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Abstract. A growing concern for information systems (ISs) is their
quality, such as security, accuracy, user-friendliness and performance.
Although the quality of an IS is determined largely by the development
process, relatively little attention has been paid to the methodology for
achieving high quality. A recent proposal [32] takes a process-oriented ap-
proach to representing non-functional, or quality, requirements { NFRs)
as potentially conflicting or harmonious goals and using them during
the development of software systems. By treating security requirements
as a class of NFRs, this paper applies this process-oriented approach to
designing secure ISs. This involves identification and representation of
various types of security requirements (as goals), generic design knowl-
edge and goal interactions. This treatment allows reusing generic design
knowledge, detecting goal interactions, capturing and reasoning about
design rationale, and assessing the degree of goal achievement. Security
requirements serve as a class of criteria for selecting among design deci-
sions, and justify the overall design. This paper also describes a prototype
design tool, and illustrates it using a credit card system example.

1 Introduction

Information systems (ISs), such as credit card, health insurance and criminal
record systems, are becoming more and more central in our everyday life. A
growing concern for such systems is their gquality, such as security, accuracy,
user-friendliness and performance. The crucial role that non-functional or quality
requirements play in requirements engineering has been recognized, for example,
by the multi-national NATURE project [24].

One important, concern is information security [37], the protection of infor-
mation as an asset of an enterprise, just like money or other forms of property.
Leakage, damage or loss of information, which is resident either in computer
memory or in a medium such as paper, microfilm or communication line, could
lead to violations of privacy, financial loss or even loss of human life. For instance,
revealing credit ratings, medical history or criminal records could have serious
consequences for individuals, while destruction of computer equipment or net-
works could jeopardize the operation of an enterprise. Examples of information
security breaches have been reported widely in the literature [1, 34, 39, 37].
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Problem. Although the quality of an IS is determined largely by the development
process, relatively little attention has been paid to the methodology for achieving
high quality. In the past, developers relied mostly on their own intuition, without
much systematic help or guidance. A rational approach to designing a secure IS
is to consider design alternatives and their selection criteria, and then select
one that best fits the needs of the intended application domain, in the spirit of
rational design [42]. One way to take this approach is to provide a systematic
methodology and construct a design environment that offers tools and automated
assistance to the designer. To make the design process less ad hoc and more
formal, a systematic methodology needs to address the following issues:

1. How can the wide variety of well-known and lesser-known securily techniques
be made available to the designer through sysiematic search? A systematic
methodology facilitates the capture and reuse of design knowledge. Firstly,
design knowledge can guide disambiguating and choosing appropriate no-
tions of security from a rich, diversified set of security notions. For instance,
the designer can focus on the confidentiality aspects of run-time operations,
instead of addressing broader issues, such as availability and recovery. An
abstract security requirement can also be gradually refined into one or more
concrete ones. For instance, security concerns can be expressed along a spe-
cialization hierarchy [16]. More concretely, design knowledge can guide the
selection of specific security techniques and functions such as, authentica-
tion or access authorization (e.g., [45, 20, 21, 7]). A security function can
be carried out by many mechanisms and their variations, such as a pass-
word authentication mechanism, using personal knowledge, biometrics for
fingerprint-verification or voice-recognition, which test personal characteris-
tics. Control or deterrent measures [38] are also available, such as alarms,
encryption and physical-access-locks.

2. How can interactions among potentially conflicting or synergistic require-
menits be managed systematically? Deploying a technique for safeguarding
information security could have negative consequences for other NFRs. While
biometric authentication, for instance, may improve the security of a system,
it may conflict with the requirements of cost and user-friendliness. Audit-
ing could degrade system performance. Limiting access time may contravene
availability, timeliness and user-friendliness.

3. How can the nature of the relationships between design decistons be repre-
sented? How can the effect of each design decision be systematically evalu-
ated? Applying a technique affects other previous applications, with varying
degrees of impact. For instance, one technique may be more valuable than
another in a particular domain. One technique, which is good in one domain,
may not be as good in another, due to different types of risks involved.

4. How can securily requirements be systematically integrated into the design,
together with other types of NFRs? Without a systematic methodology, se-
curity requirements are often retrofitted late in the design process (e.g., how
to securely update an account), or pursued in parallel but separately from
functional design (e.g., how to update an account). These practices tend
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to result in systems which cannot be accredited, are more costly and less
trustworthy [4].

