
Elicitating and Formalising Requirements
for C.I.M. Information Systems

Eric Dubois, Philippe Du Bois and MichaS1 Petit

Institut d'/nformatique
Facttltts Universitaires de Namur

Rue Grandgagnage, 21
B-5000 Namur (Belgium)

{edu, pdu, rope} @infoofundp.ac~be

ABSTRACT: It is now widely recognised that methods are needed for coveting the whole
lifecycle of Computer Integrated Manufacturing (CIM) applications. In this paper, we
deal with the requirements engineering phase of this lifeeycle. A formal language is
introduced for capturing real-time requirements expressed on CIM applications. The
resulting speeitication is structured as a society of 'agents', each of them being char-
actefised by (i) its responsibility with respect to changes happening in the system and
(ii) the perception of the behaviour of other agents. On top of illustrating the use of the
language on a small case-study, we also suggest some methodological guidance in the
elaboration of requirements for large CIM applications.

KEYWORDS: O-O requirements engineenng, agents, actions, formal language, CIM
applications, elaboration of the requirements document.

1 Introduction

For some years, we are designing and experimenting a formal specification language
for capturing requirements expressed on real-time complex systems. In this paper, our
aim is to illustrate the use of this language by presenting preliminary results based on a
real-size case study carried out in the CIM department of the CRP-HT in Luxembourg.

CIM Information System. As it is defined in [Dou90], CIM (Computer Integrated
Manufacturing) stands for a "global methodological approach in the enterprise in or-
der to improve the industrial performances". The improvement of these performances
(including productivity aspects, cost reduction, fulfilment of due dates, flexibility of
the manufacturing system) can only be achieved by adopting an integrated view of the
different activities performed in the enterprise, ranging from the product design to sales
management.

It is recognised that part of this integration is guaranteed by examining and con-
trolling the complex information exchange taking place between the different activities.
This led to the identification of a need for information management [Bra88, Sch88] that
resulted in the implementation of Information Systems (IS). IS for CIM applications are
characterised by :

253

- the mass of information to be managed and the possibly highly structured nature of
the information (see, e.g., the lay-out of a product);

- the different levels of abstraction in the information. For example, information
needed for the control of a factory is the aggregation of information resulting from
the control of each individual equipments being part of the factory;

- the temporal (real-time) aspect of information (e.g., the control of a production
machine has to be based on information messages delivered on time).

The intrinsic complexity of a CIM IS led the specialists to the conclusion that methods
covering the whole development and maintenance life cycle of CIM IS are definitively
required (not surprisingly, some years ago, a similar conclusion was drawn for the
development of IS in business application systems). As a response to this need, sev-
eral important projects (see, e.g., the CIM-OSA Esprit project) are investigating and
designing such methods.

Formal Requirements Engineering. Requirements Engineering (RE) is now widely
recognised as an essential and critical activity in the IS life cycle. This activity, which
is concerned with the elicitation and the modelling of customers' needs, starts from
informal wishes and elaborates a requirements document where the IS to be developed
is defined in a precise way. Two basic trends can be identified in RE recent researches :

1. On the one hand, at the product level (i.e. the requirements document content),
several authors plead for the use of formal specification languages supporting a
precise interpretation (i.e. a mathematical model) of expressed requirements and
advanced semantic checks through the deductive power associated with the lan-
guage. Examples of such languages include RML [GBM86], GIST [Fea87], MAL
[FP87], ERAE [DHR91], OBLOG [SSE89] and TELOS [MBJK90]).

2. On the other hand, at theprocess level (i.e. the set of actions applied by the analyst
when he/she elaborates the requirements document). It is widely recognised that
this document should include not ordy requirements on the IS to be implemented
but also on the environment around the IS as well as on the nature of the interactions
taking place between both. The emphasis on a "word oriented" or "closed system"
view [Bub83, Dub89, MBJK90, Bjr led to the elaboration of specification for
so-called composite systems [Fea89], i.e. systems made of multiple heterogeneous
components. For example, in the CIM context, one may think about requirements
on an automated production system structured according to different components
like, e.g., the storage sub-system, the conveyance sub-system, the machine tool and
the controller sub-system (the software piece).

Including these two aspects, under the auspices of an Esprit II project called Icarus,
we have developed a formal requirements specification language called ALBERT (an
acronym for an Agent-oriented Language for Building and Elicitating Requirements for
real-Time systems). Some specificities of this language are :

- the possibility of structuring requirements on composite systems in terms of agents
(like, e.g., a robot or a controller system), each agent having some contractual
responsibilities with respect to the information it manages, accesses and modifies
in the system;

254

- the existence of structuring mechanisms (based on parameterization and inheri-
tance) which ensure (i) a better structuring of the requirements document (by, in
particular, defining a specific vocabulary for some application domain) and (ii) the
reuse of existing specification fragments.

Requirements for CIM applications are now usually modelled using classical approaches
based on SADT/IDEF0 (see, e.g., the ICAM project [HDM88]) or MERISE (see, e.g.,
the M* project [LVB87]) or a combination of these approaches. New approaches are now
emerging with the objectives of (i) increasing the degree of expressiveness, i.e. covering
a wider range of requirements (see, e.g., the CIM-OSA project [GQVV90]) or (ii)
using formal languages for expressing requirements (see, e.g., the OLYMPIOS project
[BHM90]). We follow the same objectives in this paper. In Sect. 2, we introduce the "in-
the-small" facilities offered by the ALBERT language by considering its expressiveness
and its degree of formality through the handling of a fragment of an automated production
control case study. Then, in Sect. 3, we report preliminary results gathered through the
performance of a real-size case study from which it results that: on the one hand, we
suggest how ALBERT favours the application of an Object-Oriented paradigm, on the
other hand, we propose a preliminary draft for the blueprint of a generic architecture
for CIM applications is identified. Finally, in Sect. 4, we conclude by indicating some
of current research directions.

