of phase i. Then

Prob(�

j

� u) � Prob(h

i

(t

j

) = y) �B(minfd

j

; p=b

i�1

g; b

i

=p; u) � (1)

where B(w;P; u) denotes the probability that in w independent Bernoulli trials, each

with probability P of success, there are at least u successes. The �rst term gives the

probability that the randomly chosen hash function h

i

maps t

j

to y, and equals b

�i

clearly. The second bounds the probability that at least u of the requests are mapped

by the invocations of the random function k

i

, to the chosen value of z, and, by the

Lemma above, can be upper bounded by

e

�

(1 + �)

1+�

!

b

� e

�
(p

1=m

)

� (2)

6

if u = (1 + �)b and � > 0, since the mean is at most (p=b

i�1

)(b

i

=p) = b.

We shall now de�ne new random variables �

1

; � � � ; �

n

where

�

j

=

(

�

j

=((1 + �)b) if �

j

� (1 + �)b;

1 otherwise:

These satisfy the condition of the Lemma that 0 � �

j

� 1, and model the behavior

of �

1

; � � � ; �

n

exactly, except for the range �

j

� (1 + �)b, which is a very rare event by

virtue of (2). Since, by (1), the expected value of �

j

is at most b

�i

�minfd

j

; p=b

i�1

g �

b

i

=p, it follows from the de�nition of �

j

that the sum of the expectations of �

1

; � � � ; �

n

is

E �

1

(1 + �)b

n

X

j=1

d

j

p

�

p

1+"

(1 + �)bp

�

p

"�1=m

(1 + �)

:

Applying the Lemma to �

1

; � � � ; �

n

, assumed here to be independent, then gives

that

Prob

0

@

n

X

j=1

�

j

� (1 + �) �

p

"�1=m

(1 + �)

1

A

�

e

�

(1 + �)

1+�

!

p

"�1=m

=(1+�)

� e

�
(p

"�1=m

)

� (3)

if � > 0. But, by the de�nition of �

j

, the lefthand side is

Prob

0

@

n

X

j=1

�

j

� (1 + �)p

"

1

A

�

n

P

j = 1

�

j

�(4)

where �

j

is less than the probability that �

j

exceeds (1 + �)b; which by relations (1)

and (2) is at most e

�
(p

1=m

)

: This is derived by partitioning the event referred to in

the �rst term of (4) into two events according to whether or not �

j

� (1 + �)b for

every j. Hence we deduce from (3) and (4) that the probability that the number of

requests

P

n

j=1

�

j

arriving at the chosen node at the end of phase i exceeds (1 + �)p

"

is still e

�
(p

"�1=m

)

, since the n � p

1+"

choices of �

j

contribute only a lower order term

in the exponent.

As there are p components and m phases, the probability that this charge is

exceeded anywhere in the run is therefore pm times this same quantity, which is also

e

�
(p

"�1=m

)

. Hence the result claimed in the Theorem follows.

For completeness we now prove the same result for the alternative algorithm in

which in phase i any request originating at component s and destined for address

t

j

is sent to h

i

(t

j

)b

m�i

+ k

�

i

(s) where k

�

i

(s) = s mod b

m�i

. Here at the start of

7

phase i the group of requests destined for t

j

will have been combined into again at

most minfd

j

; b

m�i+1

g requests, which are distributed among the b

m�i+1

components

numbered h

i�1

(t

j

)b

m�i+1

+x for 0 � x � b

m�i+1

. For any �xed component numbered

yb

m�i

+ z where 0 � y < b

i

and 0 � z < b

m�i

de�ne �

j

to be the number of

requests with destination t

j

arriving at this component at the end of phase i. Let

X

j

be the number of requests at the start of phase i destined for t

j

from addresses

with k

�

i

(s) = z. Then clearly X

j

� b, and

P

X

j

� p

"

b

i

since only the b

i

source

components that coincide with z in the last bits contribute. Also �

j

= X

j

with

probability b

�i

(i.e. if h

i

(t

j

) = y) and �

j

= 0 otherwise. If we de�ne �

j

= �

j

=b, so

that 0 � �

j

� 1, then the sum of the expectations of �

j

is

E � b

�i�1

n

X

j=1

X

j

� b

�i�1

p

"

b

i

� p

"�1=m

:

The result then follows from the Lemma as before.

