
The Three Dimensions of Requirements Engineering +

Klaus Poh l

Informatik V, RWTH-Aachen, Ahornstr. 55, 5100 Aachen
pohl@informatik.rwth-aachen.de

Abstract. Requirements engineering (RE) is perceived as an area of growing importance. Due to
the increasing effort spent for research in this area many contributions to solve different problems
within RE exist. The purpose of this paper is to identify the main goals to be reached during the
requirements engineering process in order to develop a framework for RE. This framework consists
of the three dimensions:

�9 the specification dimension

- the representation dimension
�9 the agreement dimension

Looking at the RE research using this framework, the different approaches can be classified and
therefore their interrelationships become much clearer. Additionally the framework offers a first
step towards a common understanding of RE.

1 Introduction

There is general agreement among software engineers and researchers that an early
stage of the software development life cycle called requirements engineering exists.
Furthermore requirements engineering (RE) is perceived as an area of growing importance.
Due to the increasing effort spent for research in this area many contributions to solve
different problems within RE exist. The purpose of this paper is to identify the main
goals to be reached during the requirements engineering process in order to develop a
framework for RE, the three dimensions of requirements engineering. Looking at the RE
research using this framework the different approaches can be classified and therefore
their interrelatiOnships become much clearer. Additionally the framework offers a first
step towards a common understanding of RE.

A first impression of the research subsumed under the term requirements engineering
can be gained by looking at the topics (cf. table 1) of the first major international meeting
on RE (International Symposium on RE 1993).

+ This work was supported by ESPRIT Basic Research Action 6353 (NATURE) which is concerned with Novel
Approaches to Theories Underlying Requirements Engineering and by the state Nordrhein-Westfalen, Germany.

276

�9 formal representation schemes and RE modelling
�9 descriptions of the RE process
�9 tools and environments to support RE
�9 requirements engineering methods;
�9 requirements analysis and validation;
�9 requirements elicitation, acquisition and formalization
�9 establishing traceability to requirements
�9 reuse and adaptation of requirements;
�9 intersections with AI, domain modelling and analysis
�9 intersections with computer-human-interaction and cognitive

science;
�9 intersections with group and cooperative work
�9 intersections with systems engineering

Tab. I. Topics of the First International Symposium on Requirements Engineering.

Even to understand the topics, the question "What is requirements engineering ?" must
be answered first. For example, before talking about tools and environments for supporting
RE, a clear idea of the aim of RE (e.g., building a requirement specification as defined
in IEEE STD 830-1984) and the problems to deal with, must be available. Also before
looking at the intersections between RE and other research areas, a common understanding
of RE must be gained first. But the topics illustrate, that RE is an interdisciplinary
research area.

To get a more detailed view of the ongoing research, we give a brief overview of the
RE literature. First, we focus on the research dealing with the detection of requirements.
This includes the problems of requirements elicitation and capture as well as the problems
of validation and verification of requirements (e.g., [11], [29], [30], [84], [64], [87]).
To represent requirements formal specification languages (e.g., Z [92], VDM [8], [47],
PAISLey [100]) and knowledge representation languages (e.g., RML [41], ERAE [45],
TELOS [76], [55]) were proposed. They offer the advantage of automatic reasoning (e.g.,
[9], [73], [65], [62], [96]) but applying them to RE is not straight forward (e.g., [4], [46],
[3], [28]). Moreover, they must be generated from, and integrated with, informal RE
specifications (e.g., [41], [6], [57], [38], [34], [74], [59]).

During the RE process different views of the system to be built exist. Some work
concerns view integration and viewpoint resolution (e.g., [63], [64], [31]). Others suggest
to focus on the social and cognitive aspects of RE (e.g., [90], [40]), thus gaining a better
specification. Methods of AI are also used to support the RE process (e.g., [1], [5],
[65], [69], [58], [94], [86], [68]). The advantages of reusing specification for economical
reasons as well as for avoiding errors were lined out (e.g., [7], [36], [66], [94], [67],
[22], [16], [68]). Other research focuses on the RE process (e.g., [43], [171, [44], [53],
[18], [80]). It was recognized, that the RE process must be traceable (e.g., [33]) and
understandable. Therefore the recording of design rationale (e.g., [83], [88], [53]) and
the integration of argumentation concepts into the RE area are proposed (e.g., [15], [85]).
Generally speaking it can be said that methodologies for supporting RE that based on
different representation formalisms exist, but do not tell the requirements engineer very
clearly how to proceed (e.g., ER [13], SA [95], [98], JSD [12], object-oriented analysis
[93], [79], [75], [14], conceptual modelling [77], F-ORM [22], PSL/PSA [89], SREM

277

[2], ASPIS [84], KBSA [19]). Also some classification of the methods were proposed
(e.g., [101], [21]).

Even with the coarse classification of the literature made above the main goals and
the real problems of RE are not visible. A first step into getting to the heart of RE is to
distinguish between two kinds of problems:

�9 original requirements engineering problems and
�9 problems caused by approaches which try to solve the original problems.

Making the original RE problems and the goals to be reached during the process explicit
provides the basis for classifying the research of the RE area and for guiding a RE process.
In section 2, we consider the RE process at an abstract level. Looking at the initial input
and the desired output, three main characteristics can be identified. These features lead to
the three dimensions of requirements engineering which are the main contribution of this
paper (section 3). In section 4 we look at the RE process within the three dimensions. Thus
the goals to be reached by the RE process are recognized and the problems which occur
during the process can be classified. A classification of computer support for requirements
engineering is made in section 5. In section 6 our contributions are summarized.