2 A n A g e n t - o r i e n t e d R e q u i r e m e n t s S p e c i f i c a t i o n L a n g u a g e

The ALBERT language ([DDP93]) is inspired by the experience that some of the authors
had with the ERAE language, a language that was proposed some years ago for dealing
with specifications of real-time systems [DI-I87, DHR91] using an appropriate temporal
logic (an extension of first-order logic, see, e.g., [GB91]) for describing admissible
histories of a system. In ALBERT, three extensions are taken into account:

1. the introduction of agents. That concept can be seen as a specialization of the
concept of object and plays a key role both at the product and at theprocess level:

- on the one hand, its introduction can be seen as a possible way of structuring
large specifications in terms of more finer pieces, each of them corresponding
to the specification of an agent guaranteeing some part of the global behaviour
of the whole system;

- on the other hand, properties attached to an agent provide guidelines for the
analyst who is in charge of designing the composite system; different contractual
responsibilities having to be assigned to the different agents. The ALBERT
language makes possible to reason on the agent responsibilities (i) for changes
happening in the system and (ii) for the perception guaranteed by an agent to
another one.

2. the introduction of actions to overcome the weU-knownframe problem [HR92], a
typical problem resulting from the use of a declarative specification language;

3. the identification of typical patterns of constraints which support the specifier in
writing and structuring complex and consistent first-order formulas. In particular,
typical patterns of formulas are associated with actions.

255

Using the language involves two activities:

- wdtingdeclarationsintroducingthe vocabulary of the considered application. Dec-
larations are given using a graphical syntax (having a textual counterpart);

- expressing constraints, i.e. logical statements which identify possible behaviours
of the system and exclude unwanted ones. The expression of constraints is purely
textual.

Both activities are illustrated all along the rest of this section by considering a simplified
fragment of an automated production control application.

Requirements are associated with a specific cell being part of a complex production
system. This cell is in charge of the production of a bolt when a production request is
issued. A bolt results from the transformation of a rivet through a given process. More
specifically, the cell (see Fig. 1) is made of:

- the rivets stock. Rivets are produced by another cell and put in this stock waiting
for their processing;

- the bolts stock. Bolts are the resulting products of the cell activity and are stored
in a stock. Bolts remain in the stock until their use for activities performed in other
cells;

- the lathe. It is the machine transforming a rivet into a bolt by producing a thread
on the rivet;

- the robot equippedwith a gripper. Its role is twofold: on the one hand, it transports
a rivet from its stock to the lathe machine; on the other hand, it transports a bolt
from the lathe which produces it to the stock of bolts.

Finally, there is a performance constraint imposing that a bolt must be produced within
10 minutes.

C e l l

Lathe

Y
/

Fig. 1. Automated production control application - The Cell

256

2.1 Declarations

In the specification of composite systems, declarations identify the agents together with
their associated state structure.

Agents Hierarchy. As we noted in Sect.l, the specification of a composite system is
made of the specification of several agents. To be more precise, we propose to organise
them in terms of a hierarchy where we distinguish between:

- individualagents corresponding to leaves in the hierarchy. These agents are terminal
components for which a designer has to guarantee a valid implementation of its
associated responsibilities;

- complex agents corresponding to non-terminal nodes in the hierarchy and made of
freer agents. These agents are virtual components because they have no existence
per se and are just aggregates of finer agents. The introduction of complex agents
favours the introduction of specifications at different levels of abstraction.

0r

/ %

" C e l l " / %

Fig. 2. Refinement of the Cell agent

Figure 2 proposes the graphical declaration associated with the case study where:

- Cell is a complex agent attached to the description of the automated production
problem. The introduction of this Cell agent makes possible to introduce an inter-
mediate level in the requirements specification document where a more abstract
description of the problem can be achieved. At this level of abstraction, Cell is
characterised as an agent in charge of transforming rivets into bolts upon requests
(at this level, we have not to provide any further detail on the process according to
which the transformation is performed);

257

- Rivets-Container, Bolts-Container, Robot, Lathe, and Controller are the five termi-
nal agents cooperating together to provide a solution to the automated production
problem. The last three agents play an active role. This is especially the case for the
Controllerwhich is in charge of synchronising and controlling the whole production
process. Conversely, the two first agents (viz the Rivets and Bolts containers) have
a more passive role restricted to stock keeping. At this finer level of specification,
it is essential to guarantee that the abstract behaviour of the Cell agent is met by the
interactions taking place between the five finer agents.

The existing hierarchy among agents is expressed in term of two combinators:
Cartesian Product and Set. In our specific case, the Cell is an aggregate (tuple) of
Rivets-Container, Bolts-Container, Robot, Lathe, and Controller.

In the sequel, we will further detail the role of the Cell agent (the complex agent)
and the role of the Controller (one of the five terminal agents). For lack of place,
specifications associated with the four other terminal agents are not introduced.

Actions and State Structure. The declaration part of an agent consists in the descrip-
tion of its state structure and the list of actions happening all along its history. In the
sequel, these concepts are only briefly outlined. Further details can be found in [DDP93].

Figures 3 and 4 propose graphical diagrams (extended ERAE diagram) associated
with the declaration of the structure of the Cell and Controller agents.

The structure of a state is defined in terms of entities (which can be grouped in
populations or be individuals), values (which are used for characterising attributes of
entities) and relationships between entities [Che76]. On top of these usual concepts, we
are also using data types which correspond to :

1. predefined data types (like, STRING, BOOLEAN, INTEGER,...) equipped with their
usual operations;

2. more complex types built by the specifier using a set ofpredefined type constructors
(see, e.g. [BJ78]) like set, list, cartesian product,etc.

Data types are used for denoting :

- the type of value attributes;
- when required, the type of the surrogate used for identifying entities. This surrogate

is a key mechanism that allows to refer to an agent component. For example, on
Fig. 4, the individual entity Ctrl Robot is referring to the Robot agent through the
surrogate mechanism. A data type is automatically associated with each class of
agents. For example, each Cell agent has an identifier defined on type CELL.
When an agent is unique (like, e.g., the Environment agent), then a constant is also
automatically defined to refer to the identifier of that agent (envt in our case study).
Inside the description of an agent, the self constant refers to the identifier of the
described agent.