4 Experimental Results

The multi-phase combining algorithm with the k

i

chosen to be random functions

was implemented as follows. In the basis sequence we used only powers of 2 (i.e.

b

i

= 2

a

i

for integers a

i

; 1 � i � m). We used a pseudo-random number generator to

generate new values of the functions k

i

at each invocation. We also used a pseudo-

random number generator to generate for each pattern the set of values fh

i

(t

j

) j 1 �

i � m; 1 � j � ng. In particular we had the binary representation of h

i

(t

j

) to be

the pre�x of the binary representation of h

i+1

(t

j

), so that only a

i+1

random new bits

were chosen when determining the latter.

We ran experiments for the case p = 2

12

and v =

P

n

j=1

d

j

= 2

12

. We implemented

(q,r)-patterns with q = 32, but with degrees varying from 2

12

down to 1. Thus

typically we had n = 2

17

=d groups each of degree d, for d = 2

12

; 2

11

; � � � ; 2

0

. The

reported results are all averages over 500 runs.

At one extreme we had 2

17

groups of degree one and therefore no combining

was required. The patterns were (32,r)-patterns where r depended on the maximum

number of requests that the hashed address space placed into one component. The

average value of r was determined experimentally to be 54:4. This is just the expected

number of objects in the bucket having the most objects, if 2

17

objects are placed

randomly into 2

12

buckets. Since this is the baseline performance of a pure router

with a hashed address space, we computed the runtime of all our experiments as

multiples of this basic unit, and call this multiple the performance factor.

At the other extreme we had 32 groups of degree 2

12

, which corresponds to each

of the components sending requests to the same set of 32 addresses. This requires

the highest amount of combining.

We note that the m = 1 version of our algorithm (i.e. basis sequence (4096)), is

the solution proposed in [14] for patterns of low degree. From Table 1 we see that if

the degree is no more than the slack (i:e: v=p = 32) then the performance is indeed

quite good, the performance factor being no worse than 3.7. This factor improves

8

rapidly as d decreases. On the other hand, the degree is clearly a lower bound on

the runtime of the one-phase algorithm, and for d = 2

12

gives a performance factor

greater than 4096=54:4 > 75, which is unacceptable.

If the case d = 1 is implemented in several phases, then each phase performs

hashing with no combining and contributes a factor of about 1 to the overall runtime.

(The contribution is actually slightly more since we are charging max(q; r) rather

than r for a (q,r)-pattern and irregularities in the distribution at the start of a phase

contribute also.) This is also the case in early phases of the algorithm if d is small

enough that little combining is done in that phase. In phases where much combining is

done the performance factor can exceed one considerably. If the necessary combining

is achieved in early phases, however, later phases may execute very fast since only few

requests remain in the system. These phenomena can be discerned easily in Table 2,

where for various values of d we give basis sequences that achieved factors below 3.

We note that the motivation for the charging policy in the BSP model is that

some routers may achieve a satisfactory rate of throughput only when they have

enough work to do (i.e. q is high enough when implementing a (q,r)-pattern) in

one superstep. Hence the BSP model has a lower bound on the time for a super-

step, determined by some parameters. Where this lower bound is relevant, we may

give preference to basis-sequences that distribute the time cost evenly among the

phases. On the other hand there are circumstances, for example, when the phases

are implemented asynchronously as discussed below, when this issue does not arise.

Degree 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

Performance 82 53 35 20 13 8.1 5.3 3.7 2.6 1.9 1.5 1.2 1.0

Table 1. Performance factors for basis sequence (4096), i.e. one-phase, for various degrees

for p = 2

12

and v = 2

17

.