2 The Requirements Engineering Process

McMenamin and Palmer [71] suggest to distinguish between the essence of a system
and its incarnation. The essence is defined by all essential activities and data stores
whereas the sum of people, phones, computer systems, offices, typewriters, pencils,
rubbers and so forth that are used to implement the system are the incarnation (cf. [71],
[98]). To get a clear idea of the essence of a system they assume that the system can
be implemented using perfect internal technology. This assumption makes it easier to
concentrate on the essence of the system instead of getting influenced by unnecessary
side aspects. Therefore the essence of a system has to be clearly defined first; aspects
which come from the use of imperfect technology are not considered. After this, the
so gained essential model of the system is extended by actions and data stores based on
the use of imperfect technology. In the following we use this approach to look at the
RE process.

Looking at a process (e.g., the requirements engineering process) on a abstract level,
its essence is transforming an input to a desired output. Assuming that the RE process can
make use of perfect technology (perfect tools, no social conflicts, no cognitive limitations
etc.) it is insignificant how the transformation is achieved. Let us focus on the output
of the RE process first.

2.1 The Desired Output

There is no doubt, that at the end of requirements engineering a specification of
the system to be built (at least for the current version of the system) must exist. This
specification serves as a basis for the next phase within the software life cycle. Thus, as
a first characteristic of the output of the RE process, a specification of the system can
be identified. We don't focus on the details of the final specification at this point. It is

278

enough to keep in mind that the complete specification, as expected, is the basic result
of the RE process.

If the system specification is expressed using e.g. natural language, different people
may understand the same specification in different ways. This may lead to unexpected
designs and implementations. To avoid different interpretation of a specification, more
and more people suggest to use a formal language for representing the specification of the
system. Additionally a formal language offers the possibility of reasoning support. So
the result of the RE process should be expressed using a formal language.

But it is not enough to produce a specification expressed in a formal language.
Assume that a functionality called work control is well defined and that there exists no
problem in mapping this part of the specification into a design and an implementation
later on. But within the requirements engineering team only a few people agree on
this functionality promoted by the people which are responsible for cost control. The
representatives of the users don't like this functionality at all. If no common agreement
is reached during the RE phase, the problems caused by this must be solved later on. As
experience has shown, more effort is needed to correct errors in the later phases of the
software life cycle [11]. To avoid expensive error corrections all people involved in the
RE process should end up on a common agreement on the final specification.

Summarizing the main characteristics of the desired output of the RE process are
a complete system specification expressed using a formal language on which all people
involved agree.

2.2 The Initial Input of the Process

At the beginning of the RE process the knowledge about the system is coarse. Some
features of the system are obvious, whereas about others only vague imaginations exist.
Therefore the understanding of the system and the specification which can be gained out
of it is very opaque. Since people involved in the RE process have various roles (e.g.,
user representative, system developer, maintenance staff, financial officer) and different
skills and knowledge, each of them has his own understanding of the system to be built.
Especially at the beginning of the RE process many different visions of the system exist.
They may have something in common, but this is not necessarily the case. Hence at the
beginning of the RE process many personal views on the system exist and no common
representation format is used to express the expectations. Each stakeholder uses his
preferred representation format for expressing his personal view of the system. Some of
them may just think about the system (representing the knowledge in brain-structures),
others may make notes using natural language, or may draw pictures or graphics. Hence
mainly informal representations are used at the beginning of the RE process.

Summarizing, at the beginning of file RE process opaque personal views of the system
exist which are recorded using informal languages.

3 The Three Dimensions of Requirements Engineering
Looking at the brief description of the initial input and the desired output, three main

goals of the RE process can be identified:

279

�9 improving an opaque system comprehension into a complete system specification;
�9 transforming informal knowledge into formal representations;
�9 gaining a common agreement on the specification out of the personal views;

Out of these goals, three dimensions of RE can be gained: specification, represen-
tation and agreement dimension. Within the three dimensions, the initial input, as well
as the desired output can be characterized. This is shown in figure I, where the initial
input is characterized by personal views, opaque system specification and informal repre-
sentation and the desired output by common agreement, complete system specification and
formal representation. In the following the three dimensions are described.

Fig. 1. The Three Dimensions of Requirements Engineering.

3.1 The Specification Dimension

The specification dimension deals with the degree of requirements understanding at
a given time. At the beginning of the RE process the specification of the system and its
environment is more or less opaque. This goes along with the vague imagination of the
system at the early stage of the RE process. Focusing on this dimension, the aim of RE is
to transform the operational need into a complete system specification through an iterative
process of definition and validation (e.g., analysis, trade-off-studies, prototyping).

Several standards and guidelines describe how the final requirements specification
should look like (e.g., IEEE Std. 830 [49], British Standard 6719, European Space Agency
ESA PSS-05--0 [72]). In the following we briefly describe the properties a requirements
specification should have. A more detailed description of the attributes of a requirements
specification and an overview of existing standards and guidelines can be found in [25].

First of all, a requirement specification is supposed to state what a system should do
and not how (cf. [20]). Additionally, the specification must be unambiguous, complete,
verifiable, consistent, modifiable, traceable and usable during operations and maintenance
(cf. [49] for a detailed description).

280

Secondly a differentiation between two kinds of requirements can be made:

�9 functional requirements
�9 non-functional requirements

The functional requirements specify what the software must do. According to IEEE 830,
non-functional requirements can be further divided into performance, design constraints,
external interface and quality attributes. Performance requirements deal with the execution
time and computational accuracy. Design constraints are predefined designs imposed
on the software development by the customer. External interface requirements define
everything outside the subject of the system the software must deal with (e.g., constraints
from other standards, hardware or people). With quality attributes the quality of the
software to be reached is defined (cf. [61] for examples of quality attributes).

Beside this classification of requirements a distinction between vital requirements and
desirable requirements should be made (cf. British Standard 6719 [48]). V/tal require-
ments must be completely accomplished by the system, whereas desirable requirements
may be relaxed and need not be met within the stated limits. Some standards propose
to include costs and schedule information in the requirements specification (e.g., British
Standard 6719) whereas other separate them from requirements engineering (e.g., IEEE
Statement of Work). Additionally many proposals for validation and verification of system
specification were made (e.g., [11], [99], [10], [35], [25], [64]).