Populations of entities are denoted using squared boxes, individual entities are denoted
with dashed boxes. Data types are written in upper-cases.
Actions are graphically depicted with ovals. In our terminology, we use the word' action'
both for denoting:

Cell

Input
Stock

I R'VET J

Remove
rivet

RIVET

258

Output
Stock

I B~

Store
Bolt

BOLT

Store
rivet

RIVET

Remove ~ = =
Bolt

BOLT

Produce

Fig. 3. Declaration associated with the Cell agent

- happenings having an effect on the state (called actions in some existing specifica-
tion languages: e.g. [RFM91, JSS91]);

- happenings with no direct influence on the state (called events in other specification
languages: e.g. [DHR91]).

Actions can have arguments belonging to data types (and thereby possibly referring
agents surrogates).
Diagrams also include graphical notations making possible (i) to distinguish between
internal and external actions and state components and (ii) to express the visibility
guaranteed by the agent to the outside:

- Information within the parallelogram is under the control of the described agent
while information outside the parallelogram is the perception that the agent may
have with respect to the other agents of the system.

- For information in the parallelogram, boxes without arrow indicate that this in-
formation is not visible from the outside. Conversely, boxes with arrow denote
information that can be perceived from the outside.

From the graphical declaration depicted on Fig.3, it can be read that the Cell state is

2 5 9

Controller

/ Ctrl
robot

I ROBOT I

Status /
BOOL

Busy

BOOL

Ctrl
lathe

LATHE I

Status
BOOL

Begin I /
transp

From ~ !o /
LOCATION LOCATION

' ~ Lathe

Robot

Finish
transp athe• Finish

L work
. ~ Produce

CE>

I
I

Bol ts-conta iner I
I

I

Sensor

Full

I

Sensor
Rivets-conta iner I

BOOL BOOL

Fig. 4. Declaration associated with the Controller agent

made of:

1. two populations of entities respectively associated with the stock of rivets (Input
stock) and the stock of bolts (Output stock). The information about the Output stock
can be perceived from the outside (at this level, the structure of the environment is
unknown);

2. two internal actions (Remove-Rivet and Store-bolt) for which the Cell has the
initiative. The former corresponds to the withdrawal of a rivet from the Input stock,
while the latter is associated with the storage of a bolt in the Output stock. Moreover,
the Cell lets the outside having the perception of Store-bolt actions;

3. three actions (Produce, Store-rivet, Remove-bolt) are perceived by the Cell but have
an external initiative. The Produce action is associated with the order of producing
a new bolt, the Store-rivet action denotes the storage of a rivet in the Input-stock
and the Remove-bolt action is related with the withdrawal of a bolt from the output
stock.

260

The graphical declaration depicted on Fig.4 is related to the the Controller state structure,
one of the five agents resulting from the refinement of the Cell complex agent. From
this figure, it can be read that:

1. two individual entities (Ctrl Robot and Ctrl Lathe) denote the controlled robot and
lathe. Their status attributes are maintained by the Controller for mirroring the
status of the corresponding Cell components;

2. two actions are issued by the Controller. The first one (Begin-transport) is a trans-
portation order sent to the Robot agent. The second one (Begin-work) is an order
sent to the Lathe machine;

3. the cell perceives three different external actions: the Finish-Transp action issued
by the Robot agent, the Finish-Work action issued by the Lathe machine agent and
the Produce order issued by the environment (this action was already mentionned
in the description of the Cell agent);

4. the cell perceives also the status of the two containers thanks to the visibility of a
sensor associated with each of them.

2.2 Constraints

Each agent is defined by a set of possible lives modelling all its possible behaviours.
A life is an (in)finite sequence of states and actions. Each state (structured in terms of
entities) is labelled by a time value which increases all along the life. Actions occur
between two successive states and can be simultaneous. On Fig. 5, a possible life of the
Cell agent is presented.

r Rh,ets Bolts Rivets Bolts 7 /Rivets Bolts /

6

Fig. 5. Possible life of the Cell agent

26t

STATE BEHAVIOUR

-7 Empty(input-stock)
In(Input-stock,r) ~ r ~ In(Input-stock,r)
* The input stock can neve r be empty.
* A rivet cannot stay indefinitely in the input stock.

EFFECTS OF ACTIONS

Remove-rivet(r): Input-stock = Remove(Input-stock,r)
Store-bolt(b): Output-stock = Add(Output-stock, b)
envt.Remove-bolt(b): Output-stock = Remove(Output-stock, b)
cart.Store-rivet(r): Input-stock = Add(input-stock,r)
�9 Remove-rivet and Store-bolt arc two internal actions;
�9 Remove-bolt and Store-rivet am two external actions brought by
�9 the outside (denoted with envt which stands for Environment).

COMMITMENTS

curt.Produce ~ Remove-rivet(r); Stom-bdt(b)
�9 The Produce action (brought by the outside) has to be foUowed by a unique occurrence of
�9 the Remove-rivet action which is itself followed by a unique occuncnce of
, the Store-bolt action.

, The Store-bolt action must happen less than 10 minutes after the concsponding
�9 Produce occurrence.

AGENTS RESPONSIBILITIES

F(en vt.R emo ve-bolt ~Empty(Output-stock))
X(envt.Produce / ~ Empty(Input-stock))
X(Output-stock.envt /-~ Empty(Output-stock))
�9 The Cell agent does not let the environment removing a bolt when the stock is empty.
�9 The Cell agent does not let the environment issuing a Produce order when the input
�9 stock is empty.

�9 The Environment has no access to the Output stock when it is empty.

