
Concepts for Real-World Modelling 

A n d r e a s  L. Opdah l*  G u t t o r m  Sindre  t 

Abstract  

Simple, intuitive, and yet powerful languages are needed to model the real- 
world in the problem analysis phase of information system development. How- 
ever, contemporary real-world modelling languages are either weak in expres- 
sion or cluttered with rigorous detail. In the former case, models become to 
vague to be meaningful, while the latter case makes modelling even of rather 
simple dynamic systems a complex task and hardly facilitates communication 
with end users. 

Object-orientation is not considered appropriate for this purpose, due to 
its low emphasis on dynamics. Dataflow diagrams, on the other hand, em- 
phasise dynamics, but unfortunately, some major conceptual deficiencies make 
DFDs, as well as their various formal extensions, rather useless for real-world 
modelling. 

This paper presents concepts for real-world modelling which rely on some 
seemingly small, but essential modifications of the DFD language. Hence the 
well-known, communication-oriented diagrammatic representations of DFDs 
can be retained. It is indicated how the approach can support a smooth tran- 
sition into later stages of object-oriented design and implementation. 

keywords: dataflow diagrams, real-world modelUng, conceptual 
modelling, object-orientation, problem analysis 

1 I n t r o d u c t i o n  

There is an increasing tendency in information system development to consider not 
only the functionality which is going to be automated, but to give considerable 
attention to the organisation around the system [11]. This increased scope puts 
heavier requirements on the modelling languages, which have to be appropriate for 
modelling any real-world activity, rather than just the information processing activ- 
ities to be automated. Real-world modelling can also be interesting in cases where 
no new information system is planned, e.g for general analysis of the organisation's 
information, document, and/or material resource flows with respect to performance, 
availability, reliability, or security. 
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Concep t  
Act iv i ty  
Aspect  

Process Flow Store 
Transformation Transportation Preservation 
Matter Location Time 

Table 1: A datafiow diagram taxonomy of'real-world dynamics 

Object-orientation has been promoted as a kind of panacea in software engineering, 
also in the analysis phase. However, dynamics are not sufficiently emphasised in 
object-oriented models, and this creates problems for dynamic analyses [2], as well 
as resulting in vague, imprecise representations. Section 2 will elaborate on this. 

There are lots of languages around for modelling dynamics. Many are variants either 
of Petri-nets [28] or state-transition diagrams [19]. Itowever, "place" and "transi- 
tion" based Petri-nets do not include concepts which are closely linked with what 
goes on in the real-world, tIence they are unintuitive and difficult to understand 
for untrained personnel, and the resulting models do not support easy communi- 
cation. State-transition based models go one step even further, disregarding the 
entities from the which the real-world is composed altogether. An often-used al- 
ternative is dataflow diagrams (DFDs) [13, 15], which have been praised for their 
intuitive appeal [25]. Knowingly or unknowingly, the DFD language embodies a 
beautiful taxonomy of real-world dynamics in its three major concepts for dynamic 
modelling. This taxonomy is indicated in table 1, where the three concepts corre- 
spond to a straight-forward perception of human activity, and furthermore to three 
orthogonal aspects of nature: matter, location, and time. This will be explained 
in sec. 4. However, DFDs have several weaknesses which prevent them from being 
appropriate for real-world modelling. Most emphasised is the lack of a formal ba- 
sis [31], especially with respect to representation of dynamics. E.g. it is unclear 
when a datafiow process executes, as well as what it receives and sends on its in- 
put and output flows per execution [4]. Such issues have been addressed by later 
dataflow extensions [36, 16, 14]. The lack of support for declarative business rules in 
a DFD setting is another point that has been addressed [20]. However, none of these 
improvements have fully addressed the implications of the above taxonomy and as a 
result, DFD, in spite of all extensions, remains unsuitable for real-world modelling. 

The goal of this paper is therefore to arrive at a language which maintains and consis- 
tently exploits the above taxonomy, and which provided the appropriate abstraction 
mechanisms for modelling large systems. 

The rest of the paper is structured as follows: Section 2 describes the major short- 
comings of object-orientation as a paradigm for real-world modelling, and section 3 
similarly describes the major shortcomings of dataflow diagrams. Section 4 presents 
our extensions to DFD, both in concepts and notation, addressing the previously 
mentioned weaknesses. Section 5 outlines the relation between the proposed mod- 
elling framework and object-oriented modelling before section 6 presents some con- 
cluding remarks and paths for further work. 
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2 Criticism of Object-Oriented Analysis 

Object-orientation is becoming increasingly popular. Object-oriented programming 
(OOP) and design (OOD) are already well established. As a consequence, numerous 
object-oriented analysis (OOA) methods are being proposed, an overview of which 
is found in [5]. Some of the most often stated advantages of OOA are: 

�9 object-orientation corresponds very well to the human perception of the real 
world, i.e. it is "natural" 

�9 choosing an object-oriented structure also for analysis, one achieves a smooth 
transition to design and implementation 

In the following we will address these two issues in separate. 

2 .1  O O A  is n o t  " N a t u r a l "  

True enough, object-oriented specification languages contain many of the same con- 
structs as semantic data models [27, 29], which are believed to support the way 
humans think. However, whereas data models only aspire to giving a static por- 
trait of the world, object-oriented analysis is supposed to deal also with dynamics, 
and must thus be evaluated in a different light. In the dominant approaches to 
OOA/OOD [10, 33, 38, 34, 7, 37] the focus is on classes: identifying the classes 
and their relationships and organising class hierarchies. The methods first capture 
statics, then dynamics. By being subordinate to the static structure, dynamics are 
generally given less emphasis than statics, and diagrams typically depict only static 
structure - -  to find out what goes on in an object-oriented specification one will 
often have to think through some complicated spaghetti-style message-passing in- 
teraction. This creates problems in the analysis phase where gaining understanding 
of the problem at hand is a main issue. Furthermore, intuitive validation of the es- 
tablished models is difficult, and attempts at formal verification would create great 
solution complexity. 

Thus, a claim that object-orientation is a natural way to view the world, implies that 
statics must somehow be more basic or fundamental than dynamics in the human 
perception of the real world. However, there are many indications to the contrary: 

�9 Particularly in Eastern philosophy [30, 32] but also in Western [3], it has been 
stated that everything is change, and that processes are more fundamental than 
things. These attitudes have also penetrated to some researchers in modern 
physics [6, 9]. 

�9 From a more pragmatical point of view, human organisations (which informa- 
tion systems are, after all, made for) can also be described as ever changing 
systems, more like processes than things [24]. 
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The verb is the most sophisticated word class of almost all natural languages, 
with alternative forms on a wide variety of axes: tense, mood, aspect, number, 
person [23]. The forms of the noun are fewer, and in a modern language such 
as English, case and gender have become extinct [21]. Moreover, the verb is 
usually the most prominent word in a sentence, to which all the other sentence 
elements stand in some relation - -  of. the tendency to start with identifying 
the main verb during syntactic analysis of natural language [23]. It can also 
be noted that language itself is a process of continuous change [12]. 

From this, we conclude that a paradigm which emphasises nouns/objects at the cost 
of verbs/processes, can hardly be called natural if the ambition is to model the real 
world. 

2.2 OOA does not Avoid "Gaps" 

The claim that OOA results in small gaps between the phases is often true. However, 
the small gap is achieved at the cost of a very shallow analysis. The demand that 
requirements should be formulated declaratively has been increasing in strength 
since the early eighties [17]. OOA claims to be declarative compared to OOD, 
i.e. describing what the system should provide (in terms of classes and operations), 
whereas the design tells how this is done. However, to some extent this declarativity 
is fake, i.e. it is achieved by the fact that OOA is merely less detailed than OOD, a 
sketch of the design. 

Compared to using DFDs, object-oriented analysis might be a step forward. How- 
ever, compared to other recent experimental approaches it is semantically restricted. 
E.g. it is very difficult to specify declarative business rules within an object-oriented 
structure. Declarative rules are inherently global in nature, whereas object-orientation 
means that one can only state rules in a fragmented way within class definitions. 

Hence a small gap can be achieved only by pulling analysis closer to design than it 
should have been. As stated in [18] requirements engineering should be problem- 
oriented, not target-oriented. Object-orientation is a design decision, not a require- 
ment, and choosing object-oriented analysis just because the next step is object- 
oriented design is simply not a sufficient argument. 

3 C r i t i c i s m  of  D F D  for  R e a l - W o r l d  M o d e l l i n g  

To establish DFD-like concepts for real-world modelling, the more fundamental 
weaknesses of dataflow diagrams in this respect muse be surveyed. In the follow- 
ing we will make some more observations on the weaknesses of DFD for real-world 
modelling. In particular, we address two issues which emphasise the problems with 
DFD as a language for modelling the real world: 

�9 the weakness of the flow concept, and 
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Figure 1: What does a flow mean? 

* the dominance of the processes. 

Related deficiencies have been touched upon in [8]. In particular, it is pointed out 
that decomposition is very problematic, particularly with respect to flows. Either, a 
tremendous amount of flows occur at the higher levels of abstraction, or alternatively, 
flows obtain very obscure meanings. 

8 .1  W e a k n e s s e s  o f  t h e  F l o w  C o n c e p t  

One of the main problems of the flow in DFD is that it is overloaded with alternative 
meanings. Some of these problems have been addressed, for example distinguishing 
between control flow and dataflow [36] or information flow and material flow [22]. 
However, these are all flows, and thus, the main problem has not been addressed: 
namely that the flow is the only possible link between processes, stores and external 
entities. 

Consider the simple diagram of fig. 1, with the first process "Write document" 
producing a (electronic or paper) document which is the input to the second process 
"Correct typing errors". What does the flow in this picture mean? In fact, it can 
have two rather different meanings: either it can mean that the document is in fact 
transported (or transferred electronically) from one place to another, e.g. because 
the two tasks are performed by two different persons. But it might also mean simply 
that the output of the first process is the input o f  the second, without any input 
taking place (e.g. if the two tasks are performed by the same person). Intuitively, one 
would think from the arrow symbol that there is some transportation, but inspecting 
a number of DFDs, one is likely to find lots of examples where flows are simply used 
to make an output/ input connection between two processes. This ambiguity of the 
flow concept is a major problem of DFD, and looking at a slightly more complicated 
example, we will in fact see that DFD completely fails to model a dynamic system 
in a proper way. 

For this example, consideran extension of the previous one, where there are two 
processes working in parallel correcting the document after it has been written - -  
one dealing with typing errors and one with deeper errors (syntactic, semantic, 
pragmatic). Of course, one could make one single process "Proofread document" 
out of B and C, but then we would totally miss the fact that there are two different 
tasks, which might be performed by different persons, or the first even by a computer. 
Clearly, we must be able to model this as two processes, and if they are performed 



doc. 

OC~ 

(a) 

314 

(b) 

Figure 2: Problems with parallel material flows 

in parallel in real life, they must also be modelled as such. 

Since both processes are supposed to change the document in some way, it must be 
an input and output of both these processes. Itowever, the diagram of fig. 2 does not 
make much sense - -  the first process seems to be sending out two documents rather 
than only one, and the other two processes turn out one corrected document each - -  
one corrected only for typos, and one corrected only for deeper errors. It would of 
course be possible to achieve the wanted effect (both processes working on the same 
document) by defining some underlying execution semantics for the diagram, unique 
labelling conventions etc., but this does not seem very satisfactory, since the strong 
side of DFDs in the first place is their intuitive appeal [14], the basic dynamics of 
the system should be apparent from the diagram itself rather than relying on some 
odd, underlying conventions. 

The at tempt in fig. 2b, introducing a store to hold the document, does not work 
either - -  it would seem contradictory that the two correcting processes should be 
able to process the same document at the same time, since intuitively an arrow from 
a store means taking something out of it, and an arrow to a store means putting 
something into it. One of the major problems is that whereas information can be 
duplicated for processing purposes and still be the same information, material cannot 
- -  there is no "non-destructive get" (i.e. a "read") for a material substance. Thus, 
whether on file or paper, if the physicM document is processed in parallel by several 
actors, the situation becomes very difficult to model with a DFD. And parallel 
processing being very common, a language which cannot deal with it properly is of 
course useless for our purposes. 

3 . 2  T h e  D o m i n a n c e  o f  P r o c e s s e s  

Another observation is that the driving force in dataflow diagrams, as well as in more 
modern and formalised extensions [36, 16, 14] is the process - -  it is processes that 
make data (or material) flow, and it is processes that take data or material in and 
out of storage - -  flows and stores are only passive slaves. The process is equipped 
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(a) (b) 

Figure 3: Data or materials being changed inside flows and stores. 

with much more complex semantics than the other two, and all decisions are made 
within processes. Accordingly, only processes can be decomposed to contain full 
DFDs inside (i.e. both new processes, flows, and stores). In some DFD formalisms, 
store and flow decompositions are allowed, but stores can only be decomposed into 
substores, and flows only into subflows. This is a major reason for some of the 
problems reported in [8] that high-level flows have very little meaning, just grouping 
together various things which happen to flow between the same high-level processes. 

Although seemingly "natural", this dominance of processes reduces the expressive 
strength of diagrams. Also, it is not consistent with the ways in which real-world 
systems actually work: Just like there is flow and storage within a process, there 
should be an ability to represent processing within flows and stores. In the reM 
world artifacts might change during transportation or storage, and such changes are 
sometimes important when designing models. To accomplish this, we must either: 

�9 allow full decomposability also of flows and stores, or 

�9 model any change by means of a process outside the flow or store. 

The latter alternative is not very satisfactory, because it creates an abundance of 
processes, resulting in inferior abstraction, as illustrated in fig. 3. The case here 
is transportation and storage of cheese. Of course, cheese which was OK when 
loaded onto the truck/boat/train/plane might be destroyed during transport, and 
the quMity may also be reduced (or improved) during storage. Compared to the 
simple picture of 3a, fig. 3b has to make two extra processes: "Damage cheese" 
for the possible change during transportation and "Ferment cheese" for the possible 
change during storage. Especially since the processes of damage and fermentation 
are merely results of transportation and storage, rather than something which is 
done actively by some actor in the organisation, it would seem more natural to hide 
these details within the flow and store, rather than exposing them as independent 
processes at the same level as cheese production. 

With the former approach, one would yield just the picture of fig. 3 a -  detMls 
about the flow and the store could be hidden within their respective nodes, only 
to be shown when inspecting their decompositions. It is very difficult to abstract 
away details such as this without hiding them in the flow or store - -  the processes 
of damage and fermentation happen after the "Make cheese" process is finished 
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and cannot easily be hidden inside this process. It seems particularly unnatural to 
picture "Ferment cheese" outside the store, virtually taking cheese out of the store 
and putting it back after some fermentation, when actually, the cheese remains in 
the store all the time. The modelling of "Damage cheese" is also very unintuitive 
- -  from the picture it seems that the cheese is first transported to a particular site 
where it is damaged, then to be brought on to the store. Hopefully, the damage only 
applies to a very small ratio of the transported cheese, but the diagram also fails to 
indicate this - -  apparently, damage is the rule rather than the exception. 

Summing up, our main requirements for a real-world modelling language based on 
DFD are as follows: 

�9 Processes, flows, and stores should all have well-defined meanings which corre- 
spond to the human perception of transformation, transportation and preser- 
vation. Specifically, flows should not be used both for transportation and 
simple output/ input connections, but rather be reserved for the former. 

�9 The three concepts should be fully inter-4ecomposable, to make it easier to 
abstract away details at the appropriate place in a model. 

These requirements will be dealt with in the following. 

4 Real-World Modelling Concepts 

According to the discussions in the previous section, we will now define a formalism 
which is more appropriate for real world modelling than DFD, whereas maintaining 
its good features. As stated earlier, DFD contains a nice taxonomy of real-world 
dynamics in the three concepts process, flow, and store - -  denoting transformation, 
transportation, and preservation. However, as we have seen, DFD itself is not true 
to this taxonomy, for instance using the flow concept also in cases where there 
is actually no transportation taking place. In the following we will describe the 
essentials of such a modelling language. 

4 .1  I t e m s ~  P i e c e s ,  a n d  S t r e a m s  

To represent the dynamics of a real-world system (i.e. our universe of discourse), the 
static entities changed by that dynamic system most first be described. According 
to Wand [35], the real-world can be perceived as consisting of "things", which will 
be called items in this paper. Following Wand, things have properties, which will 
be called attributes by us. Hence an item ~ = {ai} can be formally defined as a set 
of attributes ai, v(ai, t) E D(ai), where v(ai,t) is the value of property ai at time t 
and D(ai) is its domain (or "type"). Of course, items can be described in terms of 
item classes, but this is not an issue in this paper. 

Although items represent matter, they may at the'same time represent the data 
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associated with matter.  In general, three aspects of an item can be perceived as 
relevant when creating a model [26]: 

�9 The substance of an item corresponds to material presence, e.g. the presence 
of a paper form in a worker's input basket which triggers a certain activity 
related to that form. 

�9 The properties of an item are the data that can be extracted from the item's 
substance, e.g. the colour of the paper form, its size and thickness. 

�9 the data carried by an item is the information'purposely coded onto the sub- 
stance, e.g. the letters written on the above form. 

Both properties and data are represented as attributes of items, while substance is 
represented by the item's presence. 

Items can be either discrete or continuous. The attributes of a discrete or continuous 
item defines its state. Hence S(t , t )  = {v(ai,t)} is the state of item ~ at time t. 
Changes of attributes change the states of items. 

The states of discrete items change instantaneously, corresponding to events. An 
event e occurring at time t can therefore be formally defined as a 4-tuple e = 
(~,S,S' , t) ,  where ~ is the item whose state has changed, and S and S'  are its old 
and new states respectively. The states of continuous items change continuously, 
corresponding to alterations. The effect of an alteration during interval dt can 
therefore be formally defined as a 4-tuple e = (L, S, S', dr), where L, S, and S '  are as 
in the above. 

Furthermore, items are located in space. Items with a single well-defined location at 
the level of which the real-world system is perceived are called pieces. Items without 
such a well-defined single location are streams. Hence streams can simultaneously 
occupy several locations, but not all of them are of interest in a real-world model. 
E.g. when representing the flow of water through a drainpipe, only its end-point are 
of interest. Pieces and streams may both either have discrete or continuous events, 
hence they are called discrete or continuous pieces br streams respectively. In the 
above example, the form is probably most appropriately modelled as a discrete piece. 

Let p(t , t )  be tim location of piece,  at time t, and let P ( t , t )  = {p(x,t) lx e ,} be the 
extension of stream 5. Hence an extension is defined as the set of locations of all its 
parts, these part  locations will be called location points. The locations and location 
points of all items in the universe of discourse can be described as a set II. Elements 
r E I I  of this set will be called ports for reasons that will soon become apparent. 

4.2 Ideal Processes, Flows, and Stores 

The processes, flows, and stores of conventional dataflow diagrams are now inter- 
preted as transformations, transportations, and preservations of items respectively. 
These divide the representation of real-world dynamics in three orthogonal aspects: 
matter,  location, and time: 
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�9 An ideal process, p, represents a change of matter (and hence potentially also of 
the associated data) while keeping location and time constant (i.e. performing 
the modification in zero time and without any changes of location). 

Formally, an ideal process p = (iii,  IIo, (I)) consumes items, ~, through a set 
of input ports, 7ri E IIi, and produces items through a set of output ports, 
~ro E 1Io. The attributes of items produced are determined by a set of functions 

= {r Each function ~o in this set is a function of attributes of input items, 
determining the attributes of the items output through each output port. All 
input and output ports r E Its O IIo must represent the same spatial location. 

�9 An ideal flow, f ,  changes the location of items,.while keeping matter and time 
constant (i.e. performing the transportation in zero time and without any 
changes of matter). 

Formally, an ideal flow f = (ri,  7to) consumes an item from input port ~ri and 
immediately produces an item with exactly the same attributes to output port 
~o- The output ports must represent locations which are different from the 
input ports. (The concept can of course easily be extended to account for 
multiple input and output ports.) 

�9 An ideal store, s, changes time, while keeping the matter of items and their 
locations constant. 

Formally, an ideal store s = ( I I t ,  IIo) consumes items from input ports and 
produces items with the same attributes to its output ports after some time. 
The input and output ports ~r E IIt U IIo must represent the same spatial 
location. 

Hence ports are the spatial locations from which items are consumed and to which 
items are consumed by processes, flows, and stores. These must correspond to 
the locations of pieces which are perceived as relevant when modelling a real-world 
system, as well as to the location points of streams. An ideal model is a composition 
of ideal processes, flows, and stores, as will be defined in sec. 4.5. 

4.3 Real Processes, Flows, and Stores 

Obviously, such ideal concepts are not realistic. IIowever, they might be useful 
in many contexts - -  formalisms such as Petri-nets [28] and state-transition dia- 
grams [19] have provided powerful mechanisms for dynamic modelling with zero-time 
transitions only. In the framework, the ideal concepts are the basic building blocks 
through which the real-world is perceived. However, at higher levels of abstraction - -  
when perceiving more complex systems - -  it does not seem appropriate, nor neces- 
sary, to restrict expressiveness that much. Therefore we introduce, correspondingly, 
what we call the real variants of process, flow, and store: 

* a real process, P, is an activity which might change both matter and location 
of items, as well as time. However, being modelled as a process, the activity 
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is mainly considered a transformation activity, the change of matter  being 
perceived as more important than the change of location or time. 

a real flow, F, is an activity which might change both matter  and location 
of items, as well as time. However, being modelled as a flow, the activity 
is mainly considered a transportation activity, the change of location being 
perceived as more important than the change of matter  or time. 

a real store, S, is an activity which might change both matter  and location 
of items, as well as time. However, being modelled as a store, the activity is 
mainly considered a preservation activity, the change of time being perceived 
as more important than the change of matter or location. 

An real model is a composition of real or ideal processes, flows, and stores, as will 
be defined in subsection 4.5. 

Formally, real processes, flows, and stores are essentially the same dynamic entity, 
E = (HI, IIo,  ~), consuming items from input ports 7ri E III and producing items 
to output ports ro E IIo.  The attributes of items produced are still determined by 
a set of functions ff = {r - -  one for each output port - -  of attributes of items 
consumed. Ports 7r E II1 U IIo may or may not have the same location, and output 
items may or may not be produced immediately upon input item consumption. 

IIence the distinction between the three real concepts becomes entirely concep- 
tual, allowing exactly what was wanted: full inter-decomposability among processes, 
flows, and stores - -  a process can contain stores and flows in addition to subpro- 
cesses, a flow can contain processes and stores in addition to subflows, and a store 
can contain processes and flows in addition to substores. 

Hence real concepts are inter-decomposable. From the definitions of the previous 
subsection 4.2 however, it can be seen that the corresponding ideal concepts pre- 
sented there are not: A flow containing a substore would not produce output items 
immediately upon input item consumption, and a flow or store containing a subpro- 
cess would not necessarily produce output items with the same attribute values as 
its input items. 

Nevertheless, the possibility exists for decomposing an ideal process into subpro- 
cesses only, an ideal flow into subflows only, or an ideal store into substores only. 
tIence ideal concepts are intra-deeomposable which is a restricted form of decompos- 
ability. 

4 . 4  L i n k s  

The previous sections 4.2 and 4.3 explained and defined ideal and real concepts for 
transformation, transportation, and preservation. However, to represent a real-world 
system with them, their interactions must also be defined. Obviously, a concept is 
needed to relate the output ports and input ports of different processes, flows, and 
stores to one another. We call this concept a link: 
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a link I binds the input and output ports of ~everal dynamic entities. The 
meaning of a link is that the bound ports are actually identical in space-time. 
As a consequence, output items that are produced through the output ports 
bound by the link are immediately consumed from the input ports. Hence 
the link has a direction from its output ports to its input port. There is no 
transformation, transportation, or preservation involved across the link. It is 
no change, zero time, zero distance. Of course, a link comprising multiple 
input ports initiate parallel dynamic threads in the model, while links with 
multiple output ports synchronise those threads. 

Formally, a link I = (IIo, IIi) is a pair of sets of output 1to E Uo and input 
~ri E Hi ports. 

Conceptually, processes, flows, and stores cannot be directly connected to each other 
all such connections have to be made through links. 

The previous section 3.1 stated that a major problem with flows was that sometimes 
they mean transportation, other times only an output/ input connection. We now 
realise that this problem has disappeared through the introduction of links: The 
concept of flows has been reserved for the former phenomenon, and links account 
for the latter one. Links represent e.g. that the output of one process is the input 
of another one (or of several other ones) without any actual transportation taking 
place. 

4 . 5  I d e a l  a n d  R e a l  M o d e l s  

Summing up our conceptual basis, we have laid down three basic principles for 
reinterpreting dataflow diagrams: 

1. orthogonality of ideal concepts; 

2. full inter-decomposability of real concepts; 

3. distinguishing between flow (ideal or real transportation) 
and link (zero-time, zero-distance communication); 

We have identified six concepts: process, flow, store, item, link, and port. While 
processes, flows, and stores were either ideal or real, no such distinction was made for 
items, links and ports. However, items were classified as either discrete or continuous 
with regard to state changes, and as either pieces or streams with regard to spatial 
location. 

Formally, an ideal model, Dt = CP, jz, S, L), is a 4-tuple of sets of ideal processes, 
flows, and stores, as well as a set of links. A real model, DR, accordingly is a 4-tuple 
of sets of real or ideal processes, flows, and stores, as well as a set of links. Hence 
ideal models can contain only ideal concepts, while .real models may contain both 
real and ideal ones. 



321 

t :> 

Process Flows Store 

........ .~. �9 

Connection 
Link point 

Figure 4: Graphical symbols for the real-world modelling concepts. 

(a) 
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(b) 

Figure 5: A notational convention to reduce the number of arrows 

The only structural consistency requirement imposed on a model, is that all output 
and input ports a'o and 7ri bound by links I = (lIo, IIi) E L must in fact be output or 
input ports of some dynamic entity. However, the converse does not have to be true, 
i.e. there may be input and output ports of dynamic entities in the model which 
are not bound by links. Let the sets I IDj  and IID,o of free (i.e. not bound) input 
and output ports be the input and output ports of model D, respectively. In this 
way, every model can be represented as a dynamic entity at the next higher level of 
abstraction. Whether to use a process, flow, or store representation at that level is 
again a matter of what the modeller sees as most important. 

4.6 Graphical Conventions 

We retain the traditional DFD notation [13, 15] for processes and flows - -  however, 
to facilitate the visualisation of decomposition, it must also be possible to depict 
the flow as an enlarged kind of box-arrow. Similarly, to facilitate the illustration 
of decomposed stores, full rectangles are more convenient than the open-ended ones 
used in the conventional notations. Links are shown as dotted arrows. Connection 
points are normally not shown in the diagram (since they will generally be implicit 
from the contact between a link and a flow/process/store. If necessary, though, the 
connection points can be shown as tiny, black dots. The symbols are shown in fig. 4. 

Introducing links for all connections between flows, processes, and stores, there would 
easily be an abundance of arrows in the diagrams. To avoid this, we introduce 
the notational convention that links are not necessary when at least one of the 
connections is to one of the end-points of a flow. Thus, the conceptual situation of 
fig. 5a, can be portrayed diagrammatically as in fig. 5b. 
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Figure 6: Modelling with links and flows 

4 . 7  E x a m p l e s  

The usefulness of the link concept is indicated in fig. 6, where flows axe modelled 
with full lines and links with dotted lines. Then, the two diagrams of figs. 6a and 6b 
have different meanings: in 6a the document is actually transported between the 
two processes, whereas 6b simply says that it is the output of the first process and 
the input of the next, without any transportation taking place. The real usefulness 
of the link can be appreciated reconsidering the example with parallel processing 
of fig. 2. With the introduction of links, both the previous attempts at solution 
suddenly work. In 2a, instead of directing the flow from "Write document" to any of 
the two processes, it goes to a free-standing connection port which is again connected 
to the two processes by means of two links. This tells us that the two inputs of the 
processes are actually happening at the same point in space-time, i.e. they both get 
the same input item. Similarly, the output is linked so that this must also necessarily 
be the same item. This diagram still indicates some transportation between the first 
process and the other two. If there were no transportation, we could have connected 
the two links to a point at the surface of "Write document". In 2b, we have simply 
replaced the flows between the two correction processes and the store with links, 
both connecting to the same port at the surface of the store - -  again indicating that 
the item worked on is not transported to/from the store but resides there all the 
time, and that both processes work on the same item at the same time. 

Examples on the use of these options are indicated by the diagrams in fig. 7: 7a shows 
the transportation of a document (either electronically or on paper) which has to be 
coded and decoded. Clearly, it might be convenient to view the coding and decoding 
as details within the transportation activity, since these activities are logically more 
a necessity of the communication than of the mere production and reading of the 
document. This kind of decomposition is shown in fig. 7b. With the traditional 
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(c) (d) 

Figure 7: Full inter-decomposability 

process dominance, the coding C and decoding D would rather have to be hidden 
within the "Write" and "Read" processes, respectively, and the intermediate storage 
I might have been pulled up to a higher level of abstraction. The modeller still has 
the choice to do this in our formalism, but now there is a wider variety of choices 
concerning how to do abstractions - -  one can always choose the way which feels 
most natural. 

The next example, fig. 7c, shows a store which contains barrels. Imagine now that 
within this store there are actually two stores: one wllich contains the tip-top barrels 
ready for use, and another one where damaged barrels are stored, awaiting main- 
tenance. If a barrel in the foreground store is found to be inferior, it is sent to 
the background store for maintenance, and when a barrel has been fixed, iL is sent 
back to the foreground store. Clearly, this interaction between the two parts of the 
barrel store should be hidden at high levels of abstraction. With traditional pro- 
tess dominance, such abstraction could only be done using a process at the higher 
level, since the lower level also contains processes (for instance barrel inspection and 
maintenance). However, the barrel store is first and foremost a store, even if there is 
transformation and transportation taking place within it, and thus, it would be most 
intuitive to model it as such. This is achieved with our approach, the result shown 
in 7d - -  the process I performing barrel inspection, and the process M performing 
barrel maintenance (possibly, these two processes could be further hidden within the 
Foreground and Background stores, respectively). 

A typical real-world example, illustrating the benefit of increasing the power of 
flows and stores, is that of fig. 8. Here, we have got a system of three lakes, with a 
river connection between them. The river connection has several side-branches, all 
running top to bottom in the map in fig. 8a. In 8b and 8c we show two models of 
this system. The first one is on a high level of abstraction and has considered the 
smallest lake, and all but the two main branches of the river to be too insignificant 
for presentation. The second one shows all the detail. It should not be difficult to 
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Figure 8: A lake-river system 

imagine how complicated the model of this system would seem with the traditional 
DFD, where one would need processes to get the water in and out of the stores, and 
where a flow connected to another flow, without any intermediate process or store, 
would be illegal (and meaningless). 

5 Re la t ion  to Objec t -Or iented  D es ign  

As pointed out in sec. 4.3, the difference between real processes, flows, and stores is 
purely conceptual - -  they can all be considered dynamic entities, with emphasis 
on transformation, transportation, and preservation, respectively. Taken to the 
extreme, one could introduce a conceptual "store" for every type of item in tile 
domain modelled, thus portraying everything which would be static in a traditional 
data model as a process. These stores would then have links to every dynamic 
entity in the model where the item could occur. An interesting observation is that 
structurally, such a specification comes very close to object-orientation - -  especially 
the OMG object model, level 2 [1], where free-standing operation-objects are allowed, 
i.e. operations not encapsulated in any objects. At the lowest level of decomposition, 
our approach and the level 2 approach of OMG might end up with exactly the same 
dynamic entities in a model, although the models at higher levels could have been 
completely different, due to an emphasis of objects by OMG and processes by us. 

From this it can also be concluded that choosing a highly process-oriented (or for 
that sake object-oriented) nmdelling paradigm durirrg analysis, does not restrict us 
to choosing a similar structuring principle for design. When things are broken down 
far enough, one can choose whether to arrange processes around objects (OO) or 
the other way around (PO). This corresponds to the principle of top-down analysis 
and bottom-up design promoted by Bubenko in [8]. Notice that our criticism of 
object-orientation in section 2 considered only its restrictions upon the aualysis 
phase, with particular attention to systems where dynamics are important. We do 
recognise many advantages of object-orientation when it comes to the design and 
implementation of such systems. 
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6 Conclusions and Further Work 

The need for simple, intuitive, and powerful real-world modelling languages was 
pointed out. However, both object-oriented and dataflow diagram modelling ap- 
proaches were found insufficient. Object-oriented analysis was weakened by its focus 
on static - -  as opposed to dynamic - -  aspects of the real-world system. In addition, 
anMysis was to dependent on the later design phase. Dataflow diagrams were prob- 
lematic with respect to the unclear "flow" concept, in addition to being to focused 
on "processes." 

This discussion lead to the formulation of requirements on a real-world modelling 
framework, for which concepts were then proposed. A reinterpretation of the three 
basic dataflow diagram constructs made them consistent with basic human activi- 
ties transformation, transportation, and preservation, in addition to three orthog- 
onal aspects of nature: matter, location, and time. Interactions between the three 
types of constructs in a real-world model were expressed through the concepts of 
links, immediately solving the previous problem of DFD "flow" semantics. A dis- 
tinction was made between ideal and real processes, flows, and stores, allowing full 
inter-decomposability between the three. It was shown how the conventional dia- 
grammatic dataflow representation could still be used with the new concepts. 

Although having evolved over several years of work on the PPP modelling ap- 
proaches [16], this work is still in its initial phases. The proposed framework must 
be further refined and validated through more comprehensive examples. The formal 
framework must be extended correspondingly and tool-support be provided. More 
work is Mso needed to fully understand its relation to object-oriented design and 
implementation. 
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