AN OBJECT-ORIENTED TEMPORAL MODEL

Nina Edelweiss .
José Palazzo M. de Oliveira
Barbara Pernicit,

* Universidade Federal do Rio Grande do Sul
Av. Bento Gongalves, 9500 - Bloco IV - Agronomia - Caixa Postal 15064
CEP 91501-970 - Porto Alegre - RS - Brazil
Fax +55(51)336.5576
e-mail: [nina,palazzo]@inf.uflrgs.br

* Universita di Udine and Politecnico di Milano
Italy
e-mail; pernici@uduniv.cineca.it

Abstract. The representation of complex objects and behaviors (state transitions)
in information systems is a central issue in softwarc engineering. In an information
system, supported by a conventional database, the only available state is the set of
present values. The object’s behavior is controlled by integrity conslrains defining
only the valid states. Almost all the representation of the dynamic evolution is lost
in the traditional modeling process. In this paper the main concern is to present the
extensions made on an Object-Oriented Model, the F-ORM model [11] 1o expand
the representation of the object's evolution and to support the temporal aspects
involved. Temporal object-oriented models can be used o specify behavioral
requirements of information systems. Four different modeling concepts are defined
to represent temporal information: (i) a set of temporal data types and their
associated functions, to be used in propertics’ definitions; (ii) time stamps
associated to instances and to dynamic properties; (1il) a special null value for
attribute values outside the validity period; and (iv) temporal conditions added to
rules, written in a temporal logic language. An example showing the use of the
Temporal F-ORM is developed.

1. INTRODUCTION

Information systems specification can be done through the use of data models. In the
framework of object-oricatation much work has been done on the modeling of static and
behavioral properties, but temporal aspects have not been explored in profundity. One
isolated example is the language RML [14]. Some studics about these aspects are
available [4, 8].

Object-oriented models should provide definition of time properties when intended to be
used in time critical systems, €.g., plant control systems, office information systems. Qur
basic concemn is the modeling of information systems. Time aspects are necessary (o
represent objects dynamic evolution within these information system environments.

398

Temporal properties are used to define propeities (attributes) with time values, 1o time
stamp propertics in temporal databascs, order activitics' cxccution through rules, ctc.

Recent works present diflerent forms of time modeling. Time definitions may be done
explicitly, usually through timestamping (a time value associated with some object, ¢.g.,
an attribute value or a tuple) or implicitly, using some sort of temporal logic language.

The explicit time representation requires the choice of a primitive temporal element, like
cvents (isolated instants of time) or intervals (the time between two events). When using
events as the primitive temporal notion, there is a special time point corrésponding to the
current time, constanly moving along the tcmporal axis. The ime concept may be
represented as a continuous or a discrete variable. Events belong to the continuous time
representation. An event is an isolated instant of time, It is said to occur at time ¢ if it
occurs at any time during the chronon represented by 7 [15]. A chronon is the shortest
duration of time supported by a temporal DBMS; it belongs to the discreet time
representation, Many applications show the need of defining different granularity for
information: hours, days, ycars. This makes the retrieving of the temporal information a
complex affair but produces a much better representation of reality. Other time domains,
such as time intcrvals. may be defined as pairs of events, representing the lower and the
upper cnd of the time inferval.

In systems where reasoning on time duration is central, such as scheduling systems, (he
notion of time interval is a primilive and events are represented by very little intervals.
One important approach for time modeling is Allen's interval algebra [3], were time
intervals are related to each other by temporal relations, represented by predicates
expressed in a temporal logic language. The languages TELOS [21] and RML [14] are
based on this theory.

The use of temporal logic is also found in some systems and languages [5, 10, 14, 18, 19,
23]. In the Event Calculus [16]. reasoning about cvents and time is performed within a
logical programming framework. The most important contribution of this approach is the
possibility of dealing with uncertain and imprecisc information like before and afier.

This papers main concern is to extend an object-oricnied model, the F-ORM model [11],
so that it supports temporal aspects. The chosen primitive temporal element is the event.
We add four different modeling concepts for temporal definitions: (i) a set of temporal
dala types and their associated functions and operations, to be used in propertics'
definitions; (ii) time stamps associated 1o instances of objects in the database and to
dynamic properties; (iii} a special null value for attribute values outside the validity
period; and (iv) temporal conditions added (o rules, written in a temporal logic language,

Snodgrass and Ahn proposed a taxonomy of time in databases [25], consisting of three
distinct time concepts: (i) transaction time, the update time; (ii) valid time, the period of
validity of the stored information and (iii) user-defined time, temporal properties delined
explicitly on a time domain and manipulated by the user program. With the delinition of
the set of temporal data types, the need of user-defined temporal properties decreases.
Dynamic propertics timestamping and the null value represents the transaction and valid
times. Temporal conditions added to static and dynamic integrity rules constrain the sel
of possible state transitions of the application.

