
Massively Parallel Computing: Data distribution
and communication

Citation
Johnsson, S. Lennart. 1992. Massively Parallel Computing: Data distribution and
communication. Harvard Computer Science Group Technical Report TR-29-92.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506443

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506443
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Massively%20Parallel%20Computing:%20Data%20distribution%20and%20communication&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Massively Parallel Computing: Data

distribution and communication

S. Lennart Johnsson

TR-29-92

December 1992

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

This work has in part been supported by the Air Force O�ce of Scienti�c Research under

contract AFOSR-89-0382, and in part by NSF and DARPA under contract CCR-8908285.

To appear in Proceedings of the First International Heinz Nixdorf Symposium on Parallel

Architectures and their E�cient Use, Springer{Verlag, 1993.

Massively Parallel Computing:

Data distribution and communication

S. Lennart Johnsson

Division of Applied Sciences

Harvard University

Cambridge, MA 02138

and

Thinking Machines Corp.

johnsson@harvard.edu

Abstract

We discuss some techniques for preserving locality of reference in index spaces

when mapped to memory units in a distributed memory architecture. In particular,

we discuss the use of multidimensional address spaces instead of linearized address

spaces, partitioning of irregular grids, and placement of partitions among nodes.

We also discuss a set of communication primitives we have found very useful on

the Connection Machine systems in implementing scienti�c and engineering appli-

cations. We briey review some of the techniques used to fully utilize the bandwidth

of the binary cube network of the CM{2 and CM{200, and give some performance

data from implementations of communication primitives.

1 Introduction

Massively parallel computing systems today all have the memory distributed among the

processors. The processors with their memory modules and communication circuitry,

collectively referred to as nodes, are interconnected by a network of some type. Networks

currently in use include two{ and three{dimensional meshes, binary cubes, two levels of

rings, and fat{trees. Some systems are programmed as a shared memory machine, others

have a shared address space but are programmed in a single program multiple data mode,

while others still are programmed as a collection of local address spaces with message

passing libraries for data interchange and synchronization. Much of the motivation for

massively parallel architectures is their promise to deliver extreme performance. Locality

of reference and routing are key issues in accomplishing this goal. The mapping of the

index space to the memory units, the data allocation, determines the communication

need. Below we briey discuss some of the techniques we have employed for e�ective data

placement and routing on the Connection Machine systems [60, 61].

1

Many problems in science and engineering are solved using regular discretizations in two,

three, or more dimensions. Discretizing di�erential operators leads to di�erence stencils

forming a weighted sum of values at grid points in a local neighborhood. The size and

shape of the neighborhood is a function of the di�erential operator being approximated

by a discrete representation and the order of the approximation. Stencils in the solu-

tion of (partial) di�erential equations serve the same role as convolution kernels in signal

and image processing. Solving the resulting set of algebraic equations by an iterative

method, such as Jacobi and SOR with various coloring schemes [8, 20], or carrying out

the convolution through direct evaluation (as opposed to using Fourier transforms), re-

quires communication in a local neighborhood of each grid point as de�ned by the stencil

or convolution kernel (which may vary from grid point to grid point). The source of the

communication requirement in these methods is a matrix{vector multiplication. Other

methods, such as the conjugate gradient method, in addition, requires global communica-

tion in each step (through inner products). Hierarchical or divide{and{conquer methods,

such as the multigrid method and the fast multipole and related methods [2, 6, 21], require

communication over successively increasing (decreasing) distances in the index space. The

communication is also often represented as quad{trees (two spatial dimensions) or oct{

trees (three spatial dimensions). The Fast Fourier Transform also requires communication

over successively increasing (decreasing) distances, as represented by a buttery network.

Well{known algorithms such as Gaussian elimination and QR factorization require global

communication among (decreasing) subsets of nodes. Techniques for maximizing the size

of the subsets (for load balance) for as large a part of the computation as possible are

presented in [41, 42, 43].

Many problems in scienti�c and engineering computations yield solutions that cover a wide

range of scales in the spatial domain, the time domain, or in both. Multiscale problems

in the spatial domain are usually handled by nonuniform, and often unstructured, grids.

Multiple scales in the time domain are handled by dynamic grids. Thus, the e�cient han-

dling of arbitrary discretizations, for instance, of complex three{dimensional geometries

that may change over time is very important in many real scienti�c applications, such as

the computation of the airow around complete aircraft.

Matrix multiplication, using the standard algorithm requiring 2N

3

arithmetic operations,

is often used for evaluating compilers for conventional computers. It is a simple com-

putation that also is a good example for understanding some of the critical operations

on distributed memory architectures. Unlike the FFT, or relaxation methods, matrix

multiplication involves three operands that typically are of di�erent shapes. The relative

allocation of the indices from the di�erent operands has a profound impact on the per-

formance. We will discuss this issue in some detail; in particular, we will consider how

generic communication primitives may be employed.

The outline of this paper is as follows. We will �rst justify a simpli�ed model of the

memory hierarchy in massively parallel computer systems, then present some of the tech-

niques used on the Connection Machine systems to choose a suitable data allocation with

respect to the memory hierarchy and locality of reference. Then, we discuss some of the

communication primitives we have found useful in programming the Connection Machine

systems for performance and some of the techniques used to achieve high performance for

these primitives.

2

2 Locality of reference { packaging technology

It is well{known that exploiting locality of reference may enhance performance signi�-

cantly in many architectures. For vector architectures, such as the Cray YMP series, the

use of techniques such as loop unrolling may yield a performance enhancement by a factor

of two to �ve [11]. The experience on many cache{based architectures is that loop un-

rolling, loop partitioning and loop skewing may yield similar performance enhancements

[40]. The reason for these performance enhancements is the underlying memory hierarchy,

and the ability of the mentioned techniques to exploit this hierarchy.

The memory hierarchy in computer systems is largely determined by the storage and

packaging technologies used. The latter introduces bottlenecks in the system. Today, a

processor with a moderate size register set, oating{point arithmetic, and a small cache,

all �t on a single chip. The ability to move data on a chip is considerably higher than

the ability to communicate o� chip. Chip packages typically have a few hundred pins,

while there may be several thousand wire channels on each of a few layers on the chip.

Each channel across the chip may be shared by several wires on di�erent parts of the chip.

Thus, the data motion capacity on a chip may be two orders of magnitude higher than

the ability to move data between a chip and its environment. The situation is similar with

respect to printed circuit boards. The dimensions of wires, pins, and boards are larger,

but the ratio of on{board data motion capacity to o�{board capacity is similar.