5. What drives design actions? What representational structures are appropri-
ate for systematically recording the results of such actions? Designing a large
IS demands taking numerous actions. Such actions range from searching for
design knowledge, selecting an appropriate technique, to adding and revis-
ing design decisions. Design steps, alternatives (both selected and discarded
ones) and decisions need to be cohesively captured.

Solution. A recent proposal [32] takes a process-oriented approach to represent-
ing non-functional, or quality, requirements (NFRs) as potentially conflicting
or harmonious goals and using them during the development of software sys-
tems. By treating security requirements as a class of NFRs, this paper applies
this process-oriented approach to designing secure ISs. This involves identifica-
tion and representation of various types of security requirements as goals, design
knowledge as generic methods, and goal interactions as generic correlation rules.
This treatment provides the following five benefits, thereby dealing with the
corresponding five issues above. 1) Methods allow capturing and reusing design
knowledge, including design rationale for making trade-offs explicit. 2) Corre-
lation rules represent synergistic or antagonistic interactions between goals and
are used in detecting actual interactions. 3) Link types express the degree of
interaction among goals and goal relationships, and a labelling procedure as-
sesses the degree of goal achievement. 4) Security requirements serve as a class
of criteria for selecting among design decisions, and justify the overall design,
thereby becoming an integral part of the design process. 5) Driving the design
process, security goals are recorded in a structured manner into a goal graph
structure, in the spirit of AND/OR trees [35]. Since design decisions usually
contribute either positively or negatively and only partially towards a particular
goal, security goals, along with other types of NFR goals, can rarely be said to
be “accomplished” or “satisfied” in a clearcut sense. Accordingly, the term goal
satisficing [42]! is intended to suggest that generated software is expected to sat-
isfy NFRs within acceptable limits, rather than absolutely. This notion captures,
for instance, the point that the risk of security breaches can only be limited in
magnitude, reduced in likelihood and made detectable, but not removed [30].
Security assurance [25] is a familiar term, which is related to satisfying security
requirements within acceptable limits, rather than absolutely.

Related Work. The process-oriented approach of [32] adapts work on decision
support systems, e.g., [26, 18], specializing them to the context of development
of software systems with NFRs. Such work on decision support systems, in turn,
extends an earlier model for representing design rationale [41] by making ex-
plicit the goals presupposed by arguments for (or against) design decisions. Com-
pared to these preceding works, the process-oriented approach of [32] offers finer-
grained link types with a formal semantics, and a built-in, albejt semi-automatic,

! Simon actually uses the term to refer to decision methods that look for satisfactory
solutions rather than optimal ones.
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labelling procedure. This approach also offers three types of goals, which facil-
itate the use of NFRs as criteria for selecting among design alternatives, and
three types of generic methods, which allow separation of concerns in capturing
and reusing different types of design knowledge. In particular, methods, corre-
lation rules and the labelling procedure make it possible to automate parts of
the design process. This process-oriented approach was also influenced by the
DAIDA environment for IS development [22]. This process-oriented approach
is similar in spirit to the goal-oriented approach of [14]. Both of these process-
and goal-oriented approaches build on long-term experience in developing re-
spectively information systems and general software systems. The goal-oriented
approach of [14] puts relatively more emphasis on requirements acquisition than
the process-oriented approach of [32] which specializes in NFRs and uses the
notion of “satisficing” instead of the traditional notion of “satisfying”. Addi-
tionally, the process-oriented approach of [32] offers an argumentative style of
reasoning and several link types, as well as a labelling procedure.

Treating security requirements as a class of NFRs and using the process-
oriented approach of [32] can be seen as complementary to a product evaluation
approach to security. In a product evaluation approach, evaluation criteria serve
as benchmarks for selecting a level of security and meeting it for the target sys-
tem. For instance, the “Trusted Computer Systems Evaluation Criteria” (also
known as TCSEC or the “Orange Book”) [45] lays out criteria to categorize a
system into one of eight hierarchical classes of enhanced protection. The “IT
Security Criteria: Criteria for the Evaluation of Trustworthiness of Informa-
tion Technology Systems” (or the “Green Book”) [20] describes eight security
functions, addressing a wide variety of commercial and governmental security
concerns, in a less formal and less rigidly prescriptive manner. A more recent
document, the “Harmonized Criteria” [21], emphasizes the assurance aspect of
security and methodological aspect for evaluating security functionality. For a
further comparison, see [25]. Due to their generality, these product evaluation
criteria are not intended to prescribe or proscribe a specific development method-
ology for semi-formally managing or guiding the complex development process.

