
Concepts for Real-World Modelling

A n d r e a s L. Opdah l* G u t t o r m Sindre t

Abstract

Simple, intuitive, and yet powerful languages are needed to model the real-
world in the problem analysis phase of information system development. How-
ever, contemporary real-world modelling languages are either weak in expres-
sion or cluttered with rigorous detail. In the former case, models become to
vague to be meaningful, while the latter case makes modelling even of rather
simple dynamic systems a complex task and hardly facilitates communication
with end users.

Object-orientation is not considered appropriate for this purpose, due to
its low emphasis on dynamics. Dataflow diagrams, on the other hand, em-
phasise dynamics, but unfortunately, some major conceptual deficiencies make
DFDs, as well as their various formal extensions, rather useless for real-world
modelling.

This paper presents concepts for real-world modelling which rely on some
seemingly small, but essential modifications of the DFD language. Hence the
well-known, communication-oriented diagrammatic representations of DFDs
can be retained. It is indicated how the approach can support a smooth tran-
sition into later stages of object-oriented design and implementation.

keywords: dataflow diagrams, real-world modelUng, conceptual
modelling, object-orientation, problem analysis

1 I n t r o d u c t i o n

There is an increasing tendency in information system development to consider not
only the functionality which is going to be automated, but to give considerable
attention to the organisation around the system [11]. This increased scope puts
heavier requirements on the modelling languages, which have to be appropriate for
modelling any real-world activity, rather than just the information processing activ-
ities to be automated. Real-world modelling can also be interesting in cases where
no new information system is planned, e.g for general analysis of the organisation's
information, document, and/or material resource flows with respect to performance,
availability, reliability, or security.

*Andreas Opdahl is at the Dept. of Information Science, University of Bergen, Norway; email:
andreas@ifi.ulb.no

tGuttorm Sindre is at the Faculty of Electrical Engineering and Computer Science, University
of Trondheim, Norway; email: guttorm@idt.unit.no

310

Concep t
Act iv i ty
Aspect

Process Flow Store
Transformation Transportation Preservation
Matter Location Time

Table 1: A datafiow diagram taxonomy of'real-world dynamics

Object-orientation has been promoted as a kind of panacea in software engineering,
also in the analysis phase. However, dynamics are not sufficiently emphasised in
object-oriented models, and this creates problems for dynamic analyses [2], as well
as resulting in vague, imprecise representations. Section 2 will elaborate on this.

There are lots of languages around for modelling dynamics. Many are variants either
of Petri-nets [28] or state-transition diagrams [19]. Itowever, "place" and "transi-
tion" based Petri-nets do not include concepts which are closely linked with what
goes on in the real-world, tIence they are unintuitive and difficult to understand
for untrained personnel, and the resulting models do not support easy communi-
cation. State-transition based models go one step even further, disregarding the
entities from the which the real-world is composed altogether. An often-used al-
ternative is dataflow diagrams (DFDs) [13, 15], which have been praised for their
intuitive appeal [25]. Knowingly or unknowingly, the DFD language embodies a
beautiful taxonomy of real-world dynamics in its three major concepts for dynamic
modelling. This taxonomy is indicated in table 1, where the three concepts corre-
spond to a straight-forward perception of human activity, and furthermore to three
orthogonal aspects of nature: matter, location, and time. This will be explained
in sec. 4. However, DFDs have several weaknesses which prevent them from being
appropriate for real-world modelling. Most emphasised is the lack of a formal ba-
sis [31], especially with respect to representation of dynamics. E.g. it is unclear
when a datafiow process executes, as well as what it receives and sends on its in-
put and output flows per execution [4]. Such issues have been addressed by later
dataflow extensions [36, 16, 14]. The lack of support for declarative business rules in
a DFD setting is another point that has been addressed [20]. However, none of these
improvements have fully addressed the implications of the above taxonomy and as a
result, DFD, in spite of all extensions, remains unsuitable for real-world modelling.

The goal of this paper is therefore to arrive at a language which maintains and consis-
tently exploits the above taxonomy, and which provided the appropriate abstraction
mechanisms for modelling large systems.

The rest of the paper is structured as follows: Section 2 describes the major short-
comings of object-orientation as a paradigm for real-world modelling, and section 3
similarly describes the major shortcomings of dataflow diagrams. Section 4 presents
our extensions to DFD, both in concepts and notation, addressing the previously
mentioned weaknesses. Section 5 outlines the relation between the proposed mod-
elling framework and object-oriented modelling before section 6 presents some con-
cluding remarks and paths for further work.

311

2 Criticism of Object-Oriented Analysis

Object-orientation is becoming increasingly popular. Object-oriented programming
(OOP) and design (OOD) are already well established. As a consequence, numerous
object-oriented analysis (OOA) methods are being proposed, an overview of which
is found in [5]. Some of the most often stated advantages of OOA are:

�9 object-orientation corresponds very well to the human perception of the real
world, i.e. it is "natural"

�9 choosing an object-oriented structure also for analysis, one achieves a smooth
transition to design and implementation

In the following we will address these two issues in separate.