Thus, one set of issues a designer faces in choosing an interconnection network is the

tradeo� between few but wide channels per node, or many narrow channels [9, 50]. The

communications bandwidth of nodes with few, wide channels is often relatively easy to

exploit, except that the associated network may exhibit severe contention for important

computations, as, for instance, in computing the FFT on a mesh of low dimension, in

particular a one{dimensional array. A higher dimensional array may support such com-

putations with signi�cantly less contention, but the capacity of each channel is less. The

mapping of high dimensional arrays to lower dimensional arrays was studied, for instance,

in [53]. Whichever design is preferable is a tradeo� between latency and bandwidth.

For �ne grain architectures, hardware techniques have been devised to create low latency

communication systems, such as in the Caltech Mosaic system [44, 15] and the MIT J-

machine [10]. In systems of coarser granularity, there is often su�cient excess parallelism,

or slack, to use pipelining and lookahead techniques to diminish the signi�cance of the

latency issue. We focus on data allocation for preservation of locality of reference, and

thus, reduced need for communications bandwidth, and the e�cient exploitation of the

communications bandwidth in high degree networks, such as large binary cubes, through

the use of multiple embeddings.

3 Data allocation

The data motion requirements, and the performance, depend strongly upon the data

allocation. The Connection Machine systems are programmed with a global address

space. Below, we �rst discuss the techniques used for allocating arrays used in matrix{

3

like computations, then we report on some early experiences with using a technique for

allocation of irregular grids.

3.1 Regular arrays

On the Connection Machine systems, each array is by default distributed as evenly as

possible over all nodes. In the default array allocation mode, the collection of nodes is

con�gured for each data array as a nodal array with the same number of axes as the data

array. The ordering of the axes is also the same. When there are more matrix elements

than nodes, consecutive elements along each data array axis (a block) are assigned to a

node. The ratios of the lengths of the axes of the nodal array are approximately equal to

the ratios between the lengths of the axes of the data array [62]. The lengths of the local

segments of all axes are approximately the same, and the number of o�{node references

minimized when references along the di�erent axes are equally frequent, i.e., the surface

area for a given volume is minimized. The default array layout is known as a canonical

layout.

The canonical layout minimizes the data to be sent or received by each node in LU and QR

factorization [43]. The canonical layout is also optimal with respect to communication for

the standard matrix multiplication algorithm parallelized with respect to two of the three

index axes [47]. The \standard" matrix multiplication algorithm in this context is the

familiar textbook algorithm requiring 2N

3

arithmetic operations for the multiplication

of two N � N matrices. The multiplication can be performed by keeping either one of

the three operands stationary. The communication requirements are minimized when the

matrix with the largest number of elements is stationary. The nodal array shape for two{

dimensional nodal arrays shall be congruent to the stationary matrix in order to minimize

the o�{node references [47]. In parallelizing the computations along all three axes, the

optimal nodal array shape is congruent to the shape of the index space [32], i.e., the index

space allocated to each node is as close to a cube as possible. For relaxation methods with

an equal number of references along the di�erent axes, the number of o�{node references

is minimized for a consecutive mapping [28] in which the lengths of the segments of the

di�erent axes mapped to a node are as equal in length as possible.

Remark 1: Note that the shape of the nodal array is important not only for commu-

nication operations but also for entirely local operations, since it e�ects strides and the

lengths of axes, which are important with respect to loop overhead, vector lengths, cache

hit ratios, and DRAM page faults. The arithmetic e�ciency may vary by a factor of two

or more.

Remark 2: Allocating contiguous segments of axes to a node, i.e., consecutive allocation,

is a preferred way of aggregating data with respect to communication for computations in

which nearest neighbor references dominate, such as in relaxation. In others, the consecu-

tive allocation may yield poor load balance due to computations being nonuniform across

the index space, or it may result in excessive communication. Thus, in the proposed High

Performance Fortran standard [16], cyclic and block{cyclic allocation are also supported.

In computations such as factorization and triangular system solution, the traversal of the

index space can be matched with the chosen method of aggregation, thus creating an

4

equal load balance for consecutive and cyclic allocation [27, 43]. But, for computations

where the order of traversal of the index space is �xed, such as the FFT, a cyclic allocation

may reduce the communication needs by a factor of two [37, 38, 58, 64].

For a number of important computations on regular arrays, the canonical layout indeed

minimizes the number of o�{node references for a given number of data elements per

node. However, when references along the di�erent axes are not uniform, other nodal

array shapes may result in a reduced number of o�{node references. On the Connection

Machine systems, the canonical layout can be altered through compiler directives. An

axis can be forced to be local to a node by the directive SERIAL, if there is su�cient local

memory. The length of the local segment of an axis can also be changed by assigning

weights to the axes. High weights are used for axes with frequent communication and

low weights for axes with infrequent communication. A relatively high weight for an axis

increases the length of the local segment of that axis at the expense of the lengths of the

segments of the other axes. The total size of the subarray is independent of the assignment

of weights for su�ciently large arrays. Only the shape of the subarray assigned to a node

changes.

In many computations, more than one array is involved and the relative allocations of the

arrays are often important. For instance, in solving a linear system of equations, there

are at least two arrays involved: the matrix to be factored and the set of right{hand

sides. The ALIGN compiler directive may be used to assure that di�erent data arrays

are assigned to nodes using the same nodal array shape for the allocation. Alignment

corresponds to a reshaping of the nodal array (compared to the canonical layout). The

associated data motion corresponds to a generalized shu�e operation.

3.2 Irregular grids

The consecutive, cyclic, and block{cyclic allocation schemes are easily evaluated and

implemented for computations with regular data reference patterns on one or multidi-

mensional arrays. For data structures corresponding to irregular grids, partitioning the

grid for preservation of locality of reference is a much more di�cult task. Partitioning

unstructured grids is still a very active area of research. On the Connection Machine

systems we have recently implemented the so called spectral decomposition technique

[12, 13, 14, 48, 54]. Fiedler showed that the second largest eigenvalue and the ordering of

the associated eigenvector can be used for partitioning of a mesh.

Johan [25, 26] has used this technique for �nite element computations on unstructured

meshes. As model problems, Johan used a planar triangular mesh between an outer

ellipse and an inner double ellipse and a nonplanar grid of tetrahedra between concentric

cylinders. The planar grid had 8,307 nodes, 16,231 triangles, and 24,537 edges. The

numbers of shared nodes and edges as a function of the number of partitions are given in

Table 1. The grid for the concentric spheres consisted of 20,374 nodes, 107,416 tetrahedra,

and 218,807 faces. Some of the data for the spectral decomposition of this mesh are

summarized in Table 2.