While not specific to ISs, there is a body of work which adapts existing
software life cycle models to the development and evolution of secure systems.
For instance, security activities can be integrated into the system life cycle,
and reviewed and audited in the software quality assurance process [46]. Addi-
tionally, guidelines can be offered for dealing with certain security concerns for
battle management systems, such as visibility and configuration control [12], in
accordance with military standards for the software development process [13].
Similarly, the spiral model [5] can be adapted to meet military standards, by
providing mappings for phases and points of iterations [4]. The spiral model can
also be specialized to address both trust and performance, in the context of Ada
development [27]. For a decision support system, which addresses concerns for
cost-effective systems, a statistical approach can be taken to evaluate and choose
the most preferred set of security control activities [6]. These works suggest the
need for a comprehensive semi-formal development methodology, such as that
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offered by the process-oriented approach of [32].

Running Example. As the running example, this paper uses a bank’s credit card
system which offers consumer payment services with credit cards, by maintaining
information about cardholder accounts and merchant accounts. To maintain an
edge in this highly competitive market, there is a strong commitment by the
credit card vendors for continued introduction of new technologies to improve
the security of their services [48]. As shown in the statistics [8], the number
of transactions, customers and fraud cases is ever-increasing. For instance, the
number of sales slips processed by Canadian banks during 1991 was over 500
million, the number of cards fraudulently used was slightly over 50 000, and the
amount of fraudulent accounts written off was slightly below $50 million.

Section 2 presents a goal graph structure, and illustrates the features of the
process-oriented approach of [32] in terms of security requirements. Sections
3, 4 and 5 respectively present security-specific goals, methods and correlation
rules. A prototype design tool is then described and illustrated. The final section
summarizes the contributions of this paper and presents directions for further
research.

2 Goal Graph Structure

In a goal graph structure, nodes denote goals, and links denote relationships
between goals. From an initial set of security and other types of NFR goals,
new goals are generated, via methods, along with new links. New links between
existing nodes can also be generated, via correlation rules. Links are differenti-
ated into link types according to the nature of the relationships between goals.
A node is assigned a label indicating the degree to which its associated goal is
satisficed.

Figure 1 shows a goal graph structure that a designer might construct in
attempting to satisfice the security goal “all accounts should be secure”, rep-
resented as Sec[Account]?. The designer uses the method, Subsort3, to decom-
pose the goal into three other goals for integrity, confidentiality and availabil-
ity: Integrity[Account], ConflAccount] and Avail[Account]. The designer succes-
sively generates more specific goals, such as IntConf{Account]®, Authentication
[Account] and Biometric[hccount]. Each more specific goal (the offspring) is gen-
erated with the aim of satisficing the parent goal. A correlation rule comes into
play when an offspring has an impact on some goals other than its parent. The
generation of Authentication[Account] triggers a correlation rule, which gener-
ates a link between this goal and Acc[Account], because Authentication[Account]
has an impact on Acc[Account], as well as on IntConflAccount]. When a goal
contributes positively to another goal, we designate it as a sub link? (e.g., between

2 pccount evaluates to the set of all instances associated with the account information
class.

# This refers to confidentiality of account information resident internally in the system.

* Not all link types are shown in figures.
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Fig. 1. Goal graph structure for secure account.

Authentication [Account] and Acc[Account]); when the contribution is negative,
we designate it -sub, as between Biometric[Account] and Userfriendliness{fAccount].
Throughout the goal graph expansion process, the effect of each design decision
is propagated from offspring to parents via a labelling procedure. The result
of such propagation is annotated via labels (enclosed within nodes), such as U
(undetermined), S (satisficed) and D (denied).

A goal graph structure such as Figure 1 cohesively captures design steps,
alternatives and decisions with respect to security requirements, as well as other
classes of NFRs. Both selected and discarded alternatives serve as part of the
design history, along with the way conflicts are resolved (e.g., the usage of the
criticalities of goals)

Goals, methods, correlation rules, link types and labels are described in more
detail in the following sections.
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3 Goals

In Figure 1, there are three mutually exclusive classes of goals: non-functional
requirements goals (NFR goals), satisficing goals and argumentation goals. Each
goal has an associated sort and parameters whose nature depend on the goal sort.
For instance, Sec[Account] is a security goal, the primary focus of this section,
where Sec is the sort and Account is the parameter.