2 .1 O O A is n o t " N a t u r a l "

True enough, object-oriented specification languages contain many of the same con-
structs as semantic data models [27, 29], which are believed to support the way
humans think. However, whereas data models only aspire to giving a static por-
trait of the world, object-oriented analysis is supposed to deal also with dynamics,
and must thus be evaluated in a different light. In the dominant approaches to
OOA/OOD [10, 33, 38, 34, 7, 37] the focus is on classes: identifying the classes
and their relationships and organising class hierarchies. The methods first capture
statics, then dynamics. By being subordinate to the static structure, dynamics are
generally given less emphasis than statics, and diagrams typically depict only static
structure - - to find out what goes on in an object-oriented specification one will
often have to think through some complicated spaghetti-style message-passing in-
teraction. This creates problems in the analysis phase where gaining understanding
of the problem at hand is a main issue. Furthermore, intuitive validation of the es-
tablished models is difficult, and attempts at formal verification would create great
solution complexity.

Thus, a claim that object-orientation is a natural way to view the world, implies that
statics must somehow be more basic or fundamental than dynamics in the human
perception of the real world. However, there are many indications to the contrary:

�9 Particularly in Eastern philosophy [30, 32] but also in Western [3], it has been
stated that everything is change, and that processes are more fundamental than
things. These attitudes have also penetrated to some researchers in modern
physics [6, 9].

�9 From a more pragmatical point of view, human organisations (which informa-
tion systems are, after all, made for) can also be described as ever changing
systems, more like processes than things [24].

312

The verb is the most sophisticated word class of almost all natural languages,
with alternative forms on a wide variety of axes: tense, mood, aspect, number,
person [23]. The forms of the noun are fewer, and in a modern language such
as English, case and gender have become extinct [21]. Moreover, the verb is
usually the most prominent word in a sentence, to which all the other sentence
elements stand in some relation - - of. the tendency to start with identifying
the main verb during syntactic analysis of natural language [23]. It can also
be noted that language itself is a process of continuous change [12].

From this, we conclude that a paradigm which emphasises nouns/objects at the cost
of verbs/processes, can hardly be called natural if the ambition is to model the real
world.

2.2 OOA does not Avoid "Gaps"

The claim that OOA results in small gaps between the phases is often true. However,
the small gap is achieved at the cost of a very shallow analysis. The demand that
requirements should be formulated declaratively has been increasing in strength
since the early eighties [17]. OOA claims to be declarative compared to OOD,
i.e. describing what the system should provide (in terms of classes and operations),
whereas the design tells how this is done. However, to some extent this declarativity
is fake, i.e. it is achieved by the fact that OOA is merely less detailed than OOD, a
sketch of the design.

Compared to using DFDs, object-oriented analysis might be a step forward. How-
ever, compared to other recent experimental approaches it is semantically restricted.
E.g. it is very difficult to specify declarative business rules within an object-oriented
structure. Declarative rules are inherently global in nature, whereas object-orientation
means that one can only state rules in a fragmented way within class definitions.

Hence a small gap can be achieved only by pulling analysis closer to design than it
should have been. As stated in [18] requirements engineering should be problem-
oriented, not target-oriented. Object-orientation is a design decision, not a require-
ment, and choosing object-oriented analysis just because the next step is object-
oriented design is simply not a sufficient argument.

3 C r i t i c i s m of D F D for R e a l - W o r l d M o d e l l i n g

To establish DFD-like concepts for real-world modelling, the more fundamental
weaknesses of dataflow diagrams in this respect muse be surveyed. In the follow-
ing we will make some more observations on the weaknesses of DFD for real-world
modelling. In particular, we address two issues which emphasise the problems with
DFD as a language for modelling the real world:

�9 the weakness of the flow concept, and

313

Figure 1: What does a flow mean?

* the dominance of the processes.

Related deficiencies have been touched upon in [8]. In particular, it is pointed out
that decomposition is very problematic, particularly with respect to flows. Either, a
tremendous amount of flows occur at the higher levels of abstraction, or alternatively,
flows obtain very obscure meanings.

8 .1 W e a k n e s s e s o f t h e F l o w C o n c e p t

One of the main problems of the flow in DFD is that it is overloaded with alternative
meanings. Some of these problems have been addressed, for example distinguishing
between control flow and dataflow [36] or information flow and material flow [22].
However, these are all flows, and thus, the main problem has not been addressed:
namely that the flow is the only possible link between processes, stores and external
entities.