The spectral decomposition technique is now being applied to large{scale �nite element

meshes with a million to several million elements. The results will be reported elsewhere.

5

Number of Number of %of total Number of % of total

partitions shared edges shared nodes

8 188 0.8 195 2.4

16 381 1.6 396 4.8

32 752 3.1 773 9.3

64 1483 6.0 1479 17.8

128 2154 8.8 2101 25.3

Table 1: Partitioning of a planar mesh with inner boundary in the form of a double ellipse.

Number of Number of %of total Number of % of total

partitions shared edges %of total shared nodes

8 5186 2.4 2735 13.4

16 8005 3.7 4095 20.1

32 11553 5.3 5747 28.2

64 16055 7.3 7721 37.9

128 21502 9.8 9827 48.2

Table 2: Partitioning of a tetrahedral mesh between concentric spheres.

3.3 Allocation of partitions

The consecutive, cyclic, and block{cyclic allocation schemes [28] select subsets of data

elements to be assigned to the same node. Compiler directives, such as axis weight,

SERIAL and ALIGN, address the issue of choosing the nodal array shape.

Another data layout issue is the assignment of partitions to nodes. The network topology

and the data reference pattern are two important characteristics in this assignment. The

nodes of the Connection Machine system CM{200 are interconnected as a binary cube

with up to 11 dimensions. A binary cube network of n dimensions has 2

n

nodes. It is

well{known that regular grids are subgraphs of binary cubes and that binary{reected

Gray codes [52] generate embeddings of arrays into binary cube networks that preserve

adjacency [28]. The binary{reected Gray code is e�cient, both in preserving adjacency

and in node utilization, when the length of the axes of the data array is a power of two

[22]. For arbitrary data array axes' lengths, the Gray code may be combined with other

techniques to generate e�cient embeddings [7, 24].

The binary{reected Gray code embedding is the default embedding on the Connection

Machine system CM{200 and is enforced by the compiler directive NEWS for each axis.

The standard binary encoding of each axis is obtained through the compiler directive

SEND. The binary encoding may be preferable for computations which require that ele-

ments di�ering in a single bit be operated upon together, such as in the FFT. However,

in this particular case, the code conversion can be integrated into the algorithm at no

increase in the communication time [36].

6

For unstructured grids, �nding an optimal placement of the blocks is much less appar-

ent, even if data references are predominantly local in the physical grid as in explicit

methods for partial di�erential equations. Instead of attempting to preserve locality of

reference, minimizing the contention in the communication system through randomized

routing [65, 66] or randomized data allocation [49, 51] may be a viable strategy. In the

Connection Machine Scienti�c Software Library [63], CMSSL, we provide randomization

of the data allocation as an option, for instance, in sparse matrix{vector multiplication.

The e�ectiveness of a random allocation with respect to performance is evaluated on

gather/scatter operations discussed in Section 4.3.

3.4 Summary { data allocation

In summary, on the Connection Machine systems, consecutive data allocation is used by

the compilers to aggregate data for a node. In addition to the consecutive allocation, High

Performance Fortran will also support cyclic and block{cyclic allocation. The address

space is treated as a multidimensional address space with as many axes as there are

axes in the data array. The default shape of the local address space has local axes of

approximately equal lengths. A binary{reected Gray code encoding preserves adjacency

in the index space when mapped to the binary cube network of the CM{2 and CM{200.

The shape of the local address space can be controlled through compiler directives. Such

directives also allow for the choice of a binary axis encoding instead of the Gray code

encoding for the CM{2 and CM{200. The CM{5 only supports binary encoding [61].

The spectral decomposition technique is provided as a means of partitioning unstructured

grids for preservation of locality of reference for many computations on such grids. Ran-

domization of the data allocation is supported as a means of reducing the contention in

the communication system. Spectral decomposition and randomized allocation is o�ered

in the form of library routines in the CMSSL. Randomized routing is used on the CM{5.

4 Communication primitives

The following is a list of communication primitives that we have found important in the

programming of the Connection Machine systems.

� One{to{all reduction/copy

� All{to{all reduction/copy

� Gather/scatter

� One{to{all personalized communication

� All{to{all personalized communication

� Dimension(index) permutation

7

6 6 6 6

? ? ? ?

C

C

C

CW

C

C

C

CW

C

C

C

CW

C

C

C

CW

Figure 1: Broadcasting of a pivot row in LU decomposition.

� Generalized shu�e permutations

� Scan/parallel pre�x

� Lattice emulation

� Buttery emulation

� Data manipulator network emulation (PM2I network emulation)

� Pyramid network emulation

� Bit{inversion

� Index reversal (i N ��i)

Below we will discuss the need for some of the communication primitives above and the

techniques used to achieve high bandwidth utilization.

4.1 Broadcast

Broadcast and reduction from a single source to subsets of nodes, holding an entire row

or column, is critical for the e�ciency of computations such as LU and QR factorization.

In fact, many concurrent broadcast (and reduction) operations are desired in these com-

putations as illustrated in Figure 1. Whether or not these broadcast operations imply

communication that interfere, depends upon the network topology and how the index

space is mapped to the nodes. On a binary cube network, entire subcubes are often as-

signed to a data array axis. In such a case, the broadcasts within the di�erent columns

in the index space do not interfere with each other, and the concurrent broadcast opera-

tion degenerates to a number of broadcasts within disjoint subsets of nodes. However, in

other networks such a data mapping may not be feasible, and the simultaneous broadcast

from several sources to distinct subsets of nodes may require a more complex routing for

optimal bandwidth utilization.

Global broadcast and reduction is used, for instance, in the conjugate gradient method.

But, even for the conjugate gradient method, several simultaneous broadcast operations

8

-

d

0 5 10

6

Time (msec)

10

20

30

40

50

60

70

80

90

100

110

r

r

r

r

r

r

r

r

r

r

r

Figure 2: Time in msec for broadcast of 16k 32{bit data elements on Connection Machine

system CM{200 as a function of number of cube dimensions.

may be required, since for massively parallel machines it is quite common that many

computations of the same kind are performed concurrently, so called multiple instance

computation [31].