Fig. 6. Constraints on the Cell agent

262

Constraints are used for pruning the (usually) infinite set of lives. The formal ex-
pression of constraints is based on multi-sorted first order logic, based on the concepts
of variables, predicates and functions. In order to master the complexity of writing first-
order formulas, we have grouped them under different headings and have considered
the introduction of some specific connectives for expressing them.

On Fig. 6 and 7, we present formal specifications associated with the Cell complex
agent and the Controller terminal agent. In a systematic way, on these figures, we have
added informal comments to help in reading formal constraints. Hereafter, we detail the
nature of the different kinds of constraints.

State Behaviour. The possible configurations of states can be restricted by constraints.
These constraints are written according to the usual rules of strongly typed first order
logic. In particular, they are formed by means of logical connectives ~ (not), A (and), v
(or), ~ (implies), r162 (if and only if), V (for all), 3 (there exists). The outermost universal
quantification of formulas can be omitted. The rule is that any variable, which is not in
the scope of a quantifier, is universally quantified outside of the formula.

On top of constraints which are true in all states (usually referred as invariants), there
are constraints on the evolution of the system expressing constraints on the ordering of
states (like, e.g., if this property holds in thi~ state, then it holds in all future ones) or
referring states at the different times. Such constraints are written in the language by
using additional temporal connectives which are prefixing statements to be interpreted in
different states. The following table introduces these operators (inspired from temporal
logic, see e.g. [SetS0, TLWgl]) and their intuitive meaning ($ and ~b are statements):

(> ~b ~b is true sometimes in the future (including the present)
~, ~b ~b is true sometimes in the past (including the present)
[] ~b q6 is always true in the future (including the present)
�9 ~b ~b is always true in the past (including the present)
/2 ~b ~b is true from the present until ~b is true (strict)
S ~b ~b is true back from the present since ~b was true (strict)

There are constraints related to the expression of real-time properties. They are needed
to describe delays or time.outs and are expressed by subscripting temporal connectives
with a time period. This time period is made precise by using predefined functions that
can be used to model the usual time units: Sec, Min, Hours and Days [-KVdR89].

Effect of actions. These constraints relate the occurrence of an action to the modifi-
cations brought in the current state of an agent. Only actions which bring a traceable
change are described.

In the description of the effect of an action, we use an implicit frame rule saying
that states components for which no effect of actions are specified do not change their
value in the state following the happening of a change.

The effect of an action is expressed in terms of a property characterising the state
which follows the occurrence of the action. The value of a state component in the
resulting state is characterised in terms of a relationship referring to (i) the action
arguments, (ii) the agent responsible for this action (if this agent is an external one, the
name of the agent is prefixing the action) and (iii) the previous state in the history.

263

Controller[

STATE BEBAVIOUR

-~ (Status(Ctrl-lathe)) A Status(Ctrl-robot))
. The lathe equipment and the robot equipment cannot be busy at the same time.
(Status(Ctrl-lathe) V Status(Ctrl-robot)) ===~ Busy
�9 The Cell is said busy when the status of the robot or of the lathe is busy.

EFFECTS OF ACTIONS

Begin-transp(o,d): Status(Ctrl-robot) = true
Begin-work: Status(Ctrl-lathe) = true
envt.Produce: Busy = true
robot.Finish-transp(o,d): Status(Ctrl-roboO = false
mbot.Finish-transp(lathe, bolts-shelf): Busy = false
lathe.Finish-work: Status(Ctrl-lathe) = s

COMMITMENTS

en vt .Produce Begin-transp(fivets-shelf, lathe);
Begin-work;
Begin-transp(lathe,bolts-shelf)

AGENTS RESPONSIBII/TIF~

F(Begin-transp(o,d) / Status(Ctd-robot) V -~ Busy)
F(Begin-work / Status(Ctrl-lathe) V -7 Busy)
X (envt.Produce /-~ Busy A -1 Empty(Sensor) A -~ Full(Sensor))
X(robot.Finish-transp / Busy A Status(Ctrl-robot))
X (lathe.Finish-work / Busy A Status(Ctrl-lathe))

Fig. 7. Constraints on the Controller agent

Commitments. This heading is related to the causality relationship existing between
some occurrences of actions.

Expressing causality rules with usual temporal connectives may appear very cum-
bersome (see, e.g., motivations given by [FS86]). To this end, our language is enriched
with specific connectives which allow to specify, for example, that an action has to be
issued by the agent as a unique response to the occurrence of another action (brought or
not by the agent). A common pattern is based on the use of the" ," symbol which is
not to be confused with the usual " ~ " logical symbol. In our case, we want to denote
some form of entailment, as it exists in Modal Logic [HC68].

264

The" ~" symbol can be quantified by a temporal operator to express performances

constraints (e.g. the ,,0<10,~, ,, symbol means that the occurrence of an (re)action has
to happen within a 10 minutes interval after the occurrence of the action).

The right part of a commitment (the reaction) may only refer actions which are
issued by the agent (i.e. actions which are not prefixed).

Left and right parts of a commitment may be composed of one or more occurrences
of actions. In case of more than one, occurrences may be composed in the following
ways:

- "actl ; act2" which means "an occurrence act1 followed by an occurrence act2";
- "act/ II act2" which means "an occurrence act1 and an occurrence act2 (in any

order)";
- "act/ | act2" which means "an occurrence act1 or an occurrence act2 (exclusive

or)".

Agents Responsibilities. Under this heading, we make precise the role of the agent
with respect to the occurrence of actions and to the visibility it offers to the outside. To
this end, we are still using an additional extension of the classical first-order and tem-
poral logic by making possible to express permissions associated with an agent. Three
specific deontic connectives are considering for expresssing obligations, preventions
and exclusive obligations.

The pattern for an obligation"O(<action>/<situation>)" expresses that the action
has to occur if the circumstances stated in the situation are met (these circumstances
refer to conditions on the current or previous states). For external actions, an obligation
defines the circumstances where, if such an action is issued by the external agent, the
behaviour of the current agent state is influenced.