Security Goals. Information security means protecting information. When it
comes to the issue of the scope of protection, a multitude of definitions is en-
countered. 1.) There are different emphases in definitions of security. (1.a.) Con-
fidentiality, guarding against unauthorized disclosure, is the primary emphasis in
evaluation criteria [45, 20, 21]. (1.b.) In some commercial applications, the focus
is on integrity [11], guarding against unauthorized update or tampering. (1.c.)
Avwailability or assured service, against interruption of service; this, along with
confidentiality and integrity, are general concerns in evaluation criteria. (1.d.)
A broader definition of security encompasses availability as well as authentic-
ity, genuineness or faithfulness of true representation (comparable to “external
consistency” in [21]), integrity, wholeness or completeness, utility, fitting the use
(e.g., money amount in dollar not in yen), and confidentiality or secrecy [38]. 2.)
The primary scope of protection could be confined to information resident in-
ternally in the computer, externally, or both. 3.) The scope can be operational,
concerning run-time operation, or developmental, concerning the development
stage [2].

Without guidance, however, these diversified notions related to security could
be a source of confusion. For instance, focusing on the confidentiality aspect may
not be sufficient to meet the accuracy needs of a specific application domain. Au-
thorized access, meeting access-rule security requirements, does not necessarily
preserve accuracy, due to either unintentional mistakes or intentional fraud. In
order to serve as a rich set of alternatives to choose from as well as check-points to
guard against omitting any important security concerns, such diversified notions
are captured in sorts of security goals and organized along a partially ordered
hierarchy. Figure 2 illustrates such a hierarchy. There are many specializations,
or sub-sorts, of sort Securily. OperationalSecurity is one sub-sort, which refers
to information security during system operation, while InternalConfidentiality
refers to the confidentiality of information items residing in the system. Note
that there could also be crossovers among the sorts. For instance, confidentiality
could be linked to integrity.

In addition to information items, such as Account, security goals can have
other parameters, such as the authorizer, access condition, delegation function
(49, 19]), and task [44].

In the example used in this paper, the process-oriented approach of [32] is
applied mainly to operational security. As security goals have information items
as the parameter, satisficing such goals is understood in terms of enhancing the
degree of confidence in the security of information items.
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Fig. 2. A taxonomy of sorts for NFR goals.

Satisficing Goals & Argumentation Goals. Satisficing goals, such as Biometric
[Account], represent design decisions adopted to satisfice a security goal, such
as IntConf[Account]. Dependency links [10] represent design decisions and relate
design objects {e.g., EmployeeWithPersonalCharacteristics, a data class) to
their requirements counterparts (e.g., Employee, a class of employee informa-
tion). Argumentation goals represent formally or informally stated evidence or
counter-evidence for other goals or links. InformalClaim [“Large accounts are
few, but highly sensitive”] is an informally-stated argument which might sup-
port the treatment of protecting large accounts as a critical confidentiality goal.
Through satisficing goals, security requirements serve as criteria for selecting
among design decisions, and justify the overall design.

4 Methods

Goals may be refined by the designer, who is then responsible for satisficing not
only the goal’s offspring but also the parent-offspring relationship represented as
a link. Methods represent generic design knowledge, which can be instantiated
to refine a goal or a link into one or more offspring. There are three types of
refinemnents, corresponding to the three types of goals mentioned in the previous
section.

4.1 Decomposition Methods

Reflecting the traditional wisdom of structural “divide and conquer,” these meth-
ods facilitate linking security concerns with NFRs of different sorts. They also
facilitate separating more sensitive information from less sensitive, thereby avoid-
ing a single but costly strategy that uniformly protects all types of information.
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They selectively add features on top of a particular type of operating system
which might be adopted to meet a target class of evaluation. Examples include
mandatory security (the system is responsible for enforcing access control based
on the assignment of labels to information and clearance levels to users) and dis-
cretionary security (the user/owner is responsible for access control). Methods
also alleviate the extreme difficulty with assuring that the target system meets
the given security requirement®.

Decomposition methods include sort, parameter and criticality decomposi-
tion methods. The subSert method is a sort decomposition method which makes
a goal reduction on its sort by introducing its sub-sorts. Specializations of this
method include establishing security of information items for each of the compo-
nent sub-sorts of the various definitions of security described in Section 3, e.g.,
introducing three sub-sorts confidentiality, integrity and availability:

AND
i/InformationItem: Sec[i]———{Confl[i], Integrity[i], Avail[i]}.