Consider the simple diagram of fig. 1, with the first process "Write document"
producing a (electronic or paper) document which is the input to the second process
"Correct typing errors". What does the flow in this picture mean? In fact, it can
have two rather different meanings: either it can mean that the document is in fact
transported (or transferred electronically) from one place to another, e.g. because
the two tasks are performed by two different persons. But it might also mean simply
that the output of the first process is the input o f the second, without any input
taking place (e.g. if the two tasks are performed by the same person). Intuitively, one
would think from the arrow symbol that there is some transportation, but inspecting
a number of DFDs, one is likely to find lots of examples where flows are simply used
to make an output/ input connection between two processes. This ambiguity of the
flow concept is a major problem of DFD, and looking at a slightly more complicated
example, we will in fact see that DFD completely fails to model a dynamic system
in a proper way.

For this example, consideran extension of the previous one, where there are two
processes working in parallel correcting the document after it has been written - -
one dealing with typing errors and one with deeper errors (syntactic, semantic,
pragmatic). Of course, one could make one single process "Proofread document"
out of B and C, but then we would totally miss the fact that there are two different
tasks, which might be performed by different persons, or the first even by a computer.
Clearly, we must be able to model this as two processes, and if they are performed

doc.

OC~

(a)

314

(b)

Figure 2: Problems with parallel material flows

in parallel in real life, they must also be modelled as such.

Since both processes are supposed to change the document in some way, it must be
an input and output of both these processes. Itowever, the diagram of fig. 2 does not
make much sense - - the first process seems to be sending out two documents rather
than only one, and the other two processes turn out one corrected document each - -
one corrected only for typos, and one corrected only for deeper errors. It would of
course be possible to achieve the wanted effect (both processes working on the same
document) by defining some underlying execution semantics for the diagram, unique
labelling conventions etc., but this does not seem very satisfactory, since the strong
side of DFDs in the first place is their intuitive appeal [14], the basic dynamics of
the system should be apparent from the diagram itself rather than relying on some
odd, underlying conventions.

The at tempt in fig. 2b, introducing a store to hold the document, does not work
either - - it would seem contradictory that the two correcting processes should be
able to process the same document at the same time, since intuitively an arrow from
a store means taking something out of it, and an arrow to a store means putting
something into it. One of the major problems is that whereas information can be
duplicated for processing purposes and still be the same information, material cannot
- - there is no "non-destructive get" (i.e. a "read") for a material substance. Thus,
whether on file or paper, if the physicM document is processed in parallel by several
actors, the situation becomes very difficult to model with a DFD. And parallel
processing being very common, a language which cannot deal with it properly is of
course useless for our purposes.

3 . 2 T h e D o m i n a n c e o f P r o c e s s e s

Another observation is that the driving force in dataflow diagrams, as well as in more
modern and formalised extensions [36, 16, 14] is the process - - it is processes that
make data (or material) flow, and it is processes that take data or material in and
out of storage - - flows and stores are only passive slaves. The process is equipped

315

(a) (b)

Figure 3: Data or materials being changed inside flows and stores.

with much more complex semantics than the other two, and all decisions are made
within processes. Accordingly, only processes can be decomposed to contain full
DFDs inside (i.e. both new processes, flows, and stores). In some DFD formalisms,
store and flow decompositions are allowed, but stores can only be decomposed into
substores, and flows only into subflows. This is a major reason for some of the
problems reported in [8] that high-level flows have very little meaning, just grouping
together various things which happen to flow between the same high-level processes.

Although seemingly "natural", this dominance of processes reduces the expressive
strength of diagrams. Also, it is not consistent with the ways in which real-world
systems actually work: Just like there is flow and storage within a process, there
should be an ability to represent processing within flows and stores. In the reM
world artifacts might change during transportation or storage, and such changes are
sometimes important when designing models. To accomplish this, we must either:

�9 allow full decomposability also of flows and stores, or

�9 model any change by means of a process outside the flow or store.

The latter alternative is not very satisfactory, because it creates an abundance of
processes, resulting in inferior abstraction, as illustrated in fig. 3. The case here
is transportation and storage of cheese. Of course, cheese which was OK when
loaded onto the truck/boat/train/plane might be destroyed during transport, and
the quMity may also be reduced (or improved) during storage. Compared to the
simple picture of 3a, fig. 3b has to make two extra processes: "Damage cheese"
for the possible change during transportation and "Ferment cheese" for the possible
change during storage. Especially since the processes of damage and fermentation
are merely results of transportation and storage, rather than something which is
done actively by some actor in the organisation, it would seem more natural to hide
these details within the flow and store, rather than exposing them as independent
processes at the same level as cheese production.