Summarizing the first main goal of RE, as identified by many researchers, is to built
a requirements specification, according to the standard and/or guideline used. The degree
of the specification (opaque to complete)is captured by the specification dimension.

3.2 The Representation Dimension

The representation dimension copes with the different representations (informal and
formal languages, graphics, sounds etc.) used for expressing knowledge about the system.
Within RE there are three categories of representations. The first category includes
all informal representations, such as arbitrary graphics, natural language, descriptions
by examples, sounds and animations. The second category subsumes the semi-formal
languages such as SA-diagrams, ER-diagrams, SADT etc. The third category covers
formal languages such as specification languages (e.g., VDM [8], Z [92]) or knowledge
representation languages (e.g. ERAE [45], Telos [76]).

Each of these categories offers some unique advantages. Informal representations
like natural language are user-oriented. They are well known, since they are used in
dally life. The expressive power offered by informal representation is very high and all
kinds of requirements freedom are available (e.g., ambiguity, inconsistency, contradictory;
cf. [4], [28] for more detail). Semi-formal representations like SA or ER diagrams are
based on a structured graphical visualization of the system. The representations are clear
and provide a good overview of the system ("one picture says more than a thousand
words"). Additionally they are widely used within industry as a quasi-standard. In
contrast to informal representation the semi-formal representation come with formally
defined semantics, which could be used for reasoning. But the formal defined semantic
of semi-formal languages is very poor, so still most of the represented knowledge has no
formal meaning. Formal representation languages have a richer well defined semantic.

281

Therefore reasoning about most of the represented knowledge is possible. Even code can
be (partially) automatically generated out of a them. So formal representation languages
are more system oriented.

The use of a particular representation language has two main reasons. The first reason
for using a special language is simply personal preference. Due to the advantages of each
representation class, different people prefer different representations. For example the
system user may like natural language, whereas the system specialist may prefers formal
representation. The second reason for using a particular language is the current state of the
specification. At the beginning of the RE process normally informal languages are used,
whereas at the end specifications are often represented using formal languages. Hence
the RE process must assure, that out of the informal requirements a formal specification
is achieved. Since different representation languages are used within the RE process
in parallel, they must additionally be kept consistent. Suppose that a requirement was
expressed using natural language by the customer. Out of this requirement, a formal
specification was built by the system specialist. If, for example, the informal requirement
is revised, it must be assured that the formal representation of the specification is modified
accordingly.

The representation language used does not imply if a specification is vague or precise.
Hence the representation dimension is orthogonal to the specification dimension. A
vague imagination of the system can be expressed using a natural language, but also
using a formal representation language. Also concrete (formally defined) ideas can
obviously be represented using a formal representation language, but they can also be
exactly described using natural language (e.g., lawyers try to do so). Looking at the
specification " the age o f Carl i s 20 y e a r s ' and on a formal specification, e.g.,
using first order logic, "age (c a r l , 10, yea r s) �9 no difference can be recognized.
Whereas the vague specification 'Carl is young' is also vague if it is represented in first
order logic "young (Carl) ". Hence the difference between the two specifications, vague
versus precise, remains the same, independent of the representation language used.

Summarizing, during the RE process different representation languages are used.
At the beginning of the process the knowledge about the system is expressed using
informal representations, whereas at the end of RE the specification must also be formally
represented.

The second main goal of the RE process is threefold. First, different representations
must be offered. Second, the transformation between the representations (e.g., informal to
semi-formal, informal to formal) must be supported. Third, the different representations
must be kept consistent.

3.3 The Agreement Dimension

The third dimension deals with the degree of agreement reached on a specification.
At the beginning of the RE process each person involved has its own personal view
of the system. Of course few requirements may be shared among the team, but many
requirements exist only within personal views of the people, e.g., stemming from the
various roles the people have (system analyst, manager, user, developer etc.). In the
following the expression common system specification is used for the system specification
on which the RE team has agreed.

282

The RE process tries to increase the conunon system specification. But still require-
merits exist on which none or only partial agreement was reached. Let's focus on a
simple example. Assume, that a library system is currently specified by an RE team.
An agreement was gained, that data about the real world object "book" must be stored.
Each stakeholder defines (from his point of view) the properties of the object "book' .
The user defines the properties 'book-title, author-name, year" using natural
language. The system analyst additionally defines the properties "book- id , s t a t u s -
of-book (loaned / available / defect [stolen / ordered)" using a for-
mal representation language and the specification of the librarian consists of the prop-
erties �9 names of authors, keywords, classification-no., location ".

Therefore, the need for storing information about the object book belongs to the common
system specification, whereas at the same time the properties to be stored are pertained by
the personal views. In addition the coexistent specifications are expressed using different
representation languages.

Different views of the same system have positive effects on the RE process. First,
they provide a good basis for requirements elicitation (e.g., [64]). Second, the examination
of the differences resulting from them can be used as a way of assisting in the early
validation of requirements. Hence having different views enables the team to detect
additional requirements. Moreover, if contrasting requirements were stated, conflicts can
be detected and therefore become explicit.

It is important to recognize that the integration of different views at the representation
level (e.g., integrating formally represented views into a comprehensive view) and the
agreement on the integrated view among the people involved in the process are two
separate actions. The fact, that a view was formally integrated has nothing to do with
the agreement which exists on this view. A detected conflict must be solved through
communication among people. Of course this communication has the aim of attaining
an agreement (solving the conflict), but as a side effect additional unknown arguments
(requirements) could be detected (ef. [15], [85]). Support for conflict resolution can
be found in the area of compuier supported cooperative work (e.g., [97], [42], [15]).
Additionally support can be offered through different representations, e.g., by providing
informal knowledge for explanation of formal representations, by offering graphical
representation for overview of the system, or by automated detection of differences
between formal specifications.

Summarizing, the agreement dimension is as important as the representation and
specification dimension. We have pointed out that several specifications expressed in
different representation formats may exist at the same time. Further we showed, that the
coexistence of different views has positive effects on the RE process. Thus, allowing
different views and supporting the evolution form the personal views to a common
agreement on the final specification is the third main goal of RE.