Using a binomial tree to broadcast M elements from a node to all other nodes requires a

time of nM with the communication restricted to one channel at a time, while the time is

proportional toM with concurrent communication on all channels of every node, all{port

communication. However, the lower bounds for the two cases are M and

M

n

, respectively

[33]. Thus, the binomial tree algorithm is nonoptimal by a factor of n in both cases.

Multiple spanning trees rooted at the same node can be used to create lower bound

algorithms [33]. The basic idea is: the source node splits its data set into

M

n

disjoint

subsets and sends each subset to a distinct neighbor. Then, each of these neighbor nodes

broadcasts the data set it received to all other nodes (except the original source node)

using spanning binomial trees. By a suitable construction of the trees, the n binomial

trees are edge disjoint, and the full bandwidth of the binary n{cube is used e�ectively.

The multiple spanning binomial tree algorithm is used for broadcasting on the Connection

Machine systems CM{2 and CM{200. The performance is illustrated in Figure 2 [29]. As

expected, the time to broadcast a given size data set decreases with the number of nodes

to which the set is broadcast.

4.2 All{to{all broadcast

Another important communication primitive is the simultaneous broadcast from each

node in a set to every other node in the set, all{to{all broadcast. This communication

is typical for so called direct N{body algorithms, but it is also required in many matrix

algorithms. Here we will illustrate its use in matrix{vector multiplication.

With the processing nodes con�gured as a two{dimensional nodal array for the matrix,

but as a one{dimensional nodal array for the vectors, both all{to{all broadcast and all{

to{all reduction are required in evaluating the matrix vector product. Figure 3 illustrates

the data allocation for both row major and column major ordering of the matrix. The

data allocation shown in Figure 3 is typical on Connection Machine systems.

9

Column Major

y yx xA A

7

6

5

4

3

2

1

0

=

1

0

3

2

5

4

7

6

�

7

6

5

4

3

2

1

0

Row Major

7

6

5

4

3

2

1

0

=

4

0

5

1

6

2

7

3

�

7

6

5

4

3

2

1

0

Figure 3: Data allocation on a rectangular nodal array.

For a matrix of shape P �Q allocated to a two{dimensional nodal array in column major

order, an all{to{all broadcast [18, 33, 55, 56] is required within the columns of the nodes

for any shape of the nodal array and for any length of the matrix Q{axis.

After the all{to{all broadcast, each node performs a local matrix{vector multiplication.

After this operation, each node contains a segment of the result vector y. The nodes

in a row contain partial contributions to the same segment of y, while di�erent rows of

nodes contain contributions to di�erent segments of y. No communication between rows

of nodes is required for the computation of y. Communication within the rows of the

nodes su�ces.

The di�erent segments of y can be computed by all{to{all reduction within processor rows,

resulting in a row major ordering of y. But, the node labeling is in column major order,

and a reordering from row to column major ordering is required in order to establish the

�nal allocation of y. Thus, for a columnmajor order of the matrix elements, matrix{vector

multiplication can be expressed as:

All{to{all broadcast of the input vector within columns of nodes

Local matrix{vector multiplication

All{to{all reduction within rows of nodes to accumulate

partial contributions to the result vector

Reordering of the result vector from row major to column major order.

All{to{all broadcast or reduction is required also when a one{dimensional nodal array

con�guration is used for the matrix [45].

In all{to{all broadcast, the lower bound for an n{cube where each node initially holds

M elements is M(N � 1) for communication restricted to a single port at a time and

M(N�1)

n

for all{port communication [33]. A simple yet optimal, all{port, algorithm for

all{to{all broadcast uses n Hamiltonian paths for each node. For all{to{all broadcast,

the Hamiltonian paths need not be edge{disjoint. Finding and constructing edge{disjoint

cycles is a complex problem [1].

A Hamiltonian cycle can be constructed by moving across cube dimensions according

to the transition sequence in a binary{reected Gray code. Translating such a cycle to

another source node by performing an exclusive{or operation on every node address by the

source node index, assuming the �rst cycle has node zero as its source, creates 2

n

= N

10

Problem Gather Scatter

std alloc. random alloc std alloc. random alloc

3200 20{node 75 50 124 55

brick elements

864 8{node 5.6 3.7 7.2 3.4

brick elements

Table 3: The e�ect of randomization on gather and scatter performance. Times in msec

on an 8k CM{200.

paths. These paths cannot be edge{disjoint. But, it can be shown, that for all{to{all

broadcast, there is no contention between data packets moving along the paths generated

by a binary{reected Gray code. Moreover, it can be shown that paths generated by

rotating the address bits in the Gray code can be used without contention [33], thus

providing n paths for each node. The initial data set M in each node is divided into n

packets of approximately equal size. Each subset is then exchanged with packets in all

neighboring nodes in each step. Figure 4 illustrates the idea. The use of n Hamiltonian

paths is only one of several routing schemes that yield the same complexity for all{to{all

broadcast [3, 17, 33, 55, 56]. The n Hamiltonian path algorithm has been implemented on

the Connection Machine systems [5, 45]. Figure 5 shows the performance of the CM{200

implementation.

4.3 Gather/Scatter

Gather and scatter operations on regular grid data represented as one or multidimensional

arrays, as well as irregular grid data, is critical for the performance of many scienti�c

and engineering applications. On the Connection Machine Systems, gather and scatter

operations on regular grids are supported through PSHIFT (for polyshift) [19, 63], which

allows the programmer to specify concurrent shift operations in one or both directions

of one or multiple axes. On the CM{2 and CM{200 with Gray coded axes, PSHIFT

concurrently performs all the data exchanges requiring communication between nodes.

In e�ect, PSHIFT provides an e�ective means of emulating lattices on binary cubes. A

further level of optimization is provided by the so called stencil compiler [4], which in

addition to maximizing the concurrency in internode communication (using PSHIFT),

avoids unnecessary local memory moves and uses a highly optimized register allocation

in order to minimize the number of load and store operations between local memory and

the register �le in the oating{point unit.

For gather and scatter operations on unstructured grid computations, the general router

on the Connection Machine systems is used. However, two means of improving the per-

formance is provided, one being randomization of the data allocation, and a second being

savings of the routing information for repetitive gather scatter operations. Table 3 [46]

summarizes the e�ect of randomization of the data allocation for a few meshes.

In these examples, the performance enhancement is a factor of 1.5 { 2.25, which in our

11

Allocation after step 3

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

4 5

0 1

6 7

2 3

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

-�

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

7 6

3 2

5 4

1 0

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

6 6

? ?

6 6

? ?