With the former approach, one would yield just the picture of fig. 3 a - detMls
about the flow and the store could be hidden within their respective nodes, only
to be shown when inspecting their decompositions. It is very difficult to abstract
away details such as this without hiding them in the flow or store - - the processes
of damage and fermentation happen after the "Make cheese" process is finished

316

and cannot easily be hidden inside this process. It seems particularly unnatural to
picture "Ferment cheese" outside the store, virtually taking cheese out of the store
and putting it back after some fermentation, when actually, the cheese remains in
the store all the time. The modelling of "Damage cheese" is also very unintuitive
- - from the picture it seems that the cheese is first transported to a particular site
where it is damaged, then to be brought on to the store. Hopefully, the damage only
applies to a very small ratio of the transported cheese, but the diagram also fails to
indicate this - - apparently, damage is the rule rather than the exception.

Summing up, our main requirements for a real-world modelling language based on
DFD are as follows:

�9 Processes, flows, and stores should all have well-defined meanings which corre-
spond to the human perception of transformation, transportation and preser-
vation. Specifically, flows should not be used both for transportation and
simple output/ input connections, but rather be reserved for the former.

�9 The three concepts should be fully inter-4ecomposable, to make it easier to
abstract away details at the appropriate place in a model.

These requirements will be dealt with in the following.

4 Real-World Modelling Concepts

According to the discussions in the previous section, we will now define a formalism
which is more appropriate for real world modelling than DFD, whereas maintaining
its good features. As stated earlier, DFD contains a nice taxonomy of real-world
dynamics in the three concepts process, flow, and store - - denoting transformation,
transportation, and preservation. However, as we have seen, DFD itself is not true
to this taxonomy, for instance using the flow concept also in cases where there
is actually no transportation taking place. In the following we will describe the
essentials of such a modelling language.

4 .1 I t e m s ~ P i e c e s , a n d S t r e a m s

To represent the dynamics of a real-world system (i.e. our universe of discourse), the
static entities changed by that dynamic system most first be described. According
to Wand [35], the real-world can be perceived as consisting of "things", which will
be called items in this paper. Following Wand, things have properties, which will
be called attributes by us. Hence an item ~ = {ai} can be formally defined as a set
of attributes ai, v(ai, t) E D(ai), where v(ai,t) is the value of property ai at time t
and D(ai) is its domain (or "type"). Of course, items can be described in terms of
item classes, but this is not an issue in this paper.

Although items represent matter, they may at the'same time represent the data

317

associated with matter. In general, three aspects of an item can be perceived as
relevant when creating a model [26]:

�9 The substance of an item corresponds to material presence, e.g. the presence
of a paper form in a worker's input basket which triggers a certain activity
related to that form.

�9 The properties of an item are the data that can be extracted from the item's
substance, e.g. the colour of the paper form, its size and thickness.

�9 the data carried by an item is the information'purposely coded onto the sub-
stance, e.g. the letters written on the above form.

Both properties and data are represented as attributes of items, while substance is
represented by the item's presence.

Items can be either discrete or continuous. The attributes of a discrete or continuous
item defines its state. Hence S(t , t) = {v(ai,t)} is the state of item ~ at time t.
Changes of attributes change the states of items.

The states of discrete items change instantaneously, corresponding to events. An
event e occurring at time t can therefore be formally defined as a 4-tuple e =
(~,S,S' , t) , where ~ is the item whose state has changed, and S and S' are its old
and new states respectively. The states of continuous items change continuously,
corresponding to alterations. The effect of an alteration during interval dt can
therefore be formally defined as a 4-tuple e = (L, S, S', dr), where L, S, and S ' are as
in the above.

Furthermore, items are located in space. Items with a single well-defined location at
the level of which the real-world system is perceived are called pieces. Items without
such a well-defined single location are streams. Hence streams can simultaneously
occupy several locations, but not all of them are of interest in a real-world model.
E.g. when representing the flow of water through a drainpipe, only its end-point are
of interest. Pieces and streams may both either have discrete or continuous events,
hence they are called discrete or continuous pieces br streams respectively. In the
above example, the form is probably most appropriately modelled as a discrete piece.

Let p(t , t) be tim location of piece, at time t, and let P (t , t) = {p(x,t) lx e ,} be the
extension of stream 5. Hence an extension is defined as the set of locations of all its
parts, these part locations will be called location points. The locations and location
points of all items in the universe of discourse can be described as a set II. Elements
r E I I of this set will be called ports for reasons that will soon become apparent.

4.2 Ideal Processes, Flows, and Stores

The processes, flows, and stores of conventional dataflow diagrams are now inter-
preted as transformations, transportations, and preservations of items respectively.
These divide the representation of real-world dynamics in three orthogonal aspects:
matter, location, and time:

318

�9 An ideal process, p, represents a change of matter (and hence potentially also of
the associated data) while keeping location and time constant (i.e. performing
the modification in zero time and without any changes of location).

Formally, an ideal process p = (iii, IIo, (I)) consumes items, ~, through a set
of input ports, 7ri E IIi, and produces items through a set of output ports,
~ro E 1Io. The attributes of items produced are determined by a set of functions

= {r Each function ~o in this set is a function of attributes of input items,
determining the attributes of the items output through each output port. All
input and output ports r E Its O IIo must represent the same spatial location.