4 The RE Process within the Three Dimensions

Looking at the RE process within the three dimension, the aim of the RE process
can be stated as getting from the initial input to the desired output. So the trace of the RE
process is an arbitrary curve within the cube spanned by the three dimensions (cf. figure 2).

283

The initial input is characterized as opaque personal views of the system represented using
informal languages, whereas the desired output is characterized as formally represented,
complete system specification on which agreement was gained (of. section 2 for details).
The main goals of the RE process can be sketched as follow (cf. section 3 for details):

�9 develop a complete system specification out of a opaque system understanding
�9 providing integrated representations and support the transformation between them
�9 accomplish a common agreement on the final specification allowing personal

views.

Fig. 2. The RE process within the three dimensions.

Getting from the initial input to the desired output is an interactive process consisting
of different actions. An action can of course affect more than one dimension; improving
one dimension often lead to a step back in another dimension.

The transformation of informally represented knowledge into a formal specification
is a good example of an action (transformation step) affecting all three dimensions. An
improvement within the representation dimension is gained, since informal knowledge
is transformed into a formal representation. But during the formalization a contradiction
within the formal representation may be detected by automated reasoning. This leads to a
communication within the RE team to gain an agreement about the conflict (improvement
of the agreement dimension), but additionally as a side effect a new requirement was no-
ticed. The integration of the requirement as well as the agreement about the contradiction
lead to an improvement of the specification dimension. The original action, transforming
informally represented knowledge into a formal representation causes the execution of
other actions and therefore affects all three dimensions.

This view of the RE process can not only be applied for the overall system speci-
fication. Also the evolution of each individual requirement can be covered by the three
dimensions. A specific requirement can be represented within different specifications
(personal views), each of these views can be represented using different representations

284

and the specific requirement can be well understood by a part of the RE team, whereas
the other part may have still only vague ideas about it. Hence, the three dimensions and
the view of the RE process as an interactive transformation process consisting of actions
also helps to understand the RE process at a microscopic level.

Since the RE process takes place in the 'normal' world, the result of the RE process
is influenced by various factors. All of them can have both positive and negative influence
on the RE process. We identified five main factors influencing the RE process:

�9 Methods and Methodologies: The process is influenced by the methods and
methodologies used for guiding the process. Of course using another method
during the process can lead to different results, since they focus on different
things. If e.g., structured analysis was used, the final formal specification can be
totally different in comparison to a specification gained by using object oriented
analysis.

�9 Tools: The final specification depends on the tools used during the process. If
e.g., a reasoning tool for formal representations was used, inconsistencies can be
detected, which otherwise could be still in the final specification.

�9 Social Aspects: The social environment of the RE team affects their working
results. If e.g., there are conflicts between the different persons, they work more
ineffectively; if the people feel fine at work, the output of the work is much better.

�9 Cognitive Skills: People have different cognitive skills. If very bright people are
involved in the RE process, the final specification is usually better.

�9 Economical constraints: Economical constraints limit the resources (people,
money, tools, etc.) which can be used during the RE process. It 's not always
true, that with more resources a better result can be gained, but if the available
resources are low a certain limit, the output of the process gets less quality.

Discussing these influences in detail is beyond the scope of this paper. But it should be
clear, that these are not unique to the RE process. Most of the existing processes, e.g.,
the production processes, are influenced by these factors.

For these reasons it is necessary to distinguish between problems which are original

RE problems and those problems which are caused by one of the five influences mentioned
above. The problem of keeping SA-diagrams, ER-diagrams as well as the data-dictionary
consistent is an example for a problem caused by one of the five influences mentioned
above (methods). Another example is the problem of motivating people (social aspects).
Original RE problems are all the problems which are caused by the three dimensions.
Hence requirements capture, elicitation of requirements, transformations between different
representations, integration of different views are examples for original RE problems.

5 Computer Support for Requirements Engineering
Traditional CAD/CASE systems have often neglected that computer support for any

engineering activity must be based on an understanding of the process. In this section we
use the framework presented is this paper to characterize the kinds of computer support
that could be useful for RE. We distinguish between computer support for improving the
result of the RE process in one of the three RE dimensions, for guiding the process of
RE and for easing the influences on the process.

285

5.1 Specification Dimension

Getting to a deeper understanding of the system and therefore to a better system
specification can mainly be supported by three different kind of approaches.

First, generic knowledge (domain knowledge) can be used to improve the specifi-
cation of the system. There exist generic knowledge which is valid within a particular
domain, e.g., banking systems, but also domain knowledge which is valid within many
domains, e.g., stock control. It was demonstrated by many research contributions that the
use of domain knowledge has positive effects on the RE task (e.g., [5], [1], [361, [84],
[65], [86], [68], [51]).

Second, the reuse of specific knowledge can lead to a better system specification.
Reusing requirements specification of already existing systems leads to better insight of
the systems behavior and avoids misspecifications. If the requirements specification of an
existing system is not available it can be gained through reverse engineering (e.g., [36],
[7], [56], [16]). For both using generic and specific knowledge during the RE process,
support for retrieving suitable knowledge must be offered, e.g. using similarity based
search approaches (e.g., [39], [16], [91]).

Third, the current specification of the system can be improved by applying techniques
for requirements validation. Validating a software specification was characterized by
Boehm as "Am I building the right product" [11]. During the validation errors and gaps
within the current specification can be detected. This leads to a correct specification of
already known requirements (correcting the errors) or the detection of new requirements
(filling the gaps, e.g.,[ll], [30], [87]).

5.2 Representation Dimension

Within the representation dimensions the support which can be offered is twofold.