The pattern for a prevention "F(<action>/<situation>)" expresses that the action
is forbidden when the circumstances expressed in the situation are matched. For an
external action, a prevention defines the circumstances where, if such an action is issued
by the external agent, it has no influence on the current agent behaviour.

The pattern for an exclusive obligation is "X(<action>/<situation>)" which is a
shorthand for "O(<action>/<situation>) and F(<action>/-~ <situation>)".

The default rule is that all actions are permitted whatever the situation. The semantics
associated with our deontic connectives is similar to the one considered by yon Wright
in his pioneering work on Deontic Logic [vW68].

Using these connectives makes possible to express the control that the agent has
with respect to actions. At this level, our objective is somewhat similar to the one of
[KM87] and [FM90]. We express the conditions under which an action issued by an
external agent (like the Store-rivet action issued by the Environment) or by the agent
itself (like the Remove-rivet action) may affect the agent history. For example, from
the first statement under the responsibility heading on Fig.6 it can be read that the Cell
agent does not let the Environment agent removing a bolt when the stock is empty.

These connectives are also used to bring restrictions on the visibility of states
fragments or occurrences of actions to the outside. For example, the last responsibility
statement on Fig.6 expresses that the Environment agent has no access to the Output-
stock component of the Cell agent state when that stock is empty.

265

Perception offered by an agent to another one may vary with time. Agents respon-
sibilities constraints are used to express this dynamical aspect.

Whatever the nature of the agent (complex or terminal), patterns of constraints are
similar but play a different role in the system development life cycle:

- at the level of a terminal agent (like, e.g., the Controller), the specification is the
starting point of the design engineering process where a designer will be in charge
of implementing a component guaranteeing the prescribed behaviour of the agent;

- at the level of a complex agent (like, e.g., the Cell), the specification is an intermedi-
ate step in the process followed by the analyst. Analogously to [Dub89, DFHF91],
this specification is defining the goal associated with the system considered as a
whole and the task of the analyst is to follow a re~nement process resulting in the
description of a composite system where the combination of specifications attached
to individual agents meets the goal identified. In our case study, this means that, in
the final requirements document, the Cell goal of "producing a bolt within 10 min-
utes after a request" is achieved through the combination of the individual actions
made by the Controller, Robot and Lathe.

3 Structuring and Reusing Requirements for CIM Applications

In the previous section, we have introduced the ALBERT language and illustrated its use
on a fragment of a CIM application. Besides these "in-the-small" facilities, the language
has also been used for dealing with larger CIM applications. Some conclusions of these
studies are reported in this section where:

1. we discuss the elaboration of a general CIM architecture which can serve as a
blueprint for the design of requirements for a specific CIM application;

2. we present a generic component that has been identified as a key reusable require-
ments specification component for building these CIM architectures.

All along this section, for the sake of brevity, only a sub-part of the formal specifications
will be presented. This sub-part is related with the graphical component of the ALBERT
language dealing with the declaration of agents and of their hierarchical structuring.
For the interested reader, a complete presentation of the requirements including the
declaration of the state structure and the expression of constraints may be found in
[Pet92].

3 . 1 T o w a r d s a G e n e r a l C I M A r c h i t e c t u r e

CIM applications are definitively found complex because of (i) the mass of information
to be managed (e.g. information about production plans, parts layouts, stocks, etc) and
(ii) the different abstraction levels to be considered (e.g., relevant information at the
level of the factory, at the level of each cell, at the level of each equipment, etc).

For mastering this complexity, several authors (see, e.g., [Sch88]) have proposed a
general architecture for CIM applications. The objective is that this general architecture

266

may serve as a blueprint for the analyst being in charge of capturing requirements for
specific applications. Doing so, the analyst is applying an analogical reasoning [SM92]
by (i) identifying reusable components in the general architecture and (ii) adapting them
to his/her particular context.

The description of a general CIM enterprise should result in the identification of a
hierarchy (i.e. a directed acyclic graph) of specification components. We experimented
that this hierarchy may be elaborated following a functional perspective or an object-
oriented perspective.

The Functional Perspective. The use of classical approaches (like, e.g., SADT) leads
to the elaboration of functional architectures based on:

1. at the higher level, the identification of the functional areas existing in the manu-
facturing company;

2. the functional decomposition of each of these areas into a set of finer functions
which are chained together through data flows;

3. the recursive decomposition of these functions up to the identification of terminal
functions.

Adopting such perspective leads to the identification of an architecture analogous to
the one presented in Fig. 8. On this figure, the following functional areas have been
considered:

- CAD (Computer Aided Design)
This area is in charge of the design of a product. It uses information about a new
product provided either by the customer or by a strategic planning department.
Characteristics (like loads and tolerances) of the product are identified, technical
and economical analyses are performed. An important result of this phase is the
layout of the product (i.e., its decomposition into parts and the way these parts are
assembled together).

- CAPP (Computer Aided Process Planning)
This area is responsible for the elaboration of one or more recipes (called schedules)
that can be used for producing a particular product part. It is based on information
received from the CAD area about the product (and about its structure) and infor-
mation on equipments features.

- PPC (Planning and Production Control)
According to the capabilities of each production equipment and on the basis of
the received orders, a production plan (including the occupation periods of each
equipment) is prepared. It is established using information provided by the CAPP
function about the possible schedules, information about the customer orders and the
sales forecasts. Once the planned date for the production is reached, the production
activities have to be started. For the different steps of the schedule, orders have to
be sent to the adequate equipments following an appropriate sequence.
The controller of the cell described in Sect. 2 implements a subset of these functions
(no planning is done but the controller initiates the production activities by sending
orders to the robot and the lathe machine).

- CAM (Computer Aided Manufacturing)
This area takes in charge the execution of the different steps of the schedule.