1 0

5 4

3 2

7 6

Allocation after step 2

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

0 1

4 5

2 3

6 7

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

6 6

? ?

6 6

? ?

6 7

2 3

4 5

0 1

p p p p p p p p p p�

�

��
�

�

�	 �

�

��
�

�

�	

p p p p p p p p p p

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

3 2

7 6

1 0

5 4

Allocation after step 1

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

6 6

? ?

6 6

? ?

1 0

5 4

3 2

7 6

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

4 5

0 1

6 7

2 3

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

7 6

3 2

5 4

1 0

Allocation after step 0

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

-�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

3 2

7 6

1 0

5 4

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p

6 6

? ?

6 6

? ?

0 1

4 5

2 3

6 7

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p p p p p p p p p p�

�

���

�

�	 �

�

���

�

�	

p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6 7

2 3

4 5

0 1

Sequence 0 Sequence 1 Sequence 2

Initial Allocation

�

�

�

�

�

�

�

�

�

�

�

�

2 3

6 7

0 1

4 5

�

�

�

�

�

�

�

�

�

�

�

�

2 3

6 7

0 1

4 5

�

�

�

�

�

�

�

�

�

�

�

�

2 3

6 7

0 1

4 5

Figure 4: Three concurrent exchange sequences in a 3-cube.

12

-

d

0 5 10

6

Time (sec)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

s

s

s
s

c

c

c

c

512k elements

2M elements

Figure 5: Time for physical all{to{all broadcast on a Connection Machine system CM{

200. Array sizes are 2M = 2

21

and 512K = 2

19

32{bit elements.

experience is fairly typical. In some cases, the performance improvement has been larger.

It is rarely the case that randomization has caused a performance degradation.

4.4 Personalized communication

In one{to{all personalized communication a node sends a unique piece of data to every

other node. An example is matrix computations where a node holds an entire column,

which may need to be redistributed evenly over all the nodes, as in some algorithms for

matrix{vector multiplication [45]. In all{to{all personalized communication, each node

sends unique information to all other nodes. Personalized communication is not limited

to matrix transposition but encompasses operations such as bit{reversal, transposition or

bit{reversal combined with a code change (such as the conversion between binary code

and binary{reected Gray code) and bit{inversion. We now illustrate the signi�cance of

personalized communication in computing the FFT on a multiprocessor.

In computing the FFT on distributed data, one possibility is to exchange data between

nodes, and have one of the nodes in a pair compute the \top" and the other compute

the \bottom" of the buttery requiring data from the two nodes. This type of algorithm

is currently used on the Connection Machine systems CM{2 and CM{200 [39]. When

there are two or more elements per node, then an alternative is to perform an exchange of

data between nodes such that each node in a pair computes one complete buttery. The

sequence of exchanges required for the FFT amounts to a shu�e, as illustrated below,

where the j separates node address bits to the left and local memory address bits to the

right:

Example 1.

Address Index

(54321j0) (54321j0) = (54321jx

0

)

(04321j5) (x

0

a

4

a

3

a

2

a

1

ja

5

)

(05321j4) (a

4

x

0

a

3

a

2

a

1

ja

5

)

13

(05421j3) (a

4

a

3

x

0

a

2

a

1

ja

5

)

(05431j2) (a

4

a

3

a

2

x

0

a

1

ja

5

)

(05432j1) (a

4

a

3

a

2

a

1

x

0

ja

5

)

(15432j0) (a

4

a

3

a

2

a

1

a

5

jx

0

)

Thus, the end result of the sequence of exchanges is a shu�e on the node address �eld.

Each step is equivalent to the transposition of a collection of 2� 2 matrices.

In practice, for a one{dimensional transform, there are typically several local memory

bits. For performance, under many models for the communication system, minimizing

the number of exchange steps is desirable, i.e., instead of performing bisections as in the

example above, it is desirable to perform multisections including all local memory bits.

Thus, for instance, with two local memory bits four{sectioning is being used as shown in

Example 1. With three local memory bits, eight{sectioning is used as shown in Example

3.

Example 2.

Address Index

(65432j10) (65432j10) = (65432j x

1

|{z}

j1

x

0

|{z}

j0

)

(10432j65) (x

1

x

0

| {z }

m

a

4

a

3

a

2

j a

6

a

5

| {z }

m

)

(10652j43) (a

4

a

3

| {z }

m

x

1

x

0

| {z }

m

| {z }

k�m

a

2

|{z}

n�k�m

j a

6

a

5

| {z }

)

(10654j23) (a

4

a

3

a

2

| {z }

n�m

x

0

|{z}

(k+1)m�n

| {z }

j0

x

1

|{z}

n�k�m

| {z }

j1

j a

6

a

5

| {z }

m

)

(23654j10) (a

4

a

3

a

2

| {z }

n�m

a

6

|{z}

(k+1)m�n

a

5

|{z}

n�k�m

jx

0

x

1

| {z }

m

)

(23654j10) (a

4

a

3

a

2

| {z }

n�m

a

6

|{z}

(k+1)m�n

a

5

|{z}

n�k�m

jx

1

x

0

| {z }

m

)

Example 3.

Address Index

(6543j210) (6543j210)

(2103j654) (x

2

x

1

x

0

| {z }

m

a

3

j a

6

a

5

a

4

| {z }

m

)

14

(2106j354) (a

3

|{z}

n�m

x

1

x

0

| {z }

(k+1)m�n

| {z }

j0

x

2

|{z}

n�k�m

| {z }

j1

j a

6

a

5

a

4

| {z }

m

)

(3546j210) (a

3

|{z}

n�m

a

6

a

5

| {z }

(k+1)m�n

a

4

|{z}

n�k�m

jx

1

x

0

x

2

| {z }

m

)

(3546j210) (a

3

|{z}

n�m

a

6

a

5

| {z }

(k+1)m�n

a

4

|{z}

n�k�m

jx

2

x

1

x

0

| {z }

m

)

Examples 2 and 3 were deliberately chosen such that the exchanges cannot simply be

treated as digit exchanges with increased radix for the digit but must indeed be treated

as exchanges with digits of di�erent radices. Moreover, the last few exchange steps were

made such that the �nal order represents an m{step shu�e on the nodal address bits,

where m is the number of bits used to encode the �rst exchange. This node address

ordering requires a local memory shu�e to restore the original local memory ordering. In

practice, it may, in fact, be preferable to avoid the local memory reordering by performing

the last exchange such that local memory is normally ordered, which would leave the node

addresses in an order corresponding to two shu�es: one m{step shu�e on all n node

address bits, one n mod m shu�e on the last m bits.