First, due to certain strengths and weaknesses of the different representation formats
the use of informal representation (e.g., natural language, graphics), semi-formal (e.g.,
ER, SA) and formal representation languages (e.g., VDM, Z, TELOS, ERAE) must be
possible. For keeping the knowledge, expressed in the different representation formats,
consistent, the different representations must be integrated. The relationship between
formal and informal representations is much less understood. But hypertext offers a
opportunity to structure informal requirements and to relate them to formal approaches
(e.g., [601, [151, [85], [591).

Second, the transformation between informal, semi-formal and formal representations
must be supported. On one side, support for automated derivation of formal specifica-
tions out of informal descriptions has to be offered (e.g., [41], [571, [74], [34], [87]).
On the other side, the transformation process must be supported by offering requirements
freedom within the formal representation language. Formally specifications have tradi-
tionally been expected to be complete, consistent and unambiguous. However, during
the initial definition and revision of formal requirements, they are typically fragmented,
contradictory, incomplete, inconsistent and ambiguous. Furthermore the expressions may
include various levels of abstractions (concrete, examples, general properties etc.). Since
formal requirements are built out of non-formal, the acquisition process must allow many
freedoms (cf. [3], [28], [51]).

286

5.3 Agreement Dimension

There was not much research done in supporting the agreement dimension within
the area of requirements engineering. Nevertheless, three kinds of essential assistance for
the agreement dimension can be identified.

First, as pointed out in section 3.3, different views of the system exist during the
RE process. Even within formal languages it must be possible, that different views and
different specifications exist in parallel. Also the different views and specifications must
be maintained during the RE process.

Second, support for detecting dissimilarities and inconsistencies between the different
views must be offered. Additionally the integration of different views must be supported
by appropriated tools. Contradictions for example can be made explicit through automatic
reasoning and of course the work out of a solution can be supported. Viewpoint resolution
and view integration are two good examples for such support (e.g., [64], [31]).

Third, as mentioned in section 3.3, an agreement can only be gained through
communication among the involved people. Hence supporting the communications,
conversations, coordination and collaboration between people as well as decision support
leads to better and possibly faster agreements. Research done in the CSCW area can
contribute basic solutions for this (e.g., [97], [42], [32], [27], [70]).

5.4 Process Modeling

To support the overall RE process a suitable process model must be developed for
guiding the RE process within the three dimensions.

According to Dowson [26], process models can be classified in three categories:
activity-oriented, product-oriented and decision-oriented models. From the viewpoint of
requirements engineering, only the last category appears to be partially appropriate. It
is probably difficult to impossible to write down a realistic state-transition diagram (to
cite a popular activity-oriented model) that adequately describes what has to happen or
actually happens in RE. But relying on the pure object history is also insufficient. Even
the decision-based approach (e.g., [52], [88], [82]) offer only limited hints when and how
to decide on what. The central aspect of the process model for RE is therefore that it
makes the notion of situation (in which to decide) explicit and relates it to the broader
question of context handling (e.g., [80]).

Using the three dimensions, for each action a prediction, how the specification will
change after the actions was applied, can be made. For example for validation at least
a prediction can be made, that after the validation, the specification dimension will be
improved. Within the NATURE [50] project it is assumed, that the basic building block
of any process can be modelled as a triplet <situation, decision, action> [43]. A process
model based on this assumption for supporting the RE process within the three dimensions
is currently under development.

The last two feature, to be mentioned here, is the importance of quality orienta-
tion and process improvement (cf. [53], [80] for more information about quality and
improvement oriented process models). It was recognized within the mechanical engi-
neering community, that it is insufficient to correct the missing quality of a product after
the fact it was produced. Quality must be produced in the first place. Therefore quality

287

oriented process models are necessary. Especially in rapidly changing areas, like software
production, it is very important to have evolving and quality oriented process models.

5.5 Easing the Influences on RE

As identified in section 4 five main influences on RE exist. Social aspects, cognitive
skills and economical constraints are basic influences on the process. In contrast, methods
and methodologies as well as tools are designed to support the process within the three
dimensions, but also to ease tile basic influences on the process (social aspects, cognitive
skills and economical constraints). For designing appropriate methods, methodologies or
tools knowledge gained within other research area can be used, e.g., management methods
(e.g., TQM [23], [78]), organizational measures (e.g. value-added chains [81]).

Beside the task of building suitable methods and tools the need for recording of
process knowledge was recognized to make the development process of software and
specifications traceable (e.g., [24], [88], [54], [53]). Informal, semi-formal as well as
formal knowledge must be recorded, and therefore interrelated. Hypertext is supposed to
offer a solution for the integration of different representation (e.g., [37], [6], [38]).

6 Conclusions

In this paper we introduced a framework for requirements engineering (RE). First
we focused on the essence of the RE process. We characterized the 'initial input'
of the RE process as opaque personal views at the system expressed using informal
representation languages. The 'desired output' was sketched as a complete system
specification expressed using formal languages on which an agreement was reached. Based
on this characterization the three main goals of RE were identified:

�9 gaining a complete system specification out of the opaque views available at the
beginning of the process, according to the standard and/or guideline used,

�9 offering different representation formats, supporting the transformation between
the representation (e.g., informal to semi-formal, informal to formal) and keeping
the various representations consistent,

�9 allowing various views and supporting the evolution form personal views to
common agreement on the finial specification.

Out of these, the three dimensions of RE were gained:

�9 specification,
�9 representation and
�9 agreement dimension

Looking at RE using these three dimensions we identified the main tasks and goals to
be reached within each dimension during the RE process. But RE is not only driven
by its goals, it is also influenced by the environment. We identified five main factors
influencing requirements engineering: methods and methodologies, tools, social aspects,
cognitive skills and economical constraints. Accordingly existing research and computer
support was briefly sketched by distinguishing between computer support for improving

288

the specification in one of the three RE dimension, for guiding the process of RE and
for easing the influences on RE.

Within the NATURE project this framework is used for classifying RE problems and
for making process guidance possible. The framework itself should be seen as a first
attempt to accomplish a common understanding of RE within the community. It should
serve as a basis for discussing research topics and identifying the main problems of RE.