Instantiating this method, sec[Account] can be decomposed into Conf{Account],
Integrity[Account] and Avail[Account]. The systemBoundary method decom-
poses confidentiality into InternalConfidentiality and ExternalConfidentiality,
which are respectively abbreviated as IntConf and ExtConf. By the categoriza-
tion method, a given goal is categorized into a security class (e.g., mandatory or
discretionary) to meet a target level of security.

A parameter decomposition method is the subset method, which decomposes
a goal on a set of information items into goals for each subset of information
items. For instance, this method can be used to refine IntConf{[Account] into two
goals: one for those accounts whose amounts exceed $5000 (large accounts here-
after, which may be represented as {x | x € Account and x.amount > $5000}
and abbreviated as largeAccounts*) and the other for those that do not:

AND
IntConflAccount] —— {IntCon f[largeAccounts™], IntCon f[smallAccounts*]}.

In fact, the above is the application of the ezhaustiveSubset method, a special-
ization of the subset method. With an AND link, the parent can be satisficed,
when all offspring are. The subsets are exhaustive, since the union of their ex-
tensions covers all extensions of Account class. Otherwise, the subset method
will be specialized into properSubset method with a sub link, which indicates a
partial contribution of the offspring to the satisficing of the parent. Then, the
subset method itself would have the +und link, indicative of inconclusive positive
evidence, as the method can be specialized into two different types of methods.

There are other examples of such methods. The subclass method is an adap-
tation of the inheritance policy in [16]. This method reduces a goal on a set of
information items into goals for each subclass of information items, with a +und
link. Depending on the coverage by the subclasses, this method is specialized

® Di Vito et al. [15] note (p. 307) “If over 380 000 lines of text were printed at 50 lines
per page, we would have over 7600 pages of proof documentation”, and advocate
the need for decomposition: “It is essential that the proof effort be decomposed and
modularized to avoid confronting too many details at once.”
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into ezhaustiveSubclass (with an AND link) and inezhaustiveSubclass (with a sub
link). By the classAttribute method, to establish the security of a class, establish
the security of its inherited and specialized attributes. This is adaptation of the
second policy in [16]. The individualAttribute method decomposes a goal on the
attributes of a class into goals for each attribute of the class. This method is an
adaptation of vertical decomposition in [43]. The individualAtiributeSecurityLevel
method decomposes a goal on the attribute of a class into goals for each security
level associated with the attribute, adapted from horizontal decomposition in
[43].

A criticality method induces changes in goal criticality. Suppose that a high-
level of confidentiality is demanded for large accounts. This may be treated as a
critical confidentiality goal which can be induced by the criticality method:

egl
ConfllargeAccounts*]——Con f[largeAccounts*; critical]

This method facilitates achieving a sensible ordering of degrees of criticality in
the design structure, as advocated in [33]. The eql link conveys the meaning that
the satisficing (or denial) of offspring is equivalent to that of the parent.

4.2 Satisficing Methods

A satisficing method commits the design to a particular way of satisficing a NFR
goal. For instance, satisficing the internal confidentiality goal for accounts may
demand, among other things, authentication — verifying the identity of the user
to ensure that the user is in fact whom she claims to be. Such a demand can
be met by instantiating the authentication method, where Account would be
supplied as the parameter:

b
i/Informationltem: IntConf[i]LAuthentication[i].

The resulting satisficing goal Authentication [Account], in turn, might be satis-
ficed in terms of other satisficing goals. For instance, according to specializations
of the method, the goal may be satisficed, via the mutualMultiLayerPassword
method, which requires multiple passwords (like multiple keys for bank safes,
where each key clears one lock), and both the user and the system to go through
a test procedure and mutually ensure the identity of each other [40].
Authentication not only has many variations but is only one of many avail-
able satisficing methods that can be found in the literature and have been used
in practice to enforce various types of security policies. Figure 3 depicts a hierar-
chy of security goal satisficing methods.® The alarm method prevents potentially
malicious access to certain vital information, by notifying authorities of such
accesses. This method may be specialized into physicalAlarm, notification with
alarming device, and softAlarm, on-line notification of authorities by the system.