All the above illustrations are made for the case where the indices are encoded in a binary

code. With the part of the data index assigned to the node address �eld encoded, for

instance, in binary{reected Gray code, the actual communication pattern must account

for the fact that the buttery computations are made on bits in binary encoding, while

the data allocation uses Gray code. In [36] we show how the buttery emulation based

on multisectioning of Gray coded data on a binary cube can be performed in the same

time as if the data had been binary coded.

In multidimensional FFT, all of local memory should be considered in performing the

multisectioning. For details see [30].

The FFT example above makes use of a sequence of all{to{all personalized communica-

tions. Before briey discussing some algorithms for this type of communication in binary

cubes, we consider the communication required to restore the original index order for the

FFT. In the case of the FFT, the bits in the encoding of the output indices are computed

in reverse order. Thus, what is required to establish a normal index map in the frequency

domain is an unshu�e with bit{reversal. Figure 6 [30] shows a particular example.

The lower bounds for all{to{all personalized communication with M data elements per

node is

nMN

2

for communication restricted to a single port per node and

MN

2

for all{port

communication [33]. The corresponding bounds for one{to{all personalized communica-

tion are (N�1)M and (N�1)M=n, respectively. Balanced spanning trees [23] provide for

optimal one{to{all and all{to{all personalized communication in communication systems

allowing all{port communication. A balanced spanning tree has N=n nodes in each of the

n subtrees of the root. The use of n rotated spanning binomial trees rooted in each node

also yields the desired complexity. Algorithms for both one{to{all and all{to{all person-

alized communication are discussed in [33]. In our FFT example above, several all{to{all

personalized communications were performed in succession. In such a case, it may be of

interest to minimize the time elements are in transition from source to destination in or-

15

n� 2 n� 1

0 1

�

p� n

�3

p� n

�2

p� n

�1

� �

n� 3
n

n+ 1
� � p� 2 p� 1

? ?? ?

? ? ? ? ?

? ?

666

6

p� 1 p� 2
� �

n+ 1

n

n� 1 n� 2

n-3
� �

p� n

�1

p� n

�2

� �
1 0

Processor address Local memory address

Figure 6: Two step reordering after 4{section based radix{2 FFT. First step, bit{exchange

between nodes; second step, bit{exchange between local memory and node addresses.

p � 2n �m.

der to minimize pipeline delays, if the communication system allows successive all{to{all

personalized communications on di�erent nodal dimensions to be pipelined. Algorithms

with a minimal transition time are presented in [35].

Bit{reversal with an equal number of dimensions assigned to the node address �eld and the

local memory address �eld constitutes one form of all{to{all personalized communication.

The performance on various sizes of the CM{2 is shown in Figure 7 [29]. As expected, the

execution time is almost independent of the machine size for a �xed size data set MN .

The increase in the execution time is largely due to the fact that local memory operations

cannot be performed in parallel. Thus, there is a term proportional to n in addition to

the constant term.

4.5 Index reversal { bit{inversion

Index reversal is another important permutation used for instance in the computation of

real{to{complex FFT. For this computation the standard algorithm requires that data

with indices i and N�i, 0 � i < N , be operated upon in a preprocessing or postprocessing

step for the FFT [57, 59]. In binary{coded data, the index reversal required for the FFT

corresponds to a two's{complement subtraction (bit complement plus one).

However, in the case of the real{to{complex FFT on a one{dimensional array with binary{

coded data, the �rst step in one of the most common algorithms is to perform a complex{

to{complex FFT on the array viewed as a half{size, one{dimensional, array of complex

data points. The result is shown in Figure 8. The Figure also shows that the postprocess-

16

-

n

j j j j j j j j j j j

0 5 10

6

Time

N

(�sec)

�

�

�

�

�

�

�

�

10

20

30

40

50

60

70

80

r

r

r

r

r

r

b

b

b

b

b

b

2n elements per node

4n elements per node

Figure 7: All{to{all personalized communication on the Connection Machine.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0r 0i 8r 8i 4r 4i 12r 12i 2r 2i 10r 10i 6r 6i 14r 14i 1r 1i 9r 9i 5r 5i 13r 13i 3r 3i 11r 11i 7r 7i 15r 15i

-� -�

-�

-�

-�

-�

-�

Figure 8: Postprocessing for real{to{complex FFT. Bit{inversion in subcubes.

ing, matching indices i and N � i, corresponds to bit{inversion in subcubes of the form

00 : : : 01xx : : : x, with the inversion being performed on the bits denoted by x.

If there are more than one complex data point per node, then the communication re-

quirements depend upon how the indices are aggregated to the nodes. In consecutive

data allocation, the communication pattern between nodes remains the same. In a cyclic

data allocation, the communication for the �rst complex local memory location is as out-

lined above; the communication for the second and all subsequent complex local memory

locations is bit{complement on the entire node address.

Bit{inversion also occurs in the alignment of the operands in matrix{matrixmultiplication

on three{dimensional nodal array con�gurations. For details see [32].

Concurrent communication for bit{inversion on binary cubes is straightforward. For

instance, multiple exchange sequences starting in di�erent dimensions and progressing

through the dimensions in increasing (or decreasing) order cyclicly can be used.

17

5 Shu�e operations on binary cube networks

In considering FFT computations through the use of multisectioning, we noticed that

the e�ect on the original index space corresponds to a m{step shu�e, where m is the

number of bits encoding the �rst digit exchange. For the FFT computation the various

digit exchanges are interleaved with computation. Restoring the original index order

corresponds to an unshu�e (except for the FFT which in itself implements a bit{reversal).

Reshaping the nodal array for a given data array also represents a general shu�e operation.

For instance, changing the allocation

(

a

3

y

2

a

2

y

1

m

2

y

0

a

1

x

3

a

0

x

2

m

1

x

1

m

0

x

0

)

to the allocation

(

m

2

y

2

m

1

y

1

m

0

y

0

a

3

x

3

a

2

x

2

a

1

x

1

a

0

x

0

);

where x

i

and y

i

denote bits encoding an x{axis and y{axis respectively, and a

i

denotes

nodal address bits and m

i

local memory address bits, constitutes a generalized shu�e,

or dimension permutation. The dimension permutation is: a

3

 a

1

 m

1

 a

2

a

0

 m

0

 m

2

 a

3

. In this example, the reshaping resulted in a single cycle on the

dimensions. In general, the reshaping may result in several cycles, just as the m{step

shu�e in general can be decomposed into several cycles.