Acknowledgments

I am indebted to Stephan Jacobs and Matthias Jarke for many fruitful comments on an earlier
version of this paper. Additionally I am grateful to John Mylopolous and many colleagues within
the NATURE project for discussions which have positively influenced this paper.

References

1. B. Adelson and E. Soloway. The Role of Domain Experience in Software Design. IEEE
Transaction on Software Engineering, 11(1 I), 1985.

2. Mack W. Alford. Software Requirements Engineering Methodology (SREM) at the age of two.
In 4th Int. Computer Software & Applications Conference, New York, pages 866-874. IEEE,
1980.

3. R. Balzer. Tolerating Inconsistency. In Int. Conference on Software Engineering, pages 158-
165, Austin, Texas, 1991.

4. R. Balzer, N. Goldman, and D. Wile. Informality in program specifications. IEEE Transactions
on Software Engineering, 4(2):94-103, 1978.

5. D.R. Barstow. Domain Specific Automatic Programming. IEEE Transaction on Software
Engineering, 1 I(11), 1985.

6. James Bigeiow. Hypertext and CASE. IEEE Software, pages 23-27, March 1988.
7. T. Biggerstaff and R. Richter. Reusability Framework, Assesment and Directions. IEEE

Transaction on Software Engineering, 13(2), 1987.
8. D. Bjoerner and C.B. Jones. VDM'87 VDM-A Formal Method at Work. LNCS 252, Springer

Verlag, 1988.
9. Alexander Borgida, Sol Greenspan, and John Mylopoulos. Knowledge Representation as the

Basis for Requirements Specifications. Computer, 18(4):82-91, April 1985.
10. Marilyn Bush. Improving Software Quality: The use of Formal Inspections at the Jet Propulsion

Laboratory . In Proc. of the 12th Int. Conf. on Software Engineering, March 26-30, Nice,
France, pages 196-199, 1990.

11. B.W.Boehm. Verifying and Validating Software Requirements and Design Specifications. IEEE
Software, 1(1):75-88, January 1984.

12. John R. Camaron. An Overview of JSD. IEEE Transaction on Software Engineering,
12(2):222-240, February 1986.

13. P.P.S. Chen. The Entity-Relationship Approach: Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 1976.

14. Peter Coad and Edward Yourdon. Object Oriented Analysis. Prentice-Hall, Englewood Cliffs,
New Jersey, 1990.

289

15. J. Conldin and M. J. Begeman. glBIS: A Hypertext Tool for Exploratory Policy Discussion.
ACM Transaction on Office Information Systems, 6(4):303-331, 1988.

16. P. Constantopouios, M. Jarke, J. Mylopoulos, and Y. Vassiliou. Software Information Base:
A server for reuse. ESPRIT project ITHACA, Heraklion, Crete, ICS-FORTH, 1991.

17. B. Curtis, H Krasner, and N. Iscoe. Field Study of the Software Design Process for Large
Systems. Communication of the A CM, 33(11): 1268-1287, 1988.

18. Bill Curtis, Marc 1. Kellner, and Jim Over. Process Modelling. Conununications of the ACM,
35(9):75-90, September 1992.

19. A. Czuchry and D. Harris. KBSA: A New Paradigm for Requirements Engineering. IEEE
Expert, 3(4):21-35, 1988.

20. Alan M. David. The Analysis and Specification of Systems and Software Requirements. In
Thayer R.H. and M. Doffman, editors, Systems and Software Requirements Engineering, pages
119-134. IEEE Computer Society Press - - Tutorial, 1990.

21. Alan M. Davids. A Comparison of Techniques for the Specification of External System
Behavior. Colmnunications of the ACM, 31 (9): 1098-I 115, 1988.

22. V. de Antonellis, B. Pernici, and P. Samarati. F-ORM Method: Methodology for reusing
Specifications. ITHACA Journal, (14):1-24, 1991.

23. W.E. Deming. Out of the Crisis. Massachusetts Institiute of Technology, Center for Advanced
Engineering Study, Cambridge, 1986.

24. V. Dhar and M. Jarke. Dependency Directed Reasoning and Learning in System Maintenance
Support. IEEE Transactions on Software Engineering, 14(2):211-228, 1988.

25. Merlin Dorfman and Richard H. Thayer. Standards, Guidelines and Examples on System and
Software Requirements Engineering. IEEE Computer Society Press - Tutorial, 1990.

26. M. Dowson. Iteration in the Software Process. In Proceedings 9th Int. Conf. on Software
Engineering, April 1987.

27. C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: Some lssues and Experience.
Communication of the A CM, 34(1):38-58, 1991.

28. M.S. Feather and S. Fickas. Coping with Requirements Freedom. In Proceedings of the
International Workshop on the Development of Intelligent Information Systems, pages 42-46,
Niagara-on-the-Lake, Ontario, Canada, April 1991.

29. S. Fickas. Automating analysis: An example. In Proceedings of the 4th International Workslwp
Software Specification and Design, pages 58-67, Washington, DC, April 1987.

30. S. Fickas and P. Nagarajan. Critiquing Software Specifications. IEEE Software, pages 37-47,
November 1988.

31. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
A Framework for Integration Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge Engineering, 1(2), May 1992.

32. Gerhard Fischer, Raymond McCall, and Anders Morch. JANUS: Integrating Hypertext with
a Knowledge-based Design Environment. In Proceedings of Hypertext '89, November 5-8,
Pittsburgh, Pennsylvania, pages 105-117, 1989.

33. R.F. Flynn and D. Dorfmann. The Automated Requirements Traceability System (ARTS): An
Experience of Eight Year. In Thayer R.H. and M. Dorfman, editors, Systems and Software
Requirements Engineering, pages 423-438. IEEE Computer Society Press - - Tutorial, 1990.

34. Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Informal and Formal Requirements
Specification Languages Bridging the Gap. IEEE Transactions on Software Engineering,
17(5):454--466, May 1991.