8 In the earler goal graph structure of Figure 1, a method name starts with a lower-case
character, while the name of a satisficing goal starts with an upper-case character.
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The perturbation method protects a statistical database against inference by per-
turbation of its data [28]. Specializations of this method include noiseAddition,
perturbing data by adding random noise, and value Removal, perturbing data by
removing extreme values (e.g., for census databases).

Satisficing methods and their specializations help capture, organize and reuse
knowledge about alternatives, which may be mutually antagonistic, complemen-
tary or synergistic. For instance, in Figure 1, Alarm [LargeAccounts*] has an an
OR link. Then, the goal can be satisficed by either SoftAlarm[largeAccounts*]
or PhysicalAlarm[largeAccounts*].

4.3 Argumentation Methods

An argumentation method is used to provide either formal and informal argu-
ments in supporting or denying a goal or a link. For instance, treating certain
information as highly sensitive may be justified by the use of vitalFew TrivialMany
[29] (the so-called Pareto principle) argumentation method (We borrow notation
from Telos [31] to denote the link between IniConf[largeAccounts*] and IniConf
[LargeAccounts™;critical] as IniConf{largeAccounts*]!offspring):

IntConf{largeAccounts™|loffspring L, InformalClaim[“Large accounts

are few, but highly sensitive”]

The sup link indicates that the satisficing of the offspring is a sufficient evidence
for the satisficing of the parent.

There are other argumentation methods. The preferentialSelection method
selects a method among alternatives according to their relative preference. By
synergisticSelection, a method is selected if two or more goals or links can collec-
tively justify its application, although each alone may be incapable of justifying
the application.
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5 Correlation Rules

NFRs may be contradictory or harmonious. Generic interactions among NFRs
can be captured through correlation rules, and used to discover actual instances.
For instance, the Biometric authentication, which is a satisficing goal for con-
fidentiality, could be irritating to users, hurting userfriendliness. This can be
expressed by a correlation rule:

Userfriendliness[i] A Biometric[i'] A isAli,i'] —

—sub(User friendliness[i], Biometric[i'])

where isA[P;,P j] holds if the parameter of a userfriendliness goal is a subclass
of that of a biometric goal. By specifying the parameter relationships as de-
sired, detection of implicit relationships among different goals can be controlled.
The above correlation rule can be used to infer a -sub link between the goals
Userfriendliness[Account] and Biometric[Account].

In contrast, an authentication for a confidentiality goal is also good for accu-
racy goals, since a malicious user, in the absence of authentication, can penetrate
the system and falsify information. The following correlation rule can be used to
infer a sub link between the goals Acc[Account] and Authentication[Account):

Acc[i] A Authentication[i’] A isA[i,i'] — sub(Acc[i], Authentication[i']).

Link types, which have been introduced in previous sections, are detailed in
[32]. The effect of each design decision is propagated from offspring to parents,
in accordance with rules dependent on both link and label types. There are label
types which indicate whether a goal has been satisficed (S in figures) or denied
(D). There is also a special value for initial/inconclusive situations (U) and one
for conflicts (C). Details of the labelling procedure are described in [32].

6 Prototype Design Tool

6.1 Implementation

In order to debug and refine this work on dealing with security requirements, a
prototype development tool” for the process-oriented approach of [32] has been
extended. The extension has resulted in representing taxonomies of security sorts
and methods, as well as specifying correlation rules. The system is intended to as-
sist the designer by displaying applicable methods and instantiating the selected
one, detecting conflict and harmony, evaluating the status of goal satisficing and
maintaining goal graphs.

The prototype is based on ConceptBase [23], which provides a knowledge
base management system and an implementation of Telos [31], a knowledge
representation language for ISs and a descendant of RML [17]. While Telos is

7 Portions of the system implementation are joint work with Brian Nixon, who deals
with performance requirements [36].
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used for representing most of the five components, Prolog [3] is used to control
and manipulate queries, correlation rules and the labelling procedure. A window-
based graphical interface is used to view the goal graph expansion process, and
to interactively browse, select and apply methods. A textual editor is used to
enter arguments as design rationale, query and modify labels of goals and links.