399

The paper is organized as [ollows. A small application case is presented in Section 2, to
be used in examples in the other scctions. Scction 3 describes briefly the main aspects of
the F-ORM model [11.22]. The tcmporal requircments necded to specify information
systems arc listed in Scction 4. In Section 5, special tcmporal data types and the
corresponding functions and operations are presented. Section 6 describes the
representation of transaction times and valid times and Section 7 introduces bricfly the
adopted temporal logic language.

2. AN APPLICATION EXAMPLE

This paper uscs a part of a Video Rental Store specification in the examples: the
information on clicnts. employces, tapes and rentals. A client is identified by a unique
code, a name and an address. Additional information may be necessary, like his or her
inscription date in the Video Rental Store, all the tapes he or she rented and the
corresponding periods, and if he or she is allowed to rent tapes. An employee is
identificd by the name and has the properties: address, the hiring date and salary. The
tapes are identificd by a unique tape code. Each tape has the following information: the
movie name, the category and the date of acquisition. A rental is made associaling the
client’s and the tape's codes, and a starling date. A rental is only possible if some
conditions are satisfied: the tape must be in the shop, the client must be allowed to reat
tapes, can have a maximum of 5 tapes and is not allowed to keep up a tape for more than
30 days.

3. THE F-ORM MODEL

The F-ORM model (Functionality in Objcct with Roles Modcl) [11] is an object-oricnted
design framework for information systems requirements' specification!. Objects’ behavior
is described using the concept of roles. Two distinct types of classes are identified:
resource classes and process classes. A resource class defines the structure of the
resources (agents, data and documents) in terms of roles that the resource can have in its
life-cycle. Process classes integrate the resource classes allowing 10 describe how the
work is actually performed in its organization and in the cooperation among ageats. The
concept of role in process classes models the different tasks executed in the process and
their relationships in terms of communication and cooperation rules together with the
involved resources.

A class is defined by a name ¢, and a set of roles R;, each onc representing a differcnt
behavior of this object:

class = (cn, RO’ Rl’
Each role R; consists of a role name Rny, a sct of properties P; of that role (abstract
descriptions of data types implemented as instance variables), a set of abstract states S;
that the object can be at whilc playing this role, a set of messages M; that the object can

Rn)

1 Project INFOKIT, Htalian National Research Council and Project ITHACA, ESPRIT 11

400

reccive and send in this role, and a set of rules Ru; (the state transition rules and integrity
rules):

R.=<Rn.,P.,S.,M.,Ru. >
i [U U |

All instances of roles cvolve independently, the interactions being allowed through
message passing. An object can play different roles at diffcrent times, can play more than
one role at the samc time, and can have morc than one instance of the same role at the
same time.

Every object has a base rolc Ry that describes the initial characteristics of an instance
and the global propertics concerning its evolution. The propertics of the base role are
inherited by the remaining roles; the messages are used lo add, delete suspend and
resume instances of other roles; the possible states are pre-defined, active and suspended,
and the rules define transitions between roles and global constraints for the class.
Properties’ definitions describe the domain each property should have.

A class can be defined as a subclass of one or of scveral classes (multiple inheritance). A
subclass inherits all componcnts specified in the parent class or classes. New components
can be added to a subclass definition in (wo ways: (i) adding specifications of new roles
and (ii) modifying the specification of inherited rolcs.

Considering the class tape of the proposed application casc, the propertics of the basc-
role arc the tape's code, the name of the film and the type of the movie (e.g., drama,
comedy). The following rolcs can be identified: (i) Life-time, modeling the actions to be
executed to buy the tape, let the tape available for rental during a period of time and sell
it afterwards; (ii) Rentals, modcling the possible rentals of a tape; and (iii) Tape_loss,
modeling what shall be done when a (ape is lost. Considering the role Rentals, some
required properties are the client’s code and the rental starting and ending dates. Possible
states in this role are available and rented. This role can receive and send the following
messages: rental from Rental_control, tape_devolution from Rental_conirol and
rented_time 1o Rental_control. State transition rules control the behavior. Representing
incoming messages by the prefix "e" and oulgoing messages by "—» ", we have the
following class definition:

resource class (

TAPE,

< base_role,

propertics = { (tapc_number, INTEGERY),
(tapc_film, STRING),
(film_type, STRING) 1,

messages = {...},

states= | .. .

rules= | ..},

>,

< Life_time,

>9

401

< Rentals,
propertics = { (client_code, INTEGER),
(beginning_datc, DATE),
{cnd_date, DATE) 1,
messages = | rental (Tape:INTEGER, Client:INTEGER) from
Rental_control,
tape_devolution (Tape:INTEGER) from Rental_control,
rented_time (Time:INTEGER,Clien:INTEGER)) to
Rental_control },
slatcs = { available. rented },
rules = { rulel : msg(«—add_role) = stale(available),
rule? : state(available), msg(<rental(T,C)) = state(rented),
rule3 : state(rented), msg(«tapc_devolution(T)) =
- msg(—> rented_time(T,C)), state(available) }
>,

< Tape_loss,

§)

4. TEMPORAL REQUIREMENTS FOR INFORMATION
SYSTEMS

Temporal aspects are important in information systems not only to represent temporal
information to be introduced in the corresponding database but also to model the
interaction of the possible processes (o be exccuted. Temporal F-ORM, an exlension of
the F-ORM model, was created to permil temporal modeling. Analyzing the domain of
information systems, two dillerent types of temporal requirements can be identified:
unconditional and conditional temporal information about events.