A shu�e can be implemented as a sequence of successive pairwise dimension exchanges

starting in any position. In a binary cube, such exchanges imply communication in two

cube dimensions for each step if both dimensions in an exchange are nodal address dimen-

sions. However, it is also possible to use a �xed memory dimension for each exchange. If

the �rst exchange is repeated as a last exchange, then the result is a shu�e on all bits but

the �xed exchange dimension. For a shu�e on n bits, the �rst alternative requires n� 1

exchanges while the last requires n+1 exchanges. Thus, at the expense of two additional

exchanges, each exchange only involves one nodal address dimension. In [34] we present

algorithms that are nonoptimal by at most two exchanges, regardless of the number of

cube dimensions in the shu�e and data elements per node. The idea for the algorithms

is to use multiple exchange sequences (embeddings), exploiting the fact that a shu�e can

be performed as a sequence of exchanges starting at any bit and proceeding in order of

decreasing dimensions cyclicly.

6 Summary

We have discussed some of the data allocation techniques used to preserve locality of ref-

erence on the Connection Machine systems, namely data aggregation, nodal array shape,

unstructured grid partitioning, and placement of partitions among the nodes. We have

also demonstrated the use of several communication primitives, discussed optimal imple-

mentations of these with respect to utilizing the communications bandwidth of binary

18

n{cubes, and given a few results from their implementation on the Connection Machine

systems CM{2 and CM{200. Scheduling the communications knowing the global com-

munication needs has resulted in signi�cant speedups for some communication patterns

on the CM{2 and CM{200. For PSHIFT, a speedup of up to a factor of four has been

observed, while for bit{reversal a speedup of close to two orders of magnitude has been

observed in extreme cases. The choice of nodal array shape has been observed to a�ect

the performance of matrix multiplication by more than one order of magnitude [47]. Ran-

domization of the data allocation typically yields a performance improvement by a factor

of 1.5 { 3 on the CM{2 and CM{200 for gather/scatter operations on irregular grids.

References

[1] B. Alspach, J.-C. Bermond, and D. Sotteau. Decomposition into cycles i: Hamilton

decompositions. In G. Hahn et. al., editor, Cycles and Graphs, pages 9{18. Kluwer

Academic Publishers, 1990.

[2] Christopher R. Anderson. An implementation of the fast multipole method without

multipoles. SIAM J. Sci. Stat. Comp., 13(4):923{947, July 1992.

[3] D. P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis. Optimal

communication algorithms for hypercubes. J. of Parallel and Distributed Computing,

11:263{275, 1991.

[4] M. Bromley, Steve Heller, Tim McNerny, and Guy Steele. Fortran at ten Gigaops:

The Connection Machine convolution compiler. In Proceedings of ACM SIGPLAN

1991 Conference on Programming Language Design and Implementation. ACMPress,

June 1991.

[5] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast with applications

on the Connection Machine. International Journal of Supercomputer Applications,

6(3):241{256, 1992.

[6] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for

particle simulations. SIAM J. of Scienti�c and Statistical Computations, 9(4):669{

686, July 1988.

[7] M.Y. Chan. Embedding of grids into optimal hypercubes. SIAM J. Computing,

20(5):834{864, 1991.

[8] G. Dahlquist,

�

A. Bj�orck, and N. Anderson. Numerical Methods. Series in Automatic

Computation. Prentice Hall, Inc., Englewood Cli�s, NJ, 1974.

[9] William J. Dally. A VLSI Architecture for Concurrent Data Structures. PhD thesis,

California Institute of Technology, 1986.

[10] William J. Dally. The J-Machine: A �ne{grain concurrent computer. In Proc. IFIP

Congress, pages 1147{1153. North-Holland, August 1989.

19

[11] Jack. J. Dongarra and Stanley C Eisenstat. Squeezing the most out of an algorithm

in Cray Fortran. ACM Trans. Math. Softw., 10(3):219{230, 1984.

[12] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,

23:298{305, 1973.

[13] M. Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Mathematical Journal,

25:607{618, 1975.

[14] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its

application to graph theory. Czechoslovak Mathematical Journal, 25:619{633, 1975.

[15] Charles M. Flaig and Charles L Seitz. Inter{computer message routing system with

each computer having separate routing automata for each dimension of the netwrok,

1988. U.S. Patent 5,105,424.

[16] High Performance Fortran Forum. High performance fortran language speci�cation,

version 0.4. Technical report, Department of Computer Science, Rice University,

November 1992.

[17] Geo�rey C. Fox and Wojtek Furmanski. Optimal communication algorithms on the

hypercube. Technical Report CCCP-314, California Institute of Technology, July

1986.

[18] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and DavidW.Walker. Solving Problems on Concurrent Processors. Prentice-

Hall, 1988.

[19] William George, Ralph G. Brickner, and S. Lennart Johnsson. Polyshift communi-

cations software for the Connection Machine systems CM{2 and CM{200. Scienti�c

Programming, 3(1):83{99, Spring 1994.

[20] Gene Golub and Charles vanLoan. Matrix Computations. The Johns Hopkins Uni-

versity Press, 1985.

[21] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.

Journal of Computational Physics, 73:325{348, 1987.

[22] I. Havel and J. M�oravek. B-valuations of graphs. Czech. Math. J., 22:338{351, 1972.

[23] Ching-Tien Ho and S. Lennart Johnsson. Spanning balanced trees in Boolean cubes.

SIAM Journal on Sci. Stat. Comp, 10(4):607{630, July 1989.

[24] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by

graph decomposition. J. of Parallel and Distributed Computing, 8(4):325{339, April

1990.

[25] Zdenek Johan. Data Parallel Finite Element Techniques for Large{Scale Computa-

tional Fluid Dynamics. PhD thesis, Department of Mechanical Engineering, Stanford

University, 1992.

20

[26] Zdenek Johan and Thomas J. R. Hughes. An e�cient implementation of the spectral

partitioning algorithm on the connection machine systems. In International Confer-

ence on Computer Science and Control. INRIA, 1992.

[27] S. Lennart Johnsson. Dense matrix operations on a torus and a Boolean cube. In

The National Computer Conference, July 1985.

[28] S. Lennart Johnsson. Communication e�cient basic linear algebra computations

on hypercube architectures. J. Parallel Distributed Computing, 4(2):133{172, April

1987.