267

This execution is ensured by using different equipments carrying on activities like
machine-finishing, assembling, transporting, storing, packaging

Ente.rprise [

[Plannin on]

, o Oto on,
Storage Control I Transportation Control] [Production Control]

Fig. 8. An example of functional CIM architecture

The O-O Perspective. Recent researches in CIMled authors like, e.g., [Sch88, Dou90]
to criticize the functional perspective and to encourage the identification of CIM archi-
tecture based on a different decomposition criterion. Similarly, in software engineering,
an analogous trend has led to the adoption of an object-oriented perspective achieving
a better cohesion around information.

In our work, we have privileged an agent-orientedperspective which is rather similar
to the O-O one since an agent in the ALBERT language can be seen as a specialization
of the usual object used in O-O conceptual modelling (see, e.g., OBLOG [SSE89] and
O* [Bru91]). Using this agent perspective led to the identification of a hierarchy based
on an organizationalperspective where theproductionprocess is considered at different
abstraction levels, each of them describing a production unit. This perspective has the
consequence that functions are no longer grouped with respect to the functional area
to which they belong to but are now distributed among the different production units
where they are required.

On Fig. 9, one may see an example of an architecture built using an agent-oriented
perspective (and expressed in terms of ALBERT declarations for agents). In this ar-
chitecture, one may note that (i) there are several abstraction levels, each of them
corresponding to a more or less detailed view of a level of the production process (for
example, at the higher level, we consider the MetalMachining Factory and, at an inter-
mediate level, we consider the Turning Cell) and that (ii) functional units belonging to
the same functional area are distributed over the different identified production levels

268

Metal Machining Factory

/ (~ A D Factory CAPP Factory CAM Factory PP~C

~Receiving Turning Milling Parts A u t ~
I Cell Cell Cell Buffer V e h i c l e ~ g ' ~ ~ I

/

Lath ~ i

Fig. 9. An example of agent-oriented CIM architecture

(for example, a Factory PPC is considered at the higher level and, at a lower level, a
Cell PPC is identified in the Turning Cell).

The Turning Cell agent described in this architecture is similar to the Cell agent
described in Sect. 2. It is a more complete version of it where the functions of the Ceil
Controller in Sect. 2 are a subset of the Cell PPC functions and where the Turning Cell
has additional capabilities (Cell CAPP, etc.).

269

3.2 Identifying a Generic Component

The agent-oriented view presented in the previous sub-section may lead to the elabo-
ration of a CIM architecture having an arbitrarily varying number of levels according
to the complexity of the production process considered in the manufacturing company.
However, it is important to note that there are some common aspects between the dif-
ferent levels of the architecture. This led to the idea of identifying a generic component
presented on Fig. 10. The role of some of the agents it contains is informally described
below.

- CAlVin
The role of the CAM n component is to manufacture the product requested at this
level. To do this, it consists of the following components: level-n input/output places
(level-n I/O places), level-(n-1) production units, level n storage places and level n
transporters.

s The level-n I/O places are the input/output access points of the CAM level-n.
They are locations where the products, entering and exiting the level n, can be
placed. A level without any I/O places would be completely closed and thereby
would not be able to communicate with the outside. I/O places can take different
forms: a bearing area, a container, a conductor rail able to accept a pallet
Each kind of I/O place is dedicated to the storage of specific elements (e.g. a
bare part cannot be put on a pallet conductor rail).

�9 The role of a level-(n- 1) production unit is to ensure a part of the production of
the whole product. It can be very complex and can include many single equip-
ments such as drilling machines, lathes, assembling stations, robots, conveyors,
stocks,etc. But it is, at this level, considered as a simple unit providing services
(black-box approach).

�9 A level-n storage place is a location where products can be stored for a certain
duration. It is very similar to an I/O place except that it is internal to the level
and has no relationship with the outside.

�9 The role of the level-n transporter is to transport products between two com-
ponents present inside the level. Components can be of the same type (two
level-(n-1) production units, two I/O places, two storage places or two trans-
porters) or of different types (one level-(n-1) production unit and one I/O place,
one storage place and one level-(n-1) production unit, etc). The type of trans-
porter is different according to the level where it is considered. For example,
at a low level (e.g. within a cell), a robot is often be used for transporting bare
parts. At the factory level, Auto-Guided Vehicles (AGVs) and conveyors are
often used. Trucks can be in charge of the transport between factories.

- CADn
The role of a level-n CAD component is (i) to identify the different parts from
which the desired product is composed of, (ii) to describe, for each of them, their
features (e.g., guaranteed loads, tolerances) and (iii) to indicate how they have
to be assembled together. The lower level parts are produced by some level-(n-1)
production units present in the CAM n component and assembled by others to obtain
the desired product.

270

- CAPP n
The role of this component is to prepare schedules for the manufacture of products
required at this level. These schedules are made of steps that will be executed by
the lower levels of the CAM-n component. They also describe the order in which
these steps will have to be performed.

- PPC n
This component is responsible for the planning of the allocations of the work to the
different equipments of the level-n. The resulting plan consists in the definition of
occupation periods for these equipments (production units, transporters, I/O places
and storage places). The PPC n component also issues the appropriate execution
orders to the level n equipments and monitors the follow-up of the activities.

level n production unit

Fig. 10. Structure of the Generic component

From our preliminary experiments, it results that this generic component is central
for CIM applications and thereby should take place in a library of reusable cliches for
the CIM application domain [RW91]. Analysts can reuse it and tailor it to the needs of
a particular application (a similar process was suggested by the authors in [DDR92]).
For example, the two first levels of the architecture presented on Fig. 9 can be obtained
by instantiating the generic component with the following parameters substitutions:

- the Metal Machining Factory is the level n production unit;

- the Factory CAM is the CAM n where:

271

�9 the Turning Cell, Receiving Cell and Milling Cell are level-(n-1) production
units (which can themselves be further decomposed by new recursive instans-
tiations of the generic component; see, e.g., the Turning Cell)

�9 the Parts Buffer is a level-n storageplace;
�9 the Auto-guided Vehicle is a level-n transporter;
�9 the Factory-I/O-places are level-n I/O places;

- the Factory-CAD is the CAD n;
- the Factory-PPC is the PPC n;
- the Factory-CAPP is the CAPP n.