�9 An ideal flow, f , changes the location of items,.while keeping matter and time
constant (i.e. performing the transportation in zero time and without any
changes of matter).

Formally, an ideal flow f = (ri, 7to) consumes an item from input port ~ri and
immediately produces an item with exactly the same attributes to output port
~o- The output ports must represent locations which are different from the
input ports. (The concept can of course easily be extended to account for
multiple input and output ports.)

�9 An ideal store, s, changes time, while keeping the matter of items and their
locations constant.

Formally, an ideal store s = (I I t , IIo) consumes items from input ports and
produces items with the same attributes to its output ports after some time.
The input and output ports ~r E IIt U IIo must represent the same spatial
location.

Hence ports are the spatial locations from which items are consumed and to which
items are consumed by processes, flows, and stores. These must correspond to
the locations of pieces which are perceived as relevant when modelling a real-world
system, as well as to the location points of streams. An ideal model is a composition
of ideal processes, flows, and stores, as will be defined in sec. 4.5.

4.3 Real Processes, Flows, and Stores

Obviously, such ideal concepts are not realistic. IIowever, they might be useful
in many contexts - - formalisms such as Petri-nets [28] and state-transition dia-
grams [19] have provided powerful mechanisms for dynamic modelling with zero-time
transitions only. In the framework, the ideal concepts are the basic building blocks
through which the real-world is perceived. However, at higher levels of abstraction - -
when perceiving more complex systems - - it does not seem appropriate, nor neces-
sary, to restrict expressiveness that much. Therefore we introduce, correspondingly,
what we call the real variants of process, flow, and store:

* a real process, P, is an activity which might change both matter and location
of items, as well as time. However, being modelled as a process, the activity

319

is mainly considered a transformation activity, the change of matter being
perceived as more important than the change of location or time.

a real flow, F, is an activity which might change both matter and location
of items, as well as time. However, being modelled as a flow, the activity
is mainly considered a transportation activity, the change of location being
perceived as more important than the change of matter or time.

a real store, S, is an activity which might change both matter and location
of items, as well as time. However, being modelled as a store, the activity is
mainly considered a preservation activity, the change of time being perceived
as more important than the change of matter or location.

An real model is a composition of real or ideal processes, flows, and stores, as will
be defined in subsection 4.5.

Formally, real processes, flows, and stores are essentially the same dynamic entity,
E = (HI, IIo, ~), consuming items from input ports 7ri E III and producing items
to output ports ro E IIo. The attributes of items produced are still determined by
a set of functions ff = {r - - one for each output port - - of attributes of items
consumed. Ports 7r E II1 U IIo may or may not have the same location, and output
items may or may not be produced immediately upon input item consumption.

IIence the distinction between the three real concepts becomes entirely concep-
tual, allowing exactly what was wanted: full inter-decomposability among processes,
flows, and stores - - a process can contain stores and flows in addition to subpro-
cesses, a flow can contain processes and stores in addition to subflows, and a store
can contain processes and flows in addition to substores.

Hence real concepts are inter-decomposable. From the definitions of the previous
subsection 4.2 however, it can be seen that the corresponding ideal concepts pre-
sented there are not: A flow containing a substore would not produce output items
immediately upon input item consumption, and a flow or store containing a subpro-
cess would not necessarily produce output items with the same attribute values as
its input items.

Nevertheless, the possibility exists for decomposing an ideal process into subpro-
cesses only, an ideal flow into subflows only, or an ideal store into substores only.
tIence ideal concepts are intra-deeomposable which is a restricted form of decompos-
ability.

4 . 4 L i n k s

The previous sections 4.2 and 4.3 explained and defined ideal and real concepts for
transformation, transportation, and preservation. However, to represent a real-world
system with them, their interactions must also be defined. Obviously, a concept is
needed to relate the output ports and input ports of different processes, flows, and
stores to one another. We call this concept a link:

320

a link I binds the input and output ports of ~everal dynamic entities. The
meaning of a link is that the bound ports are actually identical in space-time.
As a consequence, output items that are produced through the output ports
bound by the link are immediately consumed from the input ports. Hence
the link has a direction from its output ports to its input port. There is no
transformation, transportation, or preservation involved across the link. It is
no change, zero time, zero distance. Of course, a link comprising multiple
input ports initiate parallel dynamic threads in the model, while links with
multiple output ports synchronise those threads.

Formally, a link I = (IIo, IIi) is a pair of sets of output 1to E Uo and input
~ri E Hi ports.

Conceptually, processes, flows, and stores cannot be directly connected to each other
all such connections have to be made through links.

The previous section 3.1 stated that a major problem with flows was that sometimes
they mean transportation, other times only an output/ input connection. We now
realise that this problem has disappeared through the introduction of links: The
concept of flows has been reserved for the former phenomenon, and links account
for the latter one. Links represent e.g. that the output of one process is the input
of another one (or of several other ones) without any actual transportation taking
place.