Degree Basis Sequence Phase 1 Phase 2 Phase 3 Phase 4 Performance

4096 (8,8,8,8) 1.51 .64 .37 .17 2.7

2048 (16,8,8,4) 1.60 .67 .38 .10 2.8

1024 (32,8,4,4) 1.71 .71 .26 .14 2.8

512 (32,8,4,4) 1.46 .92 .32 .16 2.8

256 (128,8,4) 1.84 .73 .20 2.8

128 (256,4,4) 1.90 .52 .25 2.7

64 (512,8) 1.95 .66 2.6

32 (1024,4) 1.98 .46 2.4

16 (1024,4) 1.58 .64 2.2

Table 2. Performance factors for various basis sequences for various degrees for p = 2

12

and

v = 2

17

. The factors are given separately for each phase, as well as in total.

9

Degree 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

(32,8,4,4) 3.4 3.0 2.8 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.1 4.1 4.1

(32,16,8) 3.4 3.1 3.0 3.1 3.3 3.3 3.3 3.4 3.4 3.4 3.3 3.2 3.0

Table 3. Performance factors for basis sequences (32,8,4,4) and (32,16,8) for various degrees

for p = 2

17

.

Tables 1 and 2 show that if we have information about the degrees of the patterns

then we can �nd a good basis sequence that brings the performance factor of our

algorithm below 3 in the whole range. If d � 8, then use of a single phase brings

this factor below 2. The only assumption here is that the requests all have the same

degree, which is the case we tested. If we have no knowledge about the degree of

concurrency, then, as Table 3 shows, the basis sequences (32; 8; 4; 4) and (32; 16; 8)

are good compromises and achieve performance factors of at most about 4 and 3.5

respectively throughout the whole range.

5 Variants of the Algorithm

The algorithm as described is \bulk-synchronized" in the sense that each phase has

to �nish before the next one starts. The correctness of the algorithm, however, does

not require this. As each request in a phase arrives at a component, a check can

be made to determine whether any other to the same address has been previously

received, and if none has then the request can be sent on immediately to the next

phase, without waiting for the previous phase to complete. Where it is permissible,

such an asynchronous implementation can only improve performance. The actual

performance in that case depends, however, on the order in which the router delivers

the requests. Asynchrony may be introduced also if the requests are transmitted

bit-serially.

The algorithm can be adapted to models of parallel computation other than the

simple router. One candidate is what is called the S

�

PRAM in [15] that has been

suggested as a model of various proposals for optical interconnects [1],[6]. Here at

each cycle any component can transmit a message to any other, but only those re-

ceive messages that have just one targeted at them in that cycle. The senders �nd

out immediately whether their transmission succeeded. Known general simulations

of the BSP on the S

�

PRAM with slack log p or slightly more are known [3], [15] and

these imply constant factor optimal implementations of our combining algorithm on

the S

�

PRAM. There are clearly several possibilities for more e�cient direct imple-

mentations also.

So far we have discussed versions of the algorithm that implement (q,r)-patterns

in a hashed address space. The performance has been independent of the value of

r because of the hashing. Suppose now that, we wish to send requests to physical

addresses as, for example, when implementing a \direct BSP algorithm " [2]. We

can clearly do this by sending the requests to hashed addresses �rst by the algorithm

described, and then in one extra phase sending them to the correct destinations.

10

This last phase will be a pattern of degree 1, from randomly distributed sources.

Also we can expect that the targets are distributed approximately uniformly among

the components, since that is the purpose of using a direct algorithm. Hence this

extra phase of the algorithm will run fast on the simple router. In particular, if the

added last phase is a (q

0

; r

0

)-pattern, and the previous one is a (q

00

; r

00

)-pattern then

clearly q

0

� r

00

. Also r

0

� r

�

where r

�

is the maximum number of distinct destination

addresses targeted in any component . Hence the cost maxfq

0

; r

0

g will be dominated

by r

00

, which is controlled by randomization, and by r

�

which is controlled by the

programmer.