4 Conclusion

For some years, we are investigating the use of formal methods at the Requirements
Engineering (RE) level of the software life cycle. Within this context, this paper intro-
duces the ALBERT language and provides some preliminary insights about its use in
the context of Computer Integrated Manufacturing (CIM) applications. The language
itself is characterized by :

- its expressiveness. Requirements on performances, actions and perceptions are
structured in terms of agents having some contractual responsibilities for guaran-
teeing them. This need for introducing the concept of agent at the RE level is also
emphasized in [Fea89, DFvL91, Yu93];

- its degree of formality. Different kinds of constraints can be expressed using some
variants of typed first-order logic, viz temporal logic and deontic logic. Similar
formal frameworks are also investigated in [FM90, JSS91];

- the availability of structuring mechanisms based on parameterization and inheri-
tance [OSC89]. The use of these mechanisms is only suggested in this paper but
more details can be found in [DDR92].

Using our language in the context of CIM applications led to the following researches
directions :

1. the need for the identification of reusable patterns of requirements characteristic
of this application domain. These patterns should include "in the small" facilities
0ike, e.g., those related to expression of different forms of commitments) as well as
"'in the large facilities" for developing blueprints of requirements fragments;

2. the investigation of strategies that can be followed in the incremental elaboration of a
requirements document. In particular, we experimented that, due to their complexity,
requirements on CIM applications cannot be built from scratch but that it can be
envisaged to start from requirements on a simplified application before to move
gradually towards more complex requirements. Within this framework, we are
working on the development of specifications transformations related to non reliable
agents and non omniscient agents;

3. finally, the study of the systematic derivation of design specifications from re-
quirement specifications has not to be neglected. Within the context of the CIM
department of the CRP-HT in Luxembourg, we consider the relationship existing
between specifications written with ALBERT and design specifications expressed
in OBLOG [SFS90].

272

Acknowledgement: This work was partially supported by the European Community
under Project 2537 (ICARUS) of the European Strategic Program for Research and
development in Information Technology (ESPRIT). The authors wish to thank Marc
Derroitte and Robert Darimont for helpful discussions and critical comments. We are
also indebted to Jean-Pol Michel for the opportunity he offered us to work on C.I.M.
applications.

References

[BHM90]

[BJ78]

[Bjr

[Bra88]

[Bru91]

[Bub83]

[Che76]

[DDP93]

[DDR92]

[DFI-IF91]

[DFvL91]

[DH87]

[DHR91]

[Dou90]

D. BeauchSne, A. Haurat, and J.L. Maim. Typology and modeling : a global ap-
proach in manufacturing enterprises. In Proceedings of the international conferefence
CIM'90: Integration Aspects, pages 235-242, Bordeaux (France), June 12-14, 1990.
Productic-A, Teknea.
D. Bjemer and C.B. Jones. The Vienna Development Method. The metalanguage,
volume 61 ofLNCS. SpIinger-Vedag, 1978.
D. Bjemer. Trusted computing systems: The procos experience. In Proc. of the 14th
international conference on software engineering, pages 15-34, Melbourne (Aus-
tralia), May 11-15, 1992. IEEE, ACM Press.
O.H. Bray. Computer Integrated Manufacturing (The Data Management Strategy).
Digital Press CIM series. Hamilton Printing Company, 1988.
J. Brunet. Modelling the world with semantic objects. In Proc. of the working
conference on the object-oriented approach in information systems, Qu6bee, 1991.
Janis A. Bubenko. On concepts and strategies for requirements and information
analysis. In Information modeling, pages 125-169. Chartwell-Bratt, 1983.
P.P. Chert. The entity-relationship model: Towards a unified view of data. ACM
TODS, 1(1):9-36, 1976.
Eric Dubois, Philippe Du Bois, and Michael Petit. O-O requirements analysis: an
agent perspective. In O. Nierstrasz, editor, Proc. of the 7th european conference on
object-oriented programming- ECOOP'93 (to appear), Kalserslautern (Germany),
July 26-30, 1993.
Eric Dubois, Philippe Du Bois, and Andr6 RiJant. Elaborating, structuring and ex-
pressing formal requirements of composite systems. In P. Loucopoulos, editor, Proc.
of the 4th conference on advanced information systems engineering - CAiSE'92,
pages 327-347, Manchester (UK), May12-15, 1992. LNCS 593, Springer-Vedag.
E. Doerry, S. Fickas, R. Helm, and M. Feather. A model for composite system
design. In Proc. of the 6th international workshop on software specification and
design, Milano, October 1991.
A. Darderme, S. Fickas, and A. van Lamsweerde. Goal-directed concept acquisition
in requirements elicitation. In Proc. of the 6th international workshop on software
specification and design, Milano, October 1991.
Eric Dubois and Jacques Hagelstein. Reasoning on formal requirements: a lift control
system. In Proceedings of the 4th international workshop on software specification
anddesign, pages 236-241, Monterey CA, April 3-4, 1987. IEEE, CS Press.
Eric Dubois, Jacques Hagelstein, and Andr6 Rifant. A formal language for the
requirements engineering of computer systems. In Andr6 Thayse, editor, From natural
language processing to logic for expert systems, chapter 6. Wiley, 1991.
Guy Doumeingts. Design and specification methods for production systems. In
Proceedings of the international conferefence CIM' 90 : integration aspects, pages
89-103, Bordeaux (France), June 12-14, 1990. Productic-A, Teknea.

273

[Dub89] Eric Dubois. A logic of action for supporting goal-oriented elaborations of require-
ments. In Proceedings of the 5th international workshop on software specification
and design, pages 160-168, Pittsburgh PA, May 19-20, 1989. IEEE, CS Press.