4 . 5 I d e a l a n d R e a l M o d e l s

Summing up our conceptual basis, we have laid down three basic principles for
reinterpreting dataflow diagrams:

1. orthogonality of ideal concepts;

2. full inter-decomposability of real concepts;

3. distinguishing between flow (ideal or real transportation)
and link (zero-time, zero-distance communication);

We have identified six concepts: process, flow, store, item, link, and port. While
processes, flows, and stores were either ideal or real, no such distinction was made for
items, links and ports. However, items were classified as either discrete or continuous
with regard to state changes, and as either pieces or streams with regard to spatial
location.

Formally, an ideal model, Dt = CP, jz, S, L), is a 4-tuple of sets of ideal processes,
flows, and stores, as well as a set of links. A real model, DR, accordingly is a 4-tuple
of sets of real or ideal processes, flows, and stores, as well as a set of links. Hence
ideal models can contain only ideal concepts, while .real models may contain both
real and ideal ones.

321

t :>

Process Flows Store

........ .~. �9

Connection
Link point

Figure 4: Graphical symbols for the real-world modelling concepts.

(a)
5---(")

(b)

Figure 5: A notational convention to reduce the number of arrows

The only structural consistency requirement imposed on a model, is that all output
and input ports a'o and 7ri bound by links I = (lIo, IIi) E L must in fact be output or
input ports of some dynamic entity. However, the converse does not have to be true,
i.e. there may be input and output ports of dynamic entities in the model which
are not bound by links. Let the sets I IDj and IID,o of free (i.e. not bound) input
and output ports be the input and output ports of model D, respectively. In this
way, every model can be represented as a dynamic entity at the next higher level of
abstraction. Whether to use a process, flow, or store representation at that level is
again a matter of what the modeller sees as most important.

4.6 Graphical Conventions

We retain the traditional DFD notation [13, 15] for processes and flows - - however,
to facilitate the visualisation of decomposition, it must also be possible to depict
the flow as an enlarged kind of box-arrow. Similarly, to facilitate the illustration
of decomposed stores, full rectangles are more convenient than the open-ended ones
used in the conventional notations. Links are shown as dotted arrows. Connection
points are normally not shown in the diagram (since they will generally be implicit
from the contact between a link and a flow/process/store. If necessary, though, the
connection points can be shown as tiny, black dots. The symbols are shown in fig. 4.

Introducing links for all connections between flows, processes, and stores, there would
easily be an abundance of arrows in the diagrams. To avoid this, we introduce
the notational convention that links are not necessary when at least one of the
connections is to one of the end-points of a flow. Thus, the conceptual situation of
fig. 5a, can be portrayed diagrammatically as in fig. 5b.

322

(~

(c)

(b)

(d)

Figure 6: Modelling with links and flows

4 . 7 E x a m p l e s

The usefulness of the link concept is indicated in fig. 6, where flows axe modelled
with full lines and links with dotted lines. Then, the two diagrams of figs. 6a and 6b
have different meanings: in 6a the document is actually transported between the
two processes, whereas 6b simply says that it is the output of the first process and
the input of the next, without any transportation taking place. The real usefulness
of the link can be appreciated reconsidering the example with parallel processing
of fig. 2. With the introduction of links, both the previous attempts at solution
suddenly work. In 2a, instead of directing the flow from "Write document" to any of
the two processes, it goes to a free-standing connection port which is again connected
to the two processes by means of two links. This tells us that the two inputs of the
processes are actually happening at the same point in space-time, i.e. they both get
the same input item. Similarly, the output is linked so that this must also necessarily
be the same item. This diagram still indicates some transportation between the first
process and the other two. If there were no transportation, we could have connected
the two links to a point at the surface of "Write document". In 2b, we have simply
replaced the flows between the two correction processes and the store with links,
both connecting to the same port at the surface of the store - - again indicating that
the item worked on is not transported to/from the store but resides there all the
time, and that both processes work on the same item at the same time.

Examples on the use of these options are indicated by the diagrams in fig. 7: 7a shows
the transportation of a document (either electronically or on paper) which has to be
coded and decoded. Clearly, it might be convenient to view the coding and decoding
as details within the transportation activity, since these activities are logically more
a necessity of the communication than of the mere production and reading of the
document. This kind of decomposition is shown in fig. 7b. With the traditional

~ do~ament ~
323

Barrels

(c) (d)

Figure 7: Full inter-decomposability

process dominance, the coding C and decoding D would rather have to be hidden
within the "Write" and "Read" processes, respectively, and the intermediate storage
I might have been pulled up to a higher level of abstraction. The modeller still has
the choice to do this in our formalism, but now there is a wider variety of choices
concerning how to do abstractions - - one can always choose the way which feels
most natural.