[29] S. Lennart Johnsson. Performance modeling of distributed memory architectures. J.

Parallel and Distributed Computing, 12(4):300{312, August 1991.

[30] S. Lennart Johnsson. Data ordering in multisection FFT. Technical report, Thinking

Machines Corp., 1992. In preparation.

[31] S. Lennart Johnsson. Compilation Techniques for Novel Architectures, chapter Lan-

guage and Compiler Issues in Scalable High Performance Libraries. Springer Verlag,

1993. Harvard University Technical Report TR-18-92.

[32] S. Lennart Johnsson. Minimizing the communication time for matrix multiplication

on multiprocessors. Parallel Computing, 19(11):1235{1257, 1993.

[33] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broad-

casting and personalized communication in hypercubes. IEEE Trans. Computers,

38(9):1249{1268, September 1989.

[34] S. Lennart Johnsson and Ching-Tien Ho. Generalized shu�e permutations on

Boolean cubes. J. Parallel and Distributed Computing, 16(1):1{14, 1992.

[35] S. Lennart Johnsson and Ching-Tien Ho. Optimal communication channel utilization

for matrix transposition and related permutations on Boolean cubes. Discrete Applied

Mathematics, 1992.

[36] S. Lennart Johnsson and Ching-Tien Ho. Boolean cube emulation of buttery

networks encoded by Gray code. Journal of Parallel and Distributed Computing,

20(3):261{279, 1994. Department of Computer Science, Yale University, Technical

Report, YALEU/DCS/RR-764, February, 1990.

[37] S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin, and Alan Ruttenberg. Com-

puting fast Fourier transforms on Boolean cubes and related networks. In Advanced

Algorithms and Architectures for Signal Processing II, volume 826, pages 223{231.

Society of Photo-Optical Instrumentation Engineers, 1987.

[38] S. Lennart Johnsson, Michel Jacquemin, and Robert L. Krawitz. Communication

e�cient multi-processor FFT. Journal of Computational Physics, 102(2):381{397,

October 1992.

[39] S. Lennart Johnsson and Robert L. Krawitz. Cooley-Tukey FFT on the Connection

Machine. Parallel Computing, 18(11):1201{1221, 1992.

21

[40] Monica S. Lam, Edward E. Rothenberg, and Michael E. Wolf. The cache performance

and optimizations of blocked algorithms. In The Sixth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 63{

74. ACM Press, 1991.

[41] Guangye Li and Thomas F. Coleman. A parallel triangular solver for a distributed

memory multiprocessor. SIAM J. Sci. Statist. Comput., 9(3):485{502, 1988.

[42] Guangye Li and Thomas F. Coleman. A new method for solving triangular sys-

tems on a distributed memory message-passing multiprocessor. SIAM J. Sci. Statist.

Comput., 10(2):382{396, 1989.

[43] Woody Lichtenstein and S. Lennart Johnsson. Block cyclic dense linear algebra.

SIAM Journal of Scienti�c Computing, 14(6):1257{1286, 1993.

[44] Christo�er Lutz, Steve Rabin, Charles L. Seitz, and Donald Speck. Design of the

mosaic element. In Proceedings, Conf. on Advanced research in VLSI, pages 1{10.

Artech House, 1984.

[45] Kapil K. Mathur and S. Lennart Johnsson. All{to{all communication. Technical

Report 243, Thinking Machines Corp., December 1992.

[46] Kapil K. Mathur and S. Lennart Johnsson. Communication primitives for unstruc-

tured �nite element simulations on data parallel architectures. Computing Systems

in Engineering, 3(1 { 4):63{72, December 1992.

[47] Kapil K. Mathur and S. Lennart Johnsson. Multiplication of matrices of arbitrary

shape on a Data Parallel Computer. Parallel Computing, 20(7):919{951, July 1994.

[48] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430{452, 1990.

[49] Abhiram Ranade. How to emulate shared memory. In Proceedings of the 28th Annual

Symposium on the Foundations of Computer Science, pages 185{194. IEEE Computer

Society, October 1987.

[50] Abhiram Ranade and S. Lennart Johnsson. The communication e�ciency of meshes,

Boolean cubes, and cube connected cycles for wafer scale integration. In 1987 In-

ternational Conf. on Parallel Processing, pages 479{482. IEEE Computer Society,

1987.

[51] Abhiram G. Ranade, Sandeep N. Bhatt, and S. Lennart Johnsson. The Fluent

abstract machine. In Advanced Research in VLSI, Proceedings of the �fth MIT VLSI

Conference, pages 71{93. MIT Press, 1988.

[52] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

[53] Arnold L. Rosenberg. Preserving proximity in arrays. SIAM J. Computing, 4:443{

460, 1975.

22

[54] Horst D. Simon. Partitioning of unstructured problems for parallel processing. Com-

puting Systems in Engineering, 2:135{148, 1991.

[55] Quentin F. Stout and Bruce Wagar. Intensive hypercube communication I: pre-

arranged communication in link-bound machines. Technical Report CRL-TR-9-87,

Computing Research Lab., Univ. of Michigan, Ann Arbor, MI, 1987.

[56] Quentin F. Stout and Bruce Wagar. Passing messages in link-bound hypercubes. In

Michael T. Heath, editor, Hypercube Multiprocessors 1987. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1987.

[57] Paul N. Swarztrauber. Symmetric FFTs. Mathematics of Computation, 47(175):323{

346, July 1986.

[58] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197{210, 1987.

[59] Clive Temperton. On the FACR(l) algorithm for the discrete Poisson equation. J. of

Computational Physics, 34:314{329, 1980.

[60] Thinking Machines Corp. CM{200 Technical Summary, 1991.

[61] Thinking Machines Corp. CM{5 Technical Summary, 1991.

[62] Thinking Machines Corp. CM Fortran optimization notes: slicewise model, version

1.0, 1991.

[63] Thinking Machines Corp. CMSSL for CM Fortran, Version 3.1, 1993.

[64] Charles Tong and Paul N. Swarztrauber. Ordered Fast Fourier transforms on a ma-

sively parallel hypercube multiprocessor. Journal of Parallel and Distributed Com-

puting, 12(1):50{59, May 1991.

[65] Leslie Valiant. A scheme for fast parallel communication. SIAM Journal on Com-

puting, 11:350{361, 1982.

[66] Leslie Valiant and G.J. Brebner. Universal schemes for parallel communication. In

Proc. of the 13th ACM Symposium on the Theory of Computation, pages 263{277.

ACM, 1981.

23