[Fea87] Martin S. Feather. Language support for the specification and development of
composite systems. ACM Transactions on programming languages and systems,
9(2):198-234, April 1987.

[Fea89] Martin S. Feather. Constructing specifications by combining parallel elaborations.
IEEE Transactions on software engineering, SE-15(2), February 1989.

[FM90] Jose Fiadeiro and Tom Maibaum. Describing, structuring and implementing objects.
In Foundations of Object-Oriented Languages - REX School~Workshop, pages 275-
310, Noordwijkerhout (The Netherlands), May 28 - June 1,1990. LNCS 489, Springer-
Veriag.

[FP87] Anthony Finkelstein and Colin Potts. Building formal specifications using"structured
common sense". In Proceedings of the 4th international workshop on software
specification anddesign, pages 108-113, Monterey CA, April 3-4, 1987. IEEE, CS
Press.

[FS86] Jose Fiadeiro and Amilcar Semadas. Linear tense propositional logic. Information
Systems, 11(1):61-85, 1986.

[GB91] D. Gabbay and P. Mc Brien. Temporal logic and historical databases. In Prec. of the
17th international conference on very large databases, Barcelona, September 1991.

[GBM86] Sol L Greenspan, Alexander Borgida, and John Mylopoulos. A requirements model-
Lug language. Information Systems, 11(1):9-23, 1986.

[GQWg0] R. Gaches, B. Querenet, P. Viollet, and F. Vemadat. Cim-osa: an open system ar-
chitecture. In Proceedings of the international conferefence CIM'90: Integration
Aspects, pages 227-234, Bordeaux (France), June 12-14, 1990. Productic-A, Teknea.

[HC68] G.E. Hughes and M.J. Cresswe11. An introduction to modal logic. Methuen and Co.,
London, 1968.

[HDM88] C.S. Harrison, L.G. Dove, and B. Makin. A practical approach to cim systems
design. In Proceedings of the Computer Aided Production Engineering Conference,
pages 375-380, November 1988.

[HR92] JacquesHagelstein andDominique Roelants. Reconciling operational and declarative
specifications. In E Loucopoulos, editor, Prec. of the 4th conference on advanced
information systems engineering - CAiSE'92, pages 221-238, Manchester (UK),
May12-15, 1992. LNCS 593, Springer-Verlag.

[1SS91] R. Jungclans, G. Saake, and C. Semadas. Formal specification of object systems. In
S. Abramsky and T. Maibaum, editors, Prec. of TAPSOFT'91 VoL2, pages 60-82,
Brighton (UK), 1991. LNCS 494, Springer-Verlag.

[KM87] S. Khosla and T. Maibaum. The prescription and description of state based systems.
In B. Banieqbal, H. Baxfinger, and A. Pnueli, editors, Temporallogic in specification.
LNCS 398, Springer-Verlag, 1987.

[KVdR89] R. Koymans, L Vytopil, and W. de Roever. Specifying message passing and time-
critical systems with temporal logic. Doctoral dissertation, Eindhoven University of
Technology, Eindhoven (The Netheriands), 1989.

[LVB87] A. Di Leva, E Veraadat, and D. Bizier. Information system analysis and conceptual
database design in production environments with m*. Computers in Industry, 9:183-
217, 1987.

[MBJK90] L Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos : A language for
representing knowledge about information systems. ACM Transansaction on Infor-
mation Systems, 8(4):325-362, 1990.

274

[osc89]

[Pet92]

[RFM91]

[RW91]

[Sch88]
[Set80]

[SFS90]

[SM92]

[SSE89]

[TLW91]

[vW68]

[Yu93]

E Orejas, V. Sacristan, and S. Clerici. Development of algebraic specifications with
constraints. In Proc. of the workshop in categorical methods in computer science.
LNCS 393, Springer-Verlag, 1989.
Michael Petit. Construction et formallsation de sp6cifications conceptueUes pour les
syst~mes productiques. Master's thesis, Computer Science Department, University
of Namur, Namur (Belgium), September 1992.
Mark D. Ryan, Jose Fiadeiro, and Tom Maibaum. Sharing actions and attributes in
modal action logic. In T. Ito and A. Meyer, editors, TheoreticalAspects of Computer
Software. Spdnger-Verlag, 1991.
Howard B. Reubinstein and Richard C. Waters. The requirements apprentice: Au-
tomated assistance for requirements acquisition. IEEE Transactions on software
engineering, 17(3), March 1991.
August-Wilhelm Scheer. CIM: Computer steered industry. Springer-Verlag, 1988.
Amilcar Semadas. Temporal aspects of logic procedure definition. Information
Systems, 5:167-187, 1980.
Cristina Semadas, Jose Fiadeiro, and Amflcar Semadas. Object-oriented modelling
from law. In Meersman, Shi, and Kung, editors, The Role of Artificiallntelligence in
Databases and lnformation Systems. North-Holland, 1990.
A. Sutcli.ffe and N. Maiden. Supporting component matching for software reuse. In
P. Loucopoulos, editor, Proc. of the 4th conference on advanced information systems
engineering- CAiSE'92, pages 290-303, Manchester (UK), May12-15, 1992. LNCS
593, Springer-Verlag.
A. Semadas, C. Semadas, and H.-D. Ehrich. Abstract object types: a temporal per-
spective. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc. of the collo-
quium on temporal logic and specification, pages 324-350. LNCS 398, Springer-
Verlag, 1989.
C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formal-
ism for temporal database applications. Information Systems, 16(4):401-416, 1991.
G.H. yon Wright. An essay in deontic logic and the general theory of action. Acta
Philosophica Fenn&a, XXI, 1968.
Erie S. K. Yu. Modelling organizations for information systems requirements en-
gineering. In A. Finkelstein, editor, Proc. of the IEEE International Symposium on
Requirements Engineering -RE'93, pages 3d 41, San Diego CA, January 4-6, 1993.
IEEE Computer Society Press.