The next example, fig. 7c, shows a store which contains barrels. Imagine now that
within this store there are actually two stores: one wllich contains the tip-top barrels
ready for use, and another one where damaged barrels are stored, awaiting main-
tenance. If a barrel in the foreground store is found to be inferior, it is sent to
the background store for maintenance, and when a barrel has been fixed, iL is sent
back to the foreground store. Clearly, this interaction between the two parts of the
barrel store should be hidden at high levels of abstraction. With traditional pro-
tess dominance, such abstraction could only be done using a process at the higher
level, since the lower level also contains processes (for instance barrel inspection and
maintenance). However, the barrel store is first and foremost a store, even if there is
transformation and transportation taking place within it, and thus, it would be most
intuitive to model it as such. This is achieved with our approach, the result shown
in 7d - - the process I performing barrel inspection, and the process M performing
barrel maintenance (possibly, these two processes could be further hidden within the
Foreground and Background stores, respectively).

A typical real-world example, illustrating the benefit of increasing the power of
flows and stores, is that of fig. 8. Here, we have got a system of three lakes, with a
river connection between them. The river connection has several side-branches, all
running top to bottom in the map in fig. 8a. In 8b and 8c we show two models of
this system. The first one is on a high level of abstraction and has considered the
smallest lake, and all but the two main branches of the river to be too insignificant
for presentation. The second one shows all the detail. It should not be difficult to

(a)

324

V-rq

(b) (c)

Figure 8: A lake-river system

imagine how complicated the model of this system would seem with the traditional
DFD, where one would need processes to get the water in and out of the stores, and
where a flow connected to another flow, without any intermediate process or store,
would be illegal (and meaningless).

5 Re la t ion to Objec t -Or iented D es ign

As pointed out in sec. 4.3, the difference between real processes, flows, and stores is
purely conceptual - - they can all be considered dynamic entities, with emphasis
on transformation, transportation, and preservation, respectively. Taken to the
extreme, one could introduce a conceptual "store" for every type of item in tile
domain modelled, thus portraying everything which would be static in a traditional
data model as a process. These stores would then have links to every dynamic
entity in the model where the item could occur. An interesting observation is that
structurally, such a specification comes very close to object-orientation - - especially
the OMG object model, level 2 [1], where free-standing operation-objects are allowed,
i.e. operations not encapsulated in any objects. At the lowest level of decomposition,
our approach and the level 2 approach of OMG might end up with exactly the same
dynamic entities in a model, although the models at higher levels could have been
completely different, due to an emphasis of objects by OMG and processes by us.

From this it can also be concluded that choosing a highly process-oriented (or for
that sake object-oriented) nmdelling paradigm durirrg analysis, does not restrict us
to choosing a similar structuring principle for design. When things are broken down
far enough, one can choose whether to arrange processes around objects (OO) or
the other way around (PO). This corresponds to the principle of top-down analysis
and bottom-up design promoted by Bubenko in [8]. Notice that our criticism of
object-orientation in section 2 considered only its restrictions upon the aualysis
phase, with particular attention to systems where dynamics are important. We do
recognise many advantages of object-orientation when it comes to the design and
implementation of such systems.

325

6 Conclusions and Further Work

The need for simple, intuitive, and powerful real-world modelling languages was
pointed out. However, both object-oriented and dataflow diagram modelling ap-
proaches were found insufficient. Object-oriented analysis was weakened by its focus
on static - - as opposed to dynamic - - aspects of the real-world system. In addition,
anMysis was to dependent on the later design phase. Dataflow diagrams were prob-
lematic with respect to the unclear "flow" concept, in addition to being to focused
on "processes."

This discussion lead to the formulation of requirements on a real-world modelling
framework, for which concepts were then proposed. A reinterpretation of the three
basic dataflow diagram constructs made them consistent with basic human activi-
ties transformation, transportation, and preservation, in addition to three orthog-
onal aspects of nature: matter, location, and time. Interactions between the three
types of constructs in a real-world model were expressed through the concepts of
links, immediately solving the previous problem of DFD "flow" semantics. A dis-
tinction was made between ideal and real processes, flows, and stores, allowing full
inter-decomposability between the three. It was shown how the conventional dia-
grammatic dataflow representation could still be used with the new concepts.

Although having evolved over several years of work on the PPP modelling ap-
proaches [16], this work is still in its initial phases. The proposed framework must
be further refined and validated through more comprehensive examples. The formal
framework must be extended correspondingly and tool-support be provided. More
work is Mso needed to fully understand its relation to object-oriented design and
implementation.

References

[1] T. Atwood et al. The OMG Object Model. Technical report, September 1991.
draft 0.9.

[2] Sidney C. Bailin. An object-oriented requirements specification method. Com-
municalions of lhe ACM, 32(5), May 1989.

[a] rIeraclitus (5O0 B.C.). Homeric questions. In Early Greek Philosophy. Penguin
Books, London, 1987.