35. Daniel P. Freeman and Gerald M. Weinberg. Handbook of Walkthroughs, Inspections and
Teclmical Reviews. Dorset House Publishing, New York, 1990.

36. P. Freemann, editor. Software reusability. IEEE Press - Tutorial, 1987.

290

37. Pankaj K. Garg and Walt Scacchi. On Designing Intelligent Hypertext Systems for Information
Management in Software Engineering. In Proceedings of Hypertext '87, November 13-15,
Chapel Hill, North Carolina, pages 409--432, 1987.

38. Pankaj K. Garg and Walt Scacehi. A Hypertext System to Manage Software Life-Cycle
Documents. IEEE Software, pages 90-98, May 1990.

39. D. Gentner. Structure Mapping: A Theoretical Framework for Analogy. Cognitive Science,
5:121-152, 1983.

40. Joseph A. Goguen, Marina Jirotka, and Matthew J. Bickerton. Research on Requirements
Capture and Analysis. Technical report, Oxford University Computing Laboratory, Centre for
Requirements and Foundations, December 199l.

41. S.J. Greenspan. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Definition. PhD thesis, Dept. of Computer Science, University of Toronto, 1984.

42. I. Greif, editor. Readings in Computer-Supported Cooperative Work. Morgan Kaufmann, 1988.
43. George Grosz and Colette Roland. Using artificial intelligence techniques to formalize the

information system design process. In Proc. Int. Conf. Databases and expert Systems
Applications, pages 374-380, 1990.

44. R. Guidon and B. Curtis. Control of cognitive process during software design: What tools are
needed? In E. Soloway, D. Frye, and S.B. Sheppard, editors, Proc. of CHI '88 Conference:
Human Factors in Computer Systems, pages 263-269. ACM Press NY, 1991.

45. J. Hagelstein. Declarative Approach to Information Systems Requirements. Knowledge Base
Systems, I(4):211-220, 1988.

46. Anthony Hall. Seven Myths of Formal Methods. IEEE Software, (9): 11-19, September 1990.
47. C.A.R. Hoare. International Conference on VDM and Z. LNCS 428, Springer Verlag, 1990.
48. IEEE. Standards, Guidelines, and Examples on System and Software Requirements Engbieer-

big. IEEE Computer Society Press - Tutorial, 1990.
49. IEEE. IEEE Std. 830--1984. In IEEE Software Engineering Standards Collection. IEEE, New

York, 1991.
50. Matthias Jarke, Janis Bubenko, Colette Rolland, Allistair Sutcliffe, and Yannis Vassiliou.

Theories Underlying Requirements Engineering: An Overview of NATURE at Genesis. In
Proceedings of the lth Int. Symposium of Requirements Engineering, San Diego, CA, 1993.
to appear.

51. Matthias Jarke, Stephan Jacobs, and Klaus Pohl et. ai. Requirements Engineering: An
Integrated View of Representation, Process and Domain. In submitted to: ECSE '93, 1993.

52. Matthias Jarke, Manfred Jeusfeld, and Thomas Rose. A Software Process Data Model for
Knowledge Engineering in Information Systems. Information Systen~s, 15(1):85-116, 1990.

53. Matthias Jarke and Klaus Pohl. Information System Quality and Quality Information Systems.
In Proceedings of the IFIP 8.2 Working Conference on the bnpact of Computer-Supported
Techniques on Information Systems Development, 1992.

54. Matthias Jarke and T. Rose. Specification Management with CAD ~ In P. Loucopoulos and
R. Zicari, editors, Conceptual Modeling Databases, and CASE, 1991.

55. Manfred Jeusfeld. Anderangskontrolle in deduktiven Objektbanken. INFIX Pub, Bad Honnef,
Germany, 1992.

56. P. Johannesson and K. Kalman. A Method for Translating Relational Schemas into Conceptual
Schemas. In 8th bit. Conf. on Entity-Relationship Approach, pages 279-294, 1989.

57. W. Lewis Johnson. Deriving Specifications from Requirements. In Proceedings of the lOth
International Conference on Software Engineering, pages 428---438, Singapore, April 1988.

58. W. Lewis Johnson and Martin Feather. Building An Evolution Transformation Library. In
Proceedings of the 12th International Conference on Software Engineering, pages 428-438,
Nice, France, March 1990.

291

59. W. Lewis Johnson, Martin. S. Feather, and David. R. Harris. Representation and Presentation
of Requirements Knowledge. IEEE Transactions on Software Engineering, 18(10), October
1992.

60. W. Lewis Johnson and David R. Harris. The ARIES Project. In Proceedings 5th KBSA
Conference, pages 121-131, Liverpool, N.Y., 1990.

61. S. E. Keller, L. G. Kahn, and R. B.Panara. Specifying Software Quality Requirements
with Metric. In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements
Engineering, pages 145-163. IEEE Computer Society Press w Tutorial, 1990.

62. Manolis Koubarakis, John Mylopoulos, Martin Stanley, and Matthias Jarke. Telos: A
Knowledge Representation Language for Requirements Modelling. Technical Report KRR-
TR-89-1, Department of Computer Science, University of Toronto, 1989.

63. Julio Cesar S. P. Leite. Viewpoint Analysis: A Case Study. In Proceedings of tile 5th
International Workshop on Software and Design, pages 111-119, Pittsburgh, PA, 1989.

64. Julio Cesar S. P. Leite and Peter A. Freeman. Requirements Validation Through Viewpoint
Resolution. IEEE Transactions on Software Engineering, 17(12):1253-1269, December 1991.

65. P. Loucopoulos and R. Champion. Knowledge-Based Approach to Requirements Engineering
Using Method and Domain Knowledge. Knowledge-Based Systelns, 1(3), 1988.

66. M.D. Lubars and M.T. Harandi. Knowledge-Based Software Design Using Design Schemas.
In Proceedings 9th Int. Conf. on Software Engineering, April 1987.

67. Nell Maiden. Analogy as a Paradigm for Specification Reuse. Software Engineering Journal,
1991.

68. Nell Maiden. Analogical specification Reuse during Requirements Analysis. PhD thesis, City
University London, 1992.

69. M. Mannino and V. Tseng. Inferring Database Requirements from Examples in Forms. In
Int. Col~ on Entity-Relationship Approach, pages 391-405. Elsevier Publishers B.V. (North-
Holland), 1989.

70. David Marca and Geoffrey Bock. Groupware: Software for Computer-Supported Cooperative
Work. IEEE Computer Society Press, Los Alamitos, CA, 1992.

71. Stephen M. McMenamin and John F. Palmer. Essential System Analysis. Yourdon Press,
Prentice Hall, Englewood Cliffs, NJ 07632, 1984.

72. Richard H. Thayer Merlin Dorfman, editor. Standards, Guidelines, and Examples on System
and Software Requirements Engineering, chapter ESA Software Engineering Standards, pages
101-120. IEEE Computer Society Press Tutorial, 1990.

73. Bertrand Meyer. On Formalism in Specifications. IEEE Software, pages 6-26, January 1985.
74. Kanth Miriyala and Mehdi T. Harandi. Automatic Derivation of Formal Software Specifica-

tions Form Informal Descriptions. IEEE Transactions on Software Engineering, 17(10): 1126-
1142, October 1991.

75. David E. Monarchi and Gretchen I. Puhr. A Research "l~ypology for Object-Oriented Analysis
and Design. Communications of tile ACM, 35(9):35-47, September 1992.

76. John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing
Knowledge about Information Systems. Transactions on Information Systems, 8(4):325-362,
1990.

77. John Mylopoulos and Hector J. Levesque. On Conceptual Modelling. Springer Verlag, 1986.
78. J.S. Oakland. Total Quality Management. In Proceedings 2nd Int. Conf. on Total Quality

Management, pages 3-17. Cotswold Press Ltd., 1989.
79. Barbara Pernici. Requirements Specifications for Object Oriented Systems. ITHACA Journal,

(8):43-63, January 1991.
80. Klaus Pohl and Matthias Jarke. Quality Information Systems: Repository Support for Evolving

Process Models. Technical report, RWTH Aachen, Informatik-Berichte 37-92, 1992.

292

81. M. Porter. Competitive Advantage. Free Press, New York, 1985.
82. C. Potts. A Generic Model for Representing Design Methods. In Proceedings llth h~tema-

tional Conference on Software Engineering, 1989.
83. C. Potts and G. Brans. Recording the Reasons for Design Decisions. In Proceedings lOth

International Conference on Software Eugineering, 1988.
84. P. Paolo Puncello, Piero Torrigiani, Francesco Pietri, Riccardo Burlon, Bruno Cardile, and

Mirella Conti. ASPIS: A Knowledge-Based CASE Environment. IEEE Software, pages 58-
65, March 1988.

85. B. Ramesh and V. Dhar. Process-Knowledge Based Group Support in Requirements
Engineering. IEEE Transactions on Software Engineering, 18(6), 1992.

86. Howard B. Reubenstein and Richard C. Waters. The Requirements Apprentice: Automated
Assistance for Requirements Acquisition. IEEE Transactions on Software Engineering,
17(3):226-240, March 1991.

87. C. Rolland and C. Proix. A Natural Language Approach for Requirements Engineering.
In Proceedings of the 4th International Conference on Advanced bzforlnation Systen~s
Engineering, LNCS 593, 1992.

88. T. Rose, M. Jarke, M. Gocek, C.G. Maltzahn, and H.W. Nissen. A Decision-based
Configuration Process Environment. Special Issue on Software Process Support, lEE Software
Engineering Journal, 6(5):332-346, 1991.

89. H.H. Sayani. PSL/PSA at the Age of Fifteen. In Tbayer R.H. and M. Dorfman, editors, Systems
and Software Requirements Engineering, pages 403-417. IEEE Computer Society Press - -
Tutorial, 1990.

90. Walt Scacchi. Managing Software Engineering Projects: A Social Analysis. IEEE Transaction
on Software Engineering, 10(I):49-59, 1984.

91. G. Spanoudakis and P. Constantopoulos. Similarity for Analogical Software Reuse. In Proc.
ERCIM Workshop on Methods and Tools for Software Reuse, Heraklion, Crete, 1992.

92. J.M. Spivey. An introduction to Z and formal specifications. Software Engineering Journal,
4(1):40-50, 1990.

93. Alistair Sutcliffe. Object Oriented Systems Analysis: The Abstract Question. In Proc. IFIP WG
8.1 Conf. The Object Oriented Approach in Information Systems, Quebec City, Canada, 1991.

94. Alistair Sutcliffe and Neil Maiden. Software reuseability: Delivering Productivity gains or
short cuts. In Proceedings INTERACT, pages 948-956. North-Holland, 1990.

95. C.P. Svoboda. Structured Analysis. In Thayer R.H. and M. Dorfman, editors, Systems and
Software Requirements Engineering, pages 218-227.1EEE Computer Society Press - - Tutorial,
1990.

96. Jeanette M. Wing. A Specifier's Introduction to Formal Methods. Computer, (9):8-24,
September 1990.

97. T. Winograd and F. Flores. Understan~ling Computers and Cognition: A New Foundation for
Design. Ablex Norwood, NJ, 1986.

98. Edward Yourdon. Moden~ Structured Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1989.
99. Edward Yourdon. Structured Walkthroughs. Prentice-Hall, Englewood Cliffs, NJ, 1989.
100. Pamala Zave. An Insider's Evaluation of PAISLey. IEEE Transaction on Software Enghzeer-

ing, 17(3):212-225, March 1991.
101. Pamela Zave. A Comparison of the Major Approaches to Software Specification and Design.

In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements Engineering,
pages 197-199. IEEE Computer Society Press - - Tutorial, 1990.