6.2 Illustration

Continuing the earlier example of developing a secure credit card system in
Figure 1, the designer recursively applies a variety of methods from method
taxonomies. The informal concerns for security are often ambigueous, inviting
many possible interpretations. Unlike the descriptions of goals in Section 3, a
NFR or a satisficing goal is often expressed only in terms of its sort, which
is not clearly explained. Thus, after refining a cost goal into several offspring,
such as EquipCost[System], the designer uses several sort decomposition meth-
ods to select a particular definition and reveal relationships among different
types of NFR goals, as well as between NFR goals and satisficing ones. Rec-
ognizing the importance of accuracy and external confidentiality aspects of se-
curity, the designer decomposes a security goal, Sec[Account], on its sort into
Int[Account], Conf{Account] and Avail[Account] (See Figure 4). The integrity
goal is further decomposed into Acc[Account] and Comp[Account]. Using succes-
sively some parameter decomposition methods, such as FzhaustiveSubclass, the
designer has generated Acc[Transaction] from Acc[Account]. After decompos-
ing Acc[Transaction]into TimelyAcc[Transaction], PropertyAcc[Transaction]
and ValueAcc[Transaction], the designer treats TimelyAcc [Transaction] as a
critical goal, and, using the vitalFewTrivialMany argumentation method, sup-
ports the treatment by informally arguing that market surveys show that timely
accuracy is of strategic importance.

In order to help the designer to see the trade-offs in applying a satisfic-
ing method, the system offers the correlation rule table (See Figure 5), which
is a synopsis of the correlation rules that were described earlier in Section 5.
Entries of the form <condition, linkType> mean “if the condition holds,
then the relationship between the NFR and satisficing goals is given by the
linkType.” The table is used for browsing and selecting a satisficing method.
For TimelyAcc[Transaction;critical], the designer successively applies the
RapidPosting, Reduce Transmission Time and Installlnput Device satisficing method.
However, in using the last method, there is a potential for increased cost. At
this point, the system uses correlation rules and detects (via upward detection) a
potential conflict between InstalllnputDevice[Transaction] and EquipmeniCost
[Transmission], and proposes a new -sub link. The designer can take a look at
the implicit link and either move on, if it is intended, or make a revision, if not.

A security breach could take place either internally, by staff accessing the
system, or externally, in terms of forgery of vouchers, remittance requests, etc. In-
stantiating the SystemBoundary method, the designer decomposes Conf[Account]
into EztConf[Account] and IntConfiAccount]. Instantiating successively some
parameter decomposition methods, the designer generates EztConf{Transaction]
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from EztConflAccount]. Reducing the transmission time from transaction to its
posting has other benefits such as improving security. Accordingly, the system
now detects (via downward-detection) a potential harmony between FEztConf
[Transaction] and ReduceTransmissionTime[Transaction]. To avoid any un-
desirable consequences, that might have been overiooked, the designer examines
the correlation condition in the correlation table, and discovers that, for the har-
mony to be effective, the phone line from the input device to the system should
be safeguarded against wire-tapping. This helps the designer avoid omissions of
certain important concerns, as above.

The system, as seen above, has detected both synergistic and antagonistic
interactions between goals. When a conflict is detected, the designer may need
to make a trade-off, and use an argumentation method in, say, outweighing the
synergistic benefits over the antagonistic penalties. The labelling procedure has
assigned labels to all goals (one is shown for goals at the top in the figures).
One result of this design process is that input devices can be installed at the
transaction point to improve security of cardholder accounts.

7 Conclusions

The main contribution of this paper is the application of a process-oriented ap-
proach [32] to represent and use security requirements as a class of non-functional
requirements during information system design. This paper has shown the need
and a methodology for capturing various types of available design knowledge
specific to dealing with a class of security goals, such as knowledge for goal dis-
ambiguation, criticality, enforcement and interaction, and for capturing various
design rationale to make explicit trade-offs.

Through implementation of a prototype design tool, and experimentation
with a credit card system example, this paper has also demonstrated how parts
of the design process can be automated, with several types of functionality: dis-
playing method hierarchies and then instantiating the method selected; display-
ing correlation rule tables and then using correlation rules to detect potentially
conflicting or harmonious goal interactions, and warning the designer (through
correlation conditions) to prevent certain actions that might jeopardize the sat-
isficing of certain NFRs; evaluating the effects of various design decisions, using
the labelling procedure; and maintaining goal graph structures.

A long term research project would be to establish a theoretical foundation
for representing and reasoning with security requirements. For such a foundation,
a semantics and its proof theory would be reeded, along with efficient algorithms
for special classes of inferences. Also a scheme is needed to marry quantitative
and qualitative representations and their reasoning. Such a scheme would allow
the consideration of the marginal utility of an additional or alternative method
application.
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