[4] S. Berdal, S. Carlsen, A. Sr and R. Andersen. Information system be-
haviour expressed through process port analysis. Technical report, Division of
Computer Science, The Norwegian Institute of Technology, 1986.

[5] Arne-J#rgen Berre. Object-oriented analysis and design - - an overview of some
existing methods and techniques. Technical report, Center for Industrial Re-
search, Oslo, Norway, 1990.

[6] D. Bohm. Wholeness and the Implicate Order. Ark, London, 1980.

326

[7] Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings,
1991.

[8] Janis A. Bubenko jr. Problems and Unclear Issues with Hierarchical Business
Acitivity and Data Flow Modelling. Technical report, SYSLAB, 1988. Working
paper no. 134.

[9] F. Capra. The Tao of Physics. London, 2nd edition, 1983.

[10] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice Ilall,
Englewood Cliffs, first edition, 1990.

[11] D. W. Conrath, V. De Antonellis, and C. Simone. A comprehensive approach
to modeling office organization and support technology. In Proc. IFIP WG 8.~
WC on office information systems: the design process, Linz, August 1988.

[12] D. Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, 1987.

[13] T. DeMarco. Structured Analysis and System Specification. Yourdon Inc., New
York, 1978.

[14] Robert France. Semantically extended data flow diagrams: A formal specifi-
cation tool. IEEE Transactions on Software Engineering, 18(4):329-346, April
1992.

[15] C. Cane and T. Sarson. Structured Systems Analysis: tools and techniques.
Prentice-Hall International, 1979.

[16] Jon Atle Gulla, Odd Ivar Lindland, and Geir Willurnsen. PPP - - An inte-
grated CASE environment. Proceedings of "CAiSE91, Trondheim, Norway",
May 1991.

[17] M. R. Gustafsson et al. A declarative approach to conceptual information mod-
elling. In T. W. Olle et al., editor, Information Systems Design Methodologies:
A Comparative Review. North-Holland, 1982.

[18] Jacques Hagelstein. Problem-oriented requirements engineering. In G. Shoen-
makers, editor, Colloquium Software Spccificatie Techniekcn. Academic Ser-
vices, Schoonhoven, 1987.

[19] J. tlopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[20] J. Krogstie et al. Information systems development using a combination of
process and rule based approaches. In Proc. CAiSE'91, Trondheim. Springer
Verlag, June 1991.

[21] W. P. Lehmann. Historical Linguistics. Holt, Rinehart & Winston, New York,
2nd edition, 1973.

[22] O. I. Lindland et al. PPP - - the Process & Phenomenon Model. In Proc.
DnD/Infotech'88, March 1988.

327

[23] John Lyons. Introduction to Theoretical Linguistics. Cambridge University
Press, 1968.

[24] Gareth Morgan. Images of Organization. Sage Publications, Inc., 1986.

[25] P. Naut. Intuition in software development. In Formal Methods and Software
Development. Springer Verlag (LNCS 186), 1985.

[26] Andreas L. Opdahl. A formal definition of diagrammatic systems specifica-
tions. Technical report, Diploma Thesis, Division of Computer Science, The
Norwegian Institute of Technology, 1988.

[27] J. Peckham and F. Maryanski. Semantic data models. ACM Computing Sur-
veys, 20(3), September 1988.

[28] C. A. Petri. Kommunikation mit Automaten. Schriften des Rheinisch-
Westfalischen Institut fiir lnstrumentelle Mathematik an der Universitiit Bonn,
(2), 1962.

[29] W. D. Potter and It. P. Trueblood. Traditional, semantic and hyper-semantic
approaches to data modeling. IEEE Computer, 21(6):??, June 1988.

[30] S. Itadhakrishnan. Indian philosophy. Allen & Unwin, London, 1951.

[31] C. A. Richter. An assessment of structured analysis and structured design.
SIGSOFT Software Engineering Notes, 11(4), 1986.

[32] N. W. Ross. Three Ways of Asian Wisdom. Simon & Schuster, New York,
1966.

[33] James Itumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall,
1991.

[34] S. Shiner and S. J. Mellor. Object-Oriented System Analysis: Modeling the
World in Data. Prentice Hall, Englewood Cliffs, first edition, 1988.

[35] Yair Wand. An ontological foundation for information systems design theory.
In B. Pernici and A.A. Verrijn-Stuart, editors, Office Information Systems: The
Design Process. Elsevier Science Publishers B.V. (North-Holland), May 1989.

[36] P. T. Ward. The transformation schema: an extension of the data flow diagram
to represent control and timing. IEEE Transactions on Software Engineering,
12(1):22-32, January 1986.

[37] A.I. Wasserman, P.A. Pircher, and R..J. Muller. The Object-Oriented Struc-
tured Design Notation for Software Design Itepresentation. IEEE Computer,
23(3), March 1990.

[38] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, 1990. 341 p.