4.1. UNCONDITIONAL TEMPORAL REQUIREMENTS

Unconditional temporal requirements are explicitly defined, representing a specific
moment of time associated to an information. Thesc requirements can be well-defined
and incomplietely defined. Well-defined static requirements arc of (hree different types:

® rcgistration of a temporal element associated (0 an event, like the birthday of a person
or the hour of a mecting;

® the duration of an event, like the duration of a meeting;

® the period of time during which a value is valid, as the case of an exchange rate that
is valid during a certain period.

402

These requirements are represented in Temporal F-ORM through appropriate temporal
data types, presented in Section 5. The valid times of an information, analyzed in Section
6, also represent well-defined static temporal requirements.

In many applications there is also the need to represent incomplete information:

® the occurrence of an eveat before or after a date, as the case of the Individual Income
Tax Return form that must be posted before the end of May:

® the occurrence of an cvent within an interval, likc the inscription of a student in a
course that must be done during the first week of Sceptember.,

Incomplete information is also defined through some specific data types, as will be
explained in Section 5.4,

4.2, CONDITIONAL TEMPORAL REQUIREMENTS

Two types of conditional temporal requirements can be identified:

* conditional temporal requircments that represent casual constraints on the possible
exccution ol processcs, like the case of a process that is cxecuted when an cvent
occurs, or belore (or after) the occurrence of another event; these requirements
control the beginning and coordinate the execution of concurrent processes through
constraints on the temporal order in which messages can be sent and received by
instances of roles;

* another form of conditional temporal restrictions is used to represent implicitly or
explicitly defined temporal information, relative (o other information; as an cxample,
there can be a restriction that controls the fact that a new salary is never less than a
previous one.,

-Conditional temporal information is represented through the use of logic conditions
associated to the transition and infcgrity rules, as explained in Scction 7. These
conditions modcling temporal requirements represent constraints to the information
systcms evolution.

S. TEMPORAL DATA TYPES

A set of temporal data types is used on properties’ definition to represent well-defined
static temporal requirements. These data types present different time granularity like
hour. year, interval. The dilferent granularitics arc necessary (o make it possible to model
realily in a natural way with concepts we are used to.

The F-ORM method has the following pre-defined domains: BOOLEAN, DATE,
IMAGE, INTEGER, PLACE, STRING. TEXT, TIME, TITLE. Two tcmporal data types,
DATE and TIME, are alicady defined in F-ORM. Depending on the application to be
modeled other temporal data types arc necessary. Four differcnt temporal types can be
identified [1, 87]: imc points, intervals, span (duration) and periodic time. In our

403

approach we introduce the lirst three, considering that periods could be defined using
rules defining temporal constraints on intervals.

51 TIME POINTS

The selected primitive temporal element for explicit time representation is the time point.
Analyzing the applications in the information sysiems domain, the finest time
granularity necessary to define human activity is the minute, chosen (o be the chronon
[15] of the data model. To definc completely a time point it is necessary to sel a date
(year, month and day) and a /ime (hour and minute). This is done defining the basic
temporal type INSTANT. Using a simplified BNF notation, the basic temporat data type
INSTANT is defined as:

<instant> = <year> "/" <month> "/" <day> <hour> ":" <minutc>

Other temporal types with different time granularity, nceded to model information
systems applications, can be derived from this basic one. The derivation mechanism is
based on a restriction applied to the basic type. The derived temporal types defined in
this model are: DATE. YEAR, MONTH, DAY, TIME, HOUR and MINUTE. Some
other types are needed to model reality in a natural way, representing special intervals
that are considered as time points: WEEK and SEMESTER. The sct of temporal types
representing time points is completed with the type WEEKDAY representing the
correspondent information for a date in the cnumeration Sunday (o Saturday.

5.2. INTERVALS

Intervals of time can be used to define a set of time points between two limit events. The
two limits of an intcrval must have the same granularity. The chronon within the interval
is implicitly defined by the limits' type. Four different types of intervals can be defined,
depending if the limit cvents belong to the intcrval or nol: closed interval, when the
interval contains both limits; semi-open interval, when one of the limits belongs (o the
interval; open interval when both limits are not in the interval; and floating interval, in
case one of the limits is the actual time. For instance, a closed interval is defined as:

<closed interval> ::= <limit> ":" <limit>
<limit> := INSTANT | DATE | TIME | YEAR | MONTH | DAY | HOUR | MINