
An Abstraction-Based Rule Approach to
Large-Scale Information Systems Development

Anne Helga Seltveit
Email: ahs@idt.unit.no

Faculty of Electrical Engineering and Computer Science
The Norwegian Institute of Technology

N-7034 TRONDHEIM, NORWAY

Abst rac t . By introducing a rule language in IS development business
rules can be explicitly represented. However, the use of rules implies that
we have to find ways to deal with rule capture and complexity of large
rule bases. The paper argues for an abstraction-based rule approach to
information systems development. Simplifications of a specification are
provided by allowing different views (abstractions) of the rule base and a
framework for describing abstractions is suggested. A view is generated
by a set of expficitly defined abstraction mechanisms, manually produced
by a developer, or a combination of the two. Rather than operating
on a full specification, relevant views can be applied at different stages
of the development process (e.g., in rule capture) and then eventually
integrated into a new version of the full specification. Views may be
updated and multiple views are allowed to co-exist. Supporting multiple
views and various versions of views demands for a versioning mechanism
to keep track of the various versions of a full specification.

Keywords: abst ract ions , abs t rac t lon-based development~ s t ruc-
tu r ing mechanisms, views, mul t ip le views

1 I n t r o d u c t i o n

Within IS Engineering, a large number of different modelling environments exists
where most aim at supporting development of large data intensive, transaction-
oriented information systems. Dealing with massive amounts of information is a
key feature and the different approaches apply a variety of means (e.g., decom-
position) to cope with the complexity of the application domain and thus, the
specifications of the target IS. In spite of being able to express business rules
explicitly by introducing a rule-based approach in IS development, we still have
to cope with the same piece of reality. As pointed out in [14], a specification
paradigm cannot change an application's complexity, it can only move it from
one level to another.

Having this is mind, the use of rules implies that we have to find ways to deal
with rule capture and complexity of large rule bases. We present an approach
which explicitly addresses these problems, and the idea of abstractions is crucial
in the approach taken. Unless facilities to abstract details of rules and facilities to

329

relate rules at different abstraction levels are developed, a rule-based approach to
IS development may have little chance to succeed. Here the abstraction facilities
together with a prescribed abstraction process are considered the key point in
dealing with information (rules, objects, processes, etc.) at different abstraction
levels in a systematical way.

To illustrate the practicality of the suggested approach, we look at an ex-
isting IS development environment, the TEMPORA environment. TEMPORA
is a rule-based approach to IS development and aims at visibly maintaining the
rules throughout the systems development process, from requirements specifica-
tion through to an executable implementation. The paper argues how the TEM-
PORA environment can be extended with the abstraction facilities proposed
here to deal with the complexity inherent in development of large industrial-
sized applications.

The rest of the paper is structured as follows: Section 2 outlines the TEM-
PORA conceptual model. Section 3 proposes a way to characterize abstractions
and Section 4 gives an overview of related work. Section 5 identifies requirements
to an abstraction-based rule approach and describes structuring mechanisms.
Section 6 introduces a set of abstraction mechanisms, and outlines how abstrac-
tions can be applied in building up IS specifications. Finally, Section 7 gives
some concluding remarks and future directions.

2 T h e T E M P O R A C o n c e p t u a l M o d e l

Since the abstraction approach presented in the next sections was developed to
deal with the complexity of IS development using the TEMPORA conceptual
languages, we will briefly describe the features of the languages and give an
example which will form the basis for the reminder of the discussion of this
paper.

The conceptual model has three components: the ERT Model [18, 31], the
Process Model [3, 19], and the External Rule Language [17, 29, 31]. The ERT
Model is an extended Entity Relationship Model and describes the static aspects
of the real world, whereas the Process and Rule Models describe the dynamic
aspects including the temporal dimension. Rules are also used to express con-
straints and derivations on the static model.

Simplified Oil Processing Example The oil processing unit of an offshore plat-
form receives oil and gas together with water from the well and processes the
well stream in a way which separates the different components from one another.
Two of the major equipment components of the oil processing unit are separa-
tors and compressors. Separators are used to separate the oil phase from the
gas phase whereas compressors are used to increase the pressure of the streams
which are carried in various pipes. Based on information from the oil company,
the operational conditions of the wellhead (e.g., pressure and temperature) are
determined. These are together with information about compressor conditions,
used as basis for choosing an appropriate number of separators and deciding

330

operational pressure of the separators. Separator conditions may also be revised
as a result of simulations of the proposed design.

The ERT Model The static aspects of the real world is modelled by the ERT
Model. The basic modelling constructs are: entity classes, relationships classes,
and value classes. The model is also extended with constructs to describe com-
plex objects, generalization/specialization, and temporal aspects. The graphical
representation of the ERT Model constructs is given in Fig. 1 and an example
illustrating the main features of the model is shown in Fig. 2. For a detailed
description of the ERT Model, see [18, 31].

~ ' - - - - -1 An enfi~ class [~] - ~ A time-stampedentity class

[~] Avalue class / p ~ Is-a relationship- generalization

A relationship class

A time.stamped
relationship class I I Complex object

Fig. 1. Graphical representation of the ERT Model constructs.

The Process Model The Process Model, also called Process Interaction Dia-
grams (PID) is an extension of regular datafiow diagrams and is used to specify
processes and their interaction in a formal way. This includes both the interac-
tions between the processes at the same level of abstraction and how processes
at any level of abstraction relate to their decompositions. The basic modelling
concepts are: processes, stores, external agents, flows (may denote both control 1
and data flow), ports, and timers. An example of a Process Model is shown in
Fig. 3. For a detailed description of the Process Model, see [3], [19] and [29].

The Ex te rna l Rule Language The External Rule Language (ERL) is a declar-
ative rule language. It is based on first-order temporal logic and is extended with
constructs for querying the ERT Model. Rules expressed using ERL may both
decribe and constrain processes (of the PID) at any level of decomposition, but
the model only requires them for describing the lowest level. In addition, the
ERL is used to express constraints and derivations on the ERT Model.

All ERL rules are given a single general structure:

WHEN <:trigger condition> IF <condition> THEN <conclusion>

where the WHEN and IF parts are optional.

1 Also called triggering flow.

331

X-n has consists-of
l-n

/~ 1-n consi

1 -i ~ -n
s flowi-in

x- t-~

I , : 7 , o , ~ r
I I-I

Fig. 2. ERT Model for oil processing design.

Com•p•y Design Basis ~De~gn B!~ esign Ba~s

Product Spec., [
Wellhead Data [

Compiessor Conditions

Fig. 3. PID Model for oil processing design.

332

The basic elements of ERL expressions are: a selection of data from the
ERT, sets of data obtained from the ERT, and predicates which name tuples
of data selected from the ERT. Compound expressions are constructed from
basic elements by using connectives of classical first-order logic (e.g., AND)
and temporal connectives (e.g., S O M E T I M E _ I N _ P A S T) .

To give procedural semantics to an ERL rule, a rule must be categorized
as being a constraint rule, a derivation rule, or an action rule. A constraint
rule expresses conditions of the ERT database which must not be violated. For
example, ensuring that the number of separator steps is different from 2, can be
expressed as:

FOR_ALL processing-unit (X) I T _ F O L L O W S _ T H A T C O U N T {Y
F O R _ W H I C H processing-unit (X) consists-of separator (Y)} # 2

A derivation rule expresses how information can be derived from information
that already exists. For example, deriving that equipment is associated with a
high pressure process if the equipment is heavy and expensive, can be expressed
a s :

IF processing-unit (X) consists-of equipment (Y) [has weight -- 'heavy',
has price = 'expensive']
T H E N high-pressure-process (Y)

An action rule expresses what actions to be taken if an event occurs and the
conditions evaluate to true. For example, stating that upon receiving a change
request provided that information about compressor conditions is available, new
separator conditions will be computed, can be expressed as:

W H E N change-request (Separator, Temperature)
IF compressor-condition (Condition) A N D calculate-pressure (Temper-
ature, Condition, Pressure)
T H E N separator-condition (Pressure) A N D processing-unit consists-of
separator (Separator) [has operational-conditions has pressure = Pressure]

For a detailed description of ERL, see [17, 29, 31].

The coupl ing b e t w e e n the mode l s The relationship between the Rule Model
and the Process Model is depicted in Fig. 4. Each non-decomposed process
should have associated a set of ERL rules describing the behaviour of the process.
In addition, one may optionally specify the behaviour of decomposed processes,
these rules being interpreted as constraints on the behaviour of the rules describ-
ing the non-decomposed processes.
The relationship between the Rule Model and the Process Model as depicted
in Fig. 4, can be described as follows. The trigger part is extracted from the
process structure (i.e., triggering flow) and corresponds to the WHEN part of
an ERL rule. The conditional part is extracted from the process structure (i.e.,

333

PROCESS

I

WHEN A (x)
IF B (y) AND P
THEN C (z)

C

Fig. 4. Relationship between the Process and l{ule Models.

non-triggering flow) and from the process logic (expressed in a subset of ERL).
This corresponds to the IF part of an ERL rule. The action part, that is, the
THEN part of an ERL rule is extracted from the process structure (i.e. output
flows).

The Process Model provides an overall structure to the ERL rules [29]. The
ERL rules are grouped in clusters according to the process they are associated
with. A formal definition of the coupling of the Process Model and Rule Model
is given in [13, 31].

The Process Model is given semantics by an underlying temporal model of
the dynamic aspects of the specified system, and it is via these semantics that the
connection between processes and rules can be made. An informal description
of the semantics of the underlying model is provided in [13], and the interested
reader is referred to [20] for a mathematically rigorous definition.

3 Characterizing Abstractions

3.1 The Concep t of A b s t r a c t i o n

Abstraction can be defined as the process of separating relevant and irrelevant
details from a context. The irrelevant details, are suppressed whereas the relevant
details are high-lighted. Accordingly, we aim at providing facilities for ensuring
an adequate representation and presentation of the information at the appropri-
ate level of abstraction at any time of development.

We distinguish between representation and presentation. Representation deals
with the modelling formalisms used to describe the system. Presentation deals
with how the system specifications are used as a means of communication among
the actors involved. The former emphasizes expressiveness and formality whereas
the latter emphasizes expressiveness and user-friendliness.

A presentation facility may use the entire representation formalism (e.g.,
ERL) or only subsets of it (e.g., simplifications of ERL) and most often a set of
additional features are included to improve the readability and understanding
of specifications (e.g., language conversion).

In this way, the abstraction problem may be considered two-fold; What de-
tails to be included (contents) and how these details are to be structured (layout).

334

When certain details are left out (i.e., abstracted away) this will change how the
remaining details are structured.

3.2 W h y We I n t r o d u c e Abs t rac t ions

Basically there are two reasons for introducing abstractions:

1. To cope with the complexity of the Universe of Discourse (domain depen-
dence).

2. To cope with the complexity of a particular specification language (language
dependence).

In information systems development we have to deal with both cases. Developing
information systems requires that we at some point in the development process
must specify the details of the system. The complexity of the problem will decide
where and when the details are to be considered. As more details are gathered
and represented by appropriate modelling formalisms, the specifications may
grow too large to be shown at one time or include details which may be of no
interest to all the actors involved. Furthermore, different actors may hold slightly
different views of the reality and the system to be built, and the final information
system must accomodate a compromise of all these views. From the final model
which is the most complex one, simpler views can be derived. Thus in general,
we face the problem of deciding what is important at a particular time, that is,
what to show when to whom, in what form, and at what level of detail.

Irrelevant of the modelling formalism used, the specifications become large.
Having this in mind, we know that it is not sufficient to have a model which is
meeting the requirements for expressiveness and formality unless it also provides
some mechanisms to deal with the complexity as the size of the specifications
grows. This together with the fact that formal languages with high expressive
power become hard to understand are the rationale behind our search for sys-
tematical ways of performing simplifications to the TEMPORA conceptual lan-
guages.

3.3 Classifying Abs t rac t ions

We may classify abstractions at least in two dimensions according to (see Fig. 5):

- Specification level
- Number of details

A specific abstraction level A is determined by the tuple (X,Y), where X de-
scribes the number of details to be included at a particular specification level and
Y describes what specification level(s) to focus at. For instance, an abstraction
level may be located at the Business Modelling level showing all the top-level
processes in the domain where all but triggering flows (control flows) are left
out. This may be specified as follows:

335

ific~tion

el
11 us/n~s Modelling

Information Sys(em
Modelling

Design Modelling

Run-Time

I

Numb~ of
Details

Fig. 5. Framework for describing abstractions.

A (Business Modelling LeveLPID.LevelO, Control Flow)

Hence we distinguish between two major types of abstractions: horizontal
abstractions and vertical abstractions. Performing a horizontal abstraction on a
specification means to decide what details to be included at a particular speci-
fication level and suppress all other information at that level (i.e., a horizontal
abstraction computes X). A horizontal abstraction may involve:

- Removal of details (e.g., process hierarchies).
- Conversion towards other languages (e.g., paraphrazing).
- Combinations of the two.

By performing a vertical abstraction, we eliminate irrelevant details across spec-
ification levels (i.e., a vertical abstraction computes Y). It may consist of a set
of vertical transformations of a system specification. Keeping the connections
between corresponding/related components at different levels enables tracing of
specifications across development stages.

Vertical and horizontal abstractions may be further divided into application
dependent abstractions (e.g., applying relations between rules at different spec-
ification levels) and model dependent abstractions (e.g., removing complexity
increasing constructs of a language).

4 R e l a t e d W o r k

In Information Systems Engineering, the concept of abstraction or informa-
tion hiding is a crucial one. In the widest sense, a model is an abstraction of
the reality and a number of different specification languages are developed to
cope with this reality. As we want to model even larger and more complex sys-
tems, specifications expressed using these languages become difficult to use and
understand. To deal with the complexity, a variety of abstraction mechanisms

336

are proposed. From the database community, data modelling abstractions (such
as generalization/specialization, aggregation, association, and classification [32])
and mechanisms to allow definition of different views (e.g., SQL views [9]) are
well known means to abstract away irrelevant details. These abstraction mech-
anisms are also adopted by several specification languages for static modelling.
For instance, the Phenomenon Model developed by Sr supports general-
ization/specialization, aggregation, and association [27, 28] and introduces the
concept of scenario for defining different views of a domain [28]. An overview of
hierarchical constructs in static modelling languages is given in [26].

In modelling the dynamics of a system, decomposition is a widely known
abstraction mechanism. In spite of being the subject of much debate (e.g., [8])
it has proven to be useful in practice and a number of methods are based on
functional decomposition (e.g., DFD-like languages [10, 31]). An overview of
hierarchical constructs in dynamic modelling languages is given in [26].

Functional decomposition has also been adopted by several object-oriented
approaches to perform top-down specification of processes (e.g., [33]). Aggrega-
tion is another abstraction mechanism supported by object-oriented approaches.
In addition, Wirfs-Brock et al. [34] has suggested the use of contracts and sub-
systems to group operations and objects at different levels of abstraction.

A striking feature however is that the idea of abstraction as a specification
paradigm is not widespread. To our knowledge, the only abstraction-based soft-
ware development approach is developed by V. Berzins et al. [5, 6, 16]. The key
idea being to provide mechanisms called black box descriptions at different lev-
els of abstraction which enable description of external behaviour of any system
(and sub-systems) to be distinguished from the internal mechanisms that even-
tually are used to realize that behaviour. Thus, a complex system is described
by a set of independent abstractions (black boxes) that are described, under-
stood, and analyzed independently of the details that are used to implement the
system. The concepts applied in the initial approach [5] are similar to abstrac-
tion types well known from programming languages and specification languages
for information systems [4]: abstract data types, iterators, state-machines, and
transformers. More recent work addresses the problems of information overload
in rapid prototyping of large-scale real-time systems. A model based on Data
Flow Diagrams augmented with multiple views is proposed where a distinction
is made between facilities for providing overview pictures (summary views) and
facilities for focusing on certain details (navigation structures and focused slices)
[16].

In addition, some CASE tools today have built in certain abstractions in their
tools but these have very little formal basis (mainly functions implemented in the
tools). One example is the grouping function provided by the IEF CASE tool
where entities and relationships can be grouped to form higher level objects.
However, such an object has no own behaviour and can only be considered
as a vague composition facility. Another example is the concept of scenario in
RDD (Requirements Driven Development [1]) which supports the generation of
different views of a textual specification and allows multiple views to co-exist.

337

The limitation of this approach is the lack of formal specifications.

5 Requirements to an Abstraction-Based Development
Approach

5.1 Iden t i fy ing R e q u i r e m e n t s

Our aim is first to provide a rule-based development environment which makes
it possible to capture information when it appears naturally in the development
process. Secondly, this information should be expressed at a desirable abstrac-
tion level instead of forcing e.g., a high-level business rule to be expressed in a
concrete implementation-oriented representation too early in the development
process. We may then ask what is a right abstraction level and what is required
from the development environment (i.e., languages, methods, and tools) to sup-
port the process of arriving at the right abstraction level? Using the definitions
from Section 3, to find the right abstraction level of a specification level means
to determine the specification level(s) to focus at and the appropriate number
of details to be included at that level (those levels). Thus providing a right
abstraction level requires at least:

- Languages: Formalisms to express information at different abstraction levels
(includes both X and Y dimensions). This is provided by the TEMPORA
conceptual languages.

- S t r u c t u r i n g mechan i sms : Mechanisms to relate information within a specifi-
cation level (includes X dimension) and across levels (includes Y dimension),
that is, relate information at different levels of abstraction.

- A b s t r a c t i o n mechan i sms : Mechanisms to perform scoping of composite spec-
ifications, that is, facilities to suppress certain details from a whole according
to some explicitly defined criteria.

To support a rule-based IS approach based on abstractions we may add the
following requirements:

- Mult ip le views. A view is an abstraction of a specification and multiple views
of the same specification should be allowed.

- Mul t ip le v iews to co-exist . Multiple views of the same specification should
be allowed to exist simultanously in the' system.

- Updates o f views. It should be allowed to modify a view directly.
- S y n t h e s i s o f views. The process of building up a new specification based on

the former full specification and a set of updated views should be supported
(e.g., syntactical merge and more advanced support).

- Vers ioning m e c h a n i s m . The versioning system should provide the facilities
to manage different views and versions of views.

- A b s t r a c t i o n process descript ion. Guidelines/methods for how to apply ab-
stractions in the modelling process (e.g., rule capture, structuring, retrieval,
and merging of specifications) should be described.

- Tools. Comprehensive tool support should be provided.

338

5 . 2 T h e I m p o r t a n c e o f S t r u c t u r i n g M e c h a n i s m s

To be able to use the conceptual models of TEMPORA on large and complex
real world problems, we need to provide adequate structuring mechanisms. Ex-
perience from a comprehensive case study (the Sweden Post case study [30])
revealed that there is a need for a tighter coupling between the TEMPORA
models and also mechanisms to impose structure on the flat rule base [22, 30].

T h e purpose of structuring mechanisms varies at different stages of develop-
ment. In this work, we classify structuring mechanisms into two groups according
to which level they are used at:

- structuring mechanisms used at the specification level
- structuring mechanisms used at the execution level

T h e former is basically oriented towards improving the communication aspect of
specifications, whereas the latter is oriented towards increasing the performance
of executable systems. Since the focus of this work is on the early stages of de-
velopment and abstractions, only the problem of structuring at the specification
level is dealt with.

The specification level comprises Business Modelling, IS Modelling, and De-
sign Modelling. The main objective of the structuring mechanisms at the this
level is to improve the modelling languages' ability to deal with large and com-
plex real world problems (i.e., handle massive amounts of information). In par-
ticular, it should contribute to bridge the gap between the various specificalion
languages and also facilitate scoping of models. Some models will only apply to a
particular part of an organization, whilst others must be applicable all over the
organization and at the same time be related to the models of the part. Thus,
we require mechanisms to scope models and relate parts of the global and local
models.

Structuring and abstraction are intertwined concepts. In TEMPORA, the
structuring mechanisms constitute the "glue" between different parts of a spec-
ification whereas the abstraction mechanisms will provide facilities to perform
the actual scoping of the specifications. Rule structuring is considered the pro-
cess of representing explicitly the structure of a set of rules (how they relate to
one another) whereas rule abstraction is considered the process of presenting
relevant aspects of a specification by hiding irrelevant details. Thus, adequate
structuring mechanisms are a prerequisite for supporting abstractions; to remove
details we need to know how different details relate to one another. We envis-
age a structuring approach where the integration of the TEMPORA conceptual
model is based on links with clearly defined semantics rather than pure name-
links (i.e., names must correspond in the specifications). This is in contrast to
contemporary CASE tools which mainly support browsing and navigation in
specifications due to the limited name-links they support (syntactical basis).
Consequently, such tools cannot exploit the potential of formal specifications
(e.g., tool kits are limited to support drawing of diagrams).

In general, the structuring mechanisms provide the links which allow for
grouping/structuring of information which is logically related. Structuring mech-

339

anisms at the specification level may be classified into three types, as depicted
in Fig. 6:

- I n t r a - m o d e l l inks . This includes means for structuring information within a
model (e.g., decomposition in PIDs).

- I n t e r - m o d e l l inks . This includes means for structuring information between
models at the same level (e.g., the coupling between the Process Model and
the Rule Model [13]).

- I n t e r - l e v e l l inks . This includes means for structuring information between
models at different levels (e.g., relating rules at different specification levels).

BUSINESS MODELLING

~INTER-MOD EL f ~ INTER~MODEL

INFORMATION SYSTEM $ [LINKS
MODELLING

. .

/ / LINKS
DESIGN MODELLING ~ |

Fig. 6. Types of Structuring Mechanisms at the Specification Level.

We believe that the links described in the framework above provide all the
links between different parts of a specification necessary to support scoping of
TEMPORA specifications (abstractions). Details of the structuring mechanisms
developed for the TEMPORA languages are described in [31].

6 D e f i n i n g a n d A p p l y i n g M u l t i p l e V i e w s o f a n I S

S p e c i f i c a t i o n

6.1 Defining Views of a Specif icat ion

A v i e w is a selected part of a specification and is defined by a set of abstraction
mechanisms (abstraction operators). The basic abstraction mechanisms can be

340

divided into three types which will be used as basis for automated support of
scoping of specifications:

- Rule abstractions
- ERT abstractions
- PID abstractions

There are a number of ways to simplify a specification, each focusing on a dif-
ferent aspect of the system. Below an outline of abstractions in TEMPORA
is given. The classification of abstractions into different abstraction types is of
course highly subjective. The proposal is based on experience gained through case
studies applying the TEMPORA conceptual languages (e.g., [30]) and the PPP
languages and experience and requirements put forward by other researchers and
practioners in the field.

Some critical voices may say that it would be sufficient to give the possibility
for having a user-defined abstraction, without giving any directions to which
specification details that should be abstracted away. However, experience so
far has shown that there is a need to go about abstractions in a systematical
manner to provide the user adequate tool support to avoid chaos when several
simplications to the same specification are allowed.

Defining Views T h r o u g h Rule Abs t rac t ions A rule base may be viewed
from different perspectives through a set of relations. The relations relate rules in
the rule base and each relation type corresponds to a specific perspective. Rules
may be related to other rules in a number of ways: goal related, causal related,
domain related, context related, exception related, etc. What relations to be
included in a specification may differ in domains and applications. We envisage
an approach where it should be easy to define new relation to be modelled. The
relations are called inter-rule links which is a particular type of intra-model links
(see previous section). The basic structure of an inter-rule link (i.e., a relation):

<rule> <relation> <rule>

The rule fields may be any ERL expression, and may represent an organization's
goal, policy, action, plan, etc. The relation field may be any defined relation.

Experience using the TEMPORA approach indicates that there is a need to
provide mechanisms to record at least goal related rules, causal related rules,
and exception related rules in the development of data intensive, transaction-
oriented information systems [31]. We have defined the following set of relations
to relate rules in a TEMPORA rule base [23, 25, 26, 31]:

- mot iva tes and necess i ta tes
- refers- to and c a u s e s

- overrules and s u s p e n d s

To illustrate the features of a rule abstraction an example showing the mo-
t ivates and necess i ta tes relations is given below. Details about each rule ab-
straction above are beyond the scope of this paper and we refer the interested
reader to [24].

341

E x a m p l e : m o t i v a t e s a n d n e c e s s i t a t e s r e l a t i o n s The m o t i v a t e s and ne-
c e s s i t a t e s relations are introduced to describe hierarchies of purpose (corre-
spond to goal hierarchies in organization theory). The relations express the pur-
pose of one rule in terms of one or more rules at a higher level, that is, explain
why the organization has a particular rule in terms of rules at the higher level.
Given the rules A and B. A m o t i v a t e s B means that A is at a higher level than
B and A gives the rationale behind B. By using the relation n e c e s s i t a t e s , an
even stronger relationship between A and B can be expressed. A n e c e s s i t a t e s
B indicates that A is at a higher level than B and the contents of B is necessary
to achieve the contents of A. Thus, if A n e c e s s i t a t e s B we may also say that
A m o t i v a t e s B (even though the opposite may not be true).

Fig. 7 shows an example hierarchy of purpose that includes both the m o t i -
va t e s and n e c e s s i t a t e s relations.

A: The company must make money.

B: The company must get paid for its products.

C: The income of the products should exceed their expenses.

D: The customers should bc charged as soon as possible.

motivates/ /
necessitates

B

motivates X

A

necessitates

C

motivates

Fig. 7. An example hierarcy of purpose: the motivates and necessitates relations

D e f i n i n g Views T h r o u g h E R T A b s t r a c t i o n s In a company we may divide
information into global and local information. The former conveys information
which there is some kind of consensus on throughout the organization, whereas
the latter conveys local information used by a department, a group, or a person.
As mentioned above, our development environment should be able to handle
both global and local views (scoping) in a systematical manner. For instance,
it should be easy to relate a local view to a global view~ This is opening up
for development of an enterprise-wide conceptual model and at the same time
allowing for different perceptions of the business to co-exist. In our approach,
this is achieved by defining a set of explicit ERT abstraction mechanisms and
through the use of the scenario concept [28], here only the former is briefly
described.

342

Main abstraction types associated with the ERT model, which are all contents
related abstractions:

- Traditional data modelling abstractions. In TEMPORA, aggregation and
generalization are supported.

- Construct abstractions. Constructs are removed from the specification such
as value classes, is-a relationships, and time stamping of entity classes and
relationship classes.

- Component abstractions. Point at certain entities and all their connections
will be kept, and all other components are removed from the diagram.

- Grouping abstractions. Entities and relationships can be grouped to form
higher level objects.

Example: ERT abs t r ac t ion Fig. 8 shows an abstraction of Fig. 2 where the
all value classes and timestamps of relationhip classes and entity classes are
removed. An alternative notation is to show the value classes in a table associated
with respective entity classes.

m consist s-of

I-i 1-a

consists-of

1~n 1 -n

flows-ln flows-in
I-i

1-i

carEie8

Fig. 8. ERT Model for oil processing design where value classes and timestamps are
removed.

Defining Views T h r o u g h PID Abs t rac t ionsPID contains more details
than conventional flow diagrams including all information flows and material
flows in a system as well as their interrelationships in terms of input ports and
output ports. Specifying systems beyond toy-examples implies that the number
of details become large and the diagrams may become difficult to read and to
understand. To mend this we suggest a number of abstractions, where each ab-
straction is a simplification of the model according to a specific criterion (a set
of criteria):

Main abstraction types associated with the PID, which are all contents re-
lated abstractions:

343

- Port abstractions.
- Flow abstractions.
- Component abstractions.
- Control flow abstractions.
- Exception abstractions.
- Grouping abstractions.
- Process hierarchy abstractions.

We have chosen to divide abstractions into basic and auxiliary abstractions. Port
and flow abstractions make up the basic abstractions whereas the rest is consid-
ered auxiliary abstractions. The basic abstractions are considered fundamental
to handle the complexity of PID and should be implemented first. The auxiliary
abstractions constitute a set of simplifications which seem to be advantageous
but are not considered crucial for using PID.

To illustrate the features of a PID abstraction, a simple port abstraction is
described below. Details about each abstraction above are beyond the scope of
this paper and the interested reader is again referred to [24].

Example: P o r t Abs t rac t ions

Subclassifications: strict port abstractions and relaxed port abstractions.
Performing a port abstraction removes the details of the ports from the spec-

ification and processes, flows, data stores, external agents, and timers remain.
The notation for an abstracted port is a filled AND symbol. Fig. 9 shows the
PID specification of the oil process (see Fig. 3) where the ports are abstracted
away.

The ports may impose certain requirements on the location of flows entering
or leaving a process, that is, where the conncection point between a flow and a
process is located. Crossing flows may result. A more relaxed notation removes
the port symbols from the specification and arrows may enter and leave a process
at any edge (see Fig. 10). After abstracted the ports away from a specification,
a messy diagram should be restructured (redrawn) to avoid crossing flows.

P o r t abs t r ac t ion a lgo r i t hm (str ict version):

1. For each process of the diagram, substitute any number of simple and/or
composite input ports (output ports) by one abstracted input port (output
port).

2. Remove any duplicates of flows resulting from the abstraction of port details.
This corresponds to a parallel flow abstraction.

3. Restructure diagram to avoid (reduce) crossing flows.

If a relaxed port abstraction is performed (i.e., ports are removed and arrows
may enter and leave a port at any edge) and duplicates of flows are removed,
the resulting diagram may resemble a traditional DFD.

344

wende l l Data

:': = Ck~ngr 1

scp~r J Co~sso r I

Fig. 9. PID specification of the oil process where the ports are abstracted away.

6.2 A Scenario of Abs t r ac t ion -Based IS Deve lopment

Different Types of Abs t rac t ions The abstraction processes can be classified
into three main types according to how abstractions are performed:

Type 1 Simple abstractions.
Type 2 Composed abstractions.
T y p e 3 Update abstractions. This includes updates of type 1 and type 2.

Type 1: Simple abs t rac t ions Performing a simple abstraction means to per-
form any of the pre-defined abstraction mechanisms described in the previous
section. Thus, the resulting view can be derived from the full specification at any
time using the respective abstraction operator. A port abstraction is an example
of a simple abstraction.

T y p e 2: Composed abs t rac t ions Performing a composed abstraction means
that two or more simple abstractions are performed in consecutive order. An
example of a composed abstraction is a a port abstraction followed by a flow
abstraction on the same view.

Type 3: U p d a t e abs t rac t ions An update abstraction means a manually pro-
duced abstraction and is thus a modification of a specification/view which is
not well defined (no abstraction operator defined). An example is a layout ab-
straction. Abstracting away certain details from a specification (e.g., ports and
flows in a PID) simplifies the diagram and often, restructuring of the diagram

345

[COII~OBS I ~ * _ n (I L~ooec r Gs~n~tcs
I Sepm-at~ '.~

~ C-'h~ge

Fig. 10. PID specification of the oil process where the ports are removed.

is desirable (e.g., locations of symbols make the diagram too spacy or flows are
unnecessarily crossing).

The restructuring of a diagram should not be considered a specific type of
abstraction mechanism since the layout is the only difference between a restruc-
tured abstraction and the original one. A restructured view is treated as a re-

vision of the original one and thus, it should be dealt with by the versioning
system as a regular update of a view. Accordingly, we are allowed to keep dif-
ferent versions of the layout of a view and it is up to the analyst to decide how
many layout versions of a view she actually wants to keep.

Views G e n e r a t e d by Different Types of Abs t rac t ions A view may be
composed of information expressed using one or more modelling formalisms. By
exploiting the coupling between the various languages (provided by the struc-
turing mechanisms in Section 5), the lack of graphical notation and structuring
features of the rule language can be comper~sated. In TEMPORA, this is essen-
tial in managing a large number of rules in a rule base. For instance, we may use
the graphical representation of the ERT and PID languages to selects certain
parts of a specification and derive the relevant associated rules. In this way, we
may also say that we use the ERT and PID languages to define views of the rule
base.

We may divide views into two major types:

Horizonta l views. A horizontal view is produced by a horizontal abstraction
and consists of selected parts of a specification and optionMly related specifi-
cations (e.g., expressed in another modelling language) from one specification
level.

346

- Vertical views. A vertical view is produced by a vertical abstraction and
consists of information from one or more specification levels.

Furthermore, horizontal and vertical views may be divided into simple views
(produced by a simple abstraction), composed views (produced by a composed
abstraction), and updated views (produced by an update abstraction).

The Process of Bui ld ing Up New Specifications

The Merg ing Process The process of putting a new revision of the full spec-
ification together will be referred to as the merging process. The following spec-
ifications may form the basis for this process, as depicted in Fig. l h

- previous versions of the full specification (e.g., SI.1)
- updated versions of views of previous versions of the full specification (e.g.,

V1, V2, V3, and V4)

Fig. 11. Building a new revision based on updated views.

From a full specification S a number of views may be derived V1,..Vn by
applying any of the abstraction mechanisms described above. Derived and com-
posed views of previous versions of a full specification are subsets of it and do
not need to be considered explicitly in the merging process (i.e., already included
in the full specification). Thus, updated views are the only views to be explicitly
dealt with.

Allowing update abstractions means that we are able to modify views directly,
and it is up to the developer to manipulate the view, no control is to be provided
by the system. However, we have to provide facilities to support this activity. In
particular, we have to address the problem of inconsistencies between different
views and the full specification from which the views originate. Basically, we have
to decide on the following:

347

- Should we allow for inconsistencies or
- Should we create a skeleton (also called a placeholder) for a new revision of

the full specification as soon as a view is updated?

If we go for the former approach we only need to provide versioning of update
abstractions and leave the process of integrating the new versions into the full
specification to the developer. This does not seem to be the way to go due to the
fact that providing this flexibility may cause more damage (chaos!) than support
in the development process. Thus we have to come up with facilities to support
the process of going from one full specification to another one by taking into
account updated versions of views. A number of issues ought to be addressed:

- How can we create the placeholders?
- How should the process of building a new full specification take place?
- What kinds of support do we envision when building up a new full specifi-

cation?
- What to be performed automatically/manually/supported in some way?
- What about the interplay with the version control system?
- How can we merge subschemas to create the full schema?
- How does this relate to integration of specifications developed by different

people (i.e., the use of CSCW techniques in specification integration)?

A detailed description of each item above is beyond the scope of this paper and
we will limit ourselves to present some support of the merging process below.

S u p p o r t o f t h e M e r g i n g P roces s The ideal situation would have been to
allow updates on views and provide enough support to an automatical merge
of relevant specifications. However, we cannot expect this process to be fully
automatic but rather a mix of manual intervention and comprehensive computer
support:

- Manually: manual inspection of specifications (full specifications and views)
and relevant information is manually extracted and integrated in a new full
specification (e.g., working styles may be virtual paper, Macintosh' Clip-
board technique between specifications, ordinary 'cut and paste' between
specifications, and "active" structures).

- Computer support: syntactical merge of different specifications, different
ways of merging based on semantics of a specification, record modelling
history (e.g., record what has happened to a view since checkout), group
support (CSCW techniques to assist groups in the process of building up a
new full specification e.g., synchroneous editor), etc.

When a view is updated, a placeholder for a new revision of the full specifica-
tion is created automatically. This is about the only thing we can expect to be
performed automatically and we have to provide facilities to support the process
of putting a new revision together. The most general way of working will be to
inspect the specification and decide what to integrate.

348

The support of the merging process is often limited to a syntactical merge of
a set of specifications and the result of such a merge may be useful only in some
cases (e.g., if all components of the different specifications have got unique identi-
fiers). However, the use of formal specifications opens up for more extensive view
integration techniques where for example structural conflicts may be resolved.
Something which is very important in a typical modelling situation where dif-
ferent actors in the development process may have different perceptions of the
domain (and information system) and thus may lead to different representations.
To solve such conflicts a number of conflict resolution techniques are proposed
(e.g., [21] for view integration of an extended ER model called ERC+).

Furthermore, we may provide facilities to keep track of Changes done to a view
after checkout from a full specification. The changes could be recorded textually
(i.e., the user get a list of operations and objects upon which the operations are
performed) or shown explicitly relative to the components in the corresponding
full specification (e.g., shown with a particular notation in a diagram).

6.3 M a n a g e m e n t of Views

Version Cont ro l and Conf igura t ion M a n a g e m e n t Supporting different view..
and various versions of the same views demands for a versioning mechanism to
keep track of the various versions of the same full specification. Versioning of
views does not require any special version control factility except from including
an appropriate naming schema for views. Thus, the version control system to be
developed for PPP (Phenomena, Processes, and Programs [15]) and TEMPORA
specifications (see [31]) can be applied.

I m p a c t on the Specif ica t ion D a t a b a s e The abstractions as presented here
will not require any extensions to the existing class structure in TEMPORA, that
is, the existing classes represented in PROBE [7] can still be used [31]. The views
that result from applying abstractions are simplifications of the TEMPORA
conceptual languages and no additional concepts are added. This implies that
the existing structure can be reused, however, certain parameters will become
superfluous.

Efficiency Issues The efficiency issues of concern are mainly how many views
per full specifications that should be kept and how efficient these can be stored.
At this stage it seems to be reasonable to say that views which can be derived
from the full specification should be derived and not stored, whereas the others
(such as restructured abstractions) should be stored. Efficiency issues concerning
the storage of the views are mainly determined by the efficiency of the difference
processor (e.g., UNIX diff) and is therefore, taken care of by the versioning
system.

349

6 . 4 D i f f e r e n t A p p l i c a t i o n s o f A b s t r a c t i o n s

Abstractions and corresponding views may be used for a number of purposes,
for instance:

- in information gathering throughout the modelling phase
- in information retrieval (e.g., rule retrieval)
- for documentation
- for explanation of parts of specifications (e.g., as a supplement to paraphraz-

ing by visualize views of a specification)
- in validation

In general, providing support for individual views contributes to illuminate more
aspects of a domain and hopefully, a better understanding and representation
of the problem and target IS result. It may also contribute to obtain consensus
about a corporate model by allowing different views to be taken account of in
the early phases of development.

7 C o n c l u d i n g R e m a r k s a n d F u t u r e D i r e c t i o n s

We have presented an abstraction-based rule approach to large-scale information
systems development. In particular, we have identified the requirements to the
development environment and provided a framework for describing the building
blocks of such an approach. Furthermore, we have suggested a number of ab-
straction mechanisms for the different modelling languages in TEMPORA and
outlined how these can be applied to deal with large number of rules in systems
development (e.g., how to gather high-level and low-level requirements together).
It has also been argued that a prerequisite for an abstraction-based approach is
formal specifications and comprehensive tool support.

The abstraction approach suggests a systematical way of doing simplifica-
tions to a specification and a way to split and provide different views into the
same specification (and accordingly, to the Universe of Discourse). The user may
go back and forth between simplified specifications and the corresponding spee-
ification having the full complexity. In this way, the abstraction facility makes
it possible to deal with details at a level natural to the different actors involved
(developers as well as end-users). The power of the abstraction facility is further
strengthened by allowing updates of abstractions.

The following issues are to be addressed in future work:

- Dealing with inconsistencies in views. Investigate how inconsistencies of full
specifications and belonging updated views can be detected and removed in
the merging process.

- Tool support and abstraction process description. Comprehensive tool sup-
port and guidelines/methods for how to apply abstractions in the modelling
process.

350

- Separation of layout and content. Investigate how ODA (Office Document
Architecture [12]) can be integrated in the T E M P O R A approach to separate
layout and contents of views.

- Multi-user support. Investigate how CSCW techniques can be applied to
assist the merging process when a group of developers is involved.

8 Acknowledgement

The work reported has partly taken place in the ESPRIT II Project TEMPORA.
The project is funded by the Commission of the European Communities under
the ESPRIT R&D programme. The partners in the T E M P O R A consortium are:
BIM (Belgium), Hitec (Greece), Imperial College (UK), Logic Programming As-
sociates (UK), SINTEF (Norway), SISU (Sweden), University of Liege (Belgium)
and UMIST (UK).

References

1. M. Alford: Strengthening the Systems/Software Engineering Interface for Real
Time Systems, Ascent Logic Corporation, 1991.

2. Barker et at: Expert Systems for Configuration at Digital: XCON and Beyond,
Communications of the ACM, Volume 32, Number 3, March 1989.

3. S. Berdal, S. Carlsen: PIP - Processes Interfaced through Ports, Technical Re-
port, IDT, NTH, 1986.

4. V. Berzins and M. Gray: Analysis and Design in MSG.84: Formalizing func-
tional specifications, IEEE Trans. Softw. Eng. , Aug. 1985.

5. V. Berzins et at: Abstraction-Based Software Development, Communications of
the ACM, Vol. 29, No. 5, May 1986.

6. V. Berzins and Luqi: Languages for Specification, Design, and Prototyping, In
P. A. Ng and R. T. Yeh (Eds.): Modern Software Engineering Foundations and
Current Perspectives, Van Nostrand Reinhold, New York, 1990.

7. BIM: BIM_PROBE Manual, BIM, Belgium, June" 1990.
8. J. A. Bubenko: Problems and Unclear Issues with Hierarchical Business Activ-

ity and Data Flow Modelling, SYSLAB Working Paper no. 134, Stockholm,
1988.

9. C. J. Date: An Introduction to Database Systems, Addison-Wesley Publishing
Company Inc., 1986.

10. C. Gane and T. Sarson: Structured Systems Analysis: tools and techniques,
Prentice-Hall, 1979.

11. S. McGinnes: How Objective is Object-Oriented Analysis?, In P. Loucopoulos
(Ed.): Advanced Information Systems Engineering, 4th International Confer-
ence CAiSE'92, Manchester, U. K., 1992.

12. ISO/DIS 8613: Information Processing - Text and office systems - Office Docu-
ment Architecture (ODA) and interchange format, draft version, The Interna-
tional Standardization Organization (ISO), 1986.

13. J. Krogstie, P. McBrien, R. Owens, and A. H. Seltveit: Information Systems
Development Using a Combination of Process and Rule Based Approaches,

351

In R. Andersen, J. A. Bubenko, and A. Solvberg (Eds.): Advanced Informa-
tion Systems Engineering, 3rd International Conference CAiSE'91, Trondheim,
Norway, 1991.

14. Xiaofeng Li: What's So Bad About Rule-Based Programming, IEEE Software,
Vol. 8, No. 5, Sept. 1991.

15. O. I. Lindland et al: PPP - An Integrated CASE Environment, In R. Andersen,
J. A. Bubenko, and A. Sr (Eds.): Advanced Information Systems Engi-
neering, 3rd International Conference CAiSE'91, Trondheim, Norway, 1991.

16. Luqi et al: Graphical tool for computer-aided prototyping, Information and
Software Technology, Vol. 32, No. 3, April 1990.

17. McBrien, M. Niezette, D. Pantazis, A. H. Seltveit, U. Sundin, B. Theodoulidis,
G. Tziallas, and R. Wohed: A Rule Language to Capture and Model Busi-
ness Policy Specifications, In R. Andersen, J. A. Bubenko, and A. Sr
(Eds.): Advanced Information Systems Engineering, 3rd International Confer-
ence CAiSE'91, Trondheim, Norway, 1991.

18. McBrien, A. H. Seltveit, and B. Wangler: An Entity-Relationship Model Ex-
tended To Describe Historical Information, Proceedings of CISMOD'92, Ban-
galore, India, 1992.

19. A.L. Opdahl: RAPIER - A Formal Definition of Diagrammatic Systems Speci-
fications, M.Sc. Thesis, Dept. of Electrical Engineering and Computer Science,
IDT, NTH, 1988.

20. R.P. Owens: Notes on the TEMPORA Computation Model, E2469/IC/3.4/7/1,
December, 1990.

21. C. Parent, S. Spaccapietra: View integration: a step forward in solving structural
conflicts, EPFL-Computer Sc. Dept. Lausanne, Research Report, Aug. 1990.

22. U. Persson, A.H. Seltveit, B. Wangler, R. Wohed: Experience from the Sweden
Post Case Study, E2469/SISU/T10.1/12/1, Nov. 1991.

23. T. Pettersen, A.H. Seltveit: A Proposal for a Rule Structuring Mechanism in
TEMPORA, E2469/SINTEF/NT1.2/2/1, April 1992.

24. A.H. Seltveit: A Proposal for Abstraction Mechanisms in TEMPORA,
E2469/SINTEF/NT1.5/1/1, Nov. 1992.

25. G. Sindre: Rules and Processes in TEMPORA, E2469/SINTEF/Tl.1/ l l /1 ,
Oct. 1989.

26. G. Sindre: Hicons: A General Diagrammatic Framework for Hierarchical Mod-
elling, Ph. D. Thesis, Dept. of Electrical Engineering and Computer Science,
The Norwegian Institute of Technology, Trondheim, July 1990.

27. A. Solvberg: A Model for Spefication of Phenomena, Properties, and Informa-
tion Structures, IBM Research Laboratory, San Jose, California, 1977.

28. A. Solvberg: On the Specification of Scenarios in Information System Design,
IBM Research Laboratory, San Jose, California, 1977.

29. TEMPORA: Concepts Manual, Sept. 1990.
30. TEMPORA: The Sweden Post Case Study, Nov. 1991.
31. TEMPORA: Concepts Manual, Sept. 1992.
32. D. C. Tsichritzis and F. H. Lochovsky: Data Models, Prentice-hall, Inc. ,New

Jersey, 1982.
33. S. Weiss and M. Page-Jones: Synthesis: An Object-Oriented Analysis and De-

sign Method, Macmillan, 1991.
34. R. J. Wirfs-Brock et al: Designing Object-Oriented Software, Prentice-hall,

Inc., 1990.