As an alternative to adding an extra phase to our multi-phase combining algo-

rithm, we can also consider replacing its last phase by one that sends the requests

directly to the actual rather than the hashed addresses. This will be e�cient if

the number of requests destined for each physical component, is small enough. When

counting this number here, we have to allow for the multiplicity of each request group

as de�ned by its degree in the last phase of the basic algorithm.

When implementing this multi-phase algorithm, provision has to be made by

software or hardware or some combination, for storing at each phase the sources of

the converging requests, so that this trace can be used for any necessary reverse ow

of information. These provisions are also useful for implementing concurrent accesses

when the decomposition of the pattern into phases is handcrafted by a programmer.

This may be worthwhile for the sake of greater e�ciency, for patterns that have a

structure well-known to the programmer. Our algorithm, therefore, is also consistent

with such direct implementations of concurrent accesses.

Finally, we note that our combining mechanism can be used for applications other

than accesses. When requests are combined it is meaningful to perform almost any

operation on their contents that is commutative and associative. The method can be

used, for example, to �nd the sum, product, minimum, or Boolean disjunction over

arbitrary sets of elements simultaneously.

References

[1] R.J. Anderson and G.L. Miller. Optical communication for pointer based algo-

rithms. TR CRI-88-14, Computer Science Department, University of Southern

California, 1988.

[2] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-synchronous parallel algorithms.

Third Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer

Science, Vol 621, Springer-Verlag (1992) 1-18.

[3] M. Ger�eb-Graus and T. Tsantilas. E�cient optical communication in parallel

computers. Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, June

29-July 1, (1992) 41-48.

[4] A. Gottlieb et al. The NYUUltracomputer - Designing an MIMD shared-memory

parallel computer. IEEE Trans. on Computers, C-32:2, (1983) 175-189.

11

[5] A. Hartmann and S. Red�eld. Design sketches for optical crossbar switches in-

tended for large scale parallel processing applications. Optical Engineering, 29:3

(1989) 315-327.

[6] A. Karlin and E. Upfal. Parallel hashing { an e�cient implementation of shared

memory. Proc. 18th ACM Symp. on Theory of Computing (1986) 160-168.

[7] R.M. Karp and V. Ramachandran. A survey of algorithms for shared-memory

machines. In Handbook of Theoretical Computer Science, (J. van Leeuwen, ed.),

North Holland, Amsterdam, (1990) 869-941.

[8] C.P. Kruskal, L. Rudolph and M. Snir. A complexity theory of e�cient parallel

algorithms. Theor. Comp. Sci., 71 (1990) 95-132.

[9] N. Littlestone. Manuscript (1990).

[10] C. McDiarmid. On the method of bounded di�erences. Surveys in Combinatorics,

1989. J. Siemons (ed.) Lond. Math. Soc. Lecture Note Series 141 (1989) 148-188.

[11] P. Raghavan. Probabilistic construction of deterministic algorithms. Proc. 27th

IEEE Symp. on Foundations of Computer Science (1986) 10-18.

[12] A. Ranade. How to emulate shared memory. In Proc. 28th IEEE Symp. on Foun-

dation of Computer Science (1987) 185-194.

[13] H. Sullivan, T. Bashkow and D. Klappholtz. A large scale homogeneous fully dis-

tributed parallel machine. In Proc. 4th Symp. on Computer Architecture (1977)

105-124.

[14] L.G. Valiant. A bridging model for parallel computation. CACM 33 : 8 (1990)

103-111.

[15] L.G. Valiant. General purpose parallel architectures. In Handbook of Theoretical

Computer Science (J. van Leeuwen, ed.), North Holland, Amsterdam (1990)

944-971.

[16] P.-C. Yew, N.-F. Tzeng and D.H. Lawrie. Distributing hot-spot addressing in

large-scale multiprocessers. IEEE Trans. on Computers, Vol. C-36:4 (1987) 388-

395.

12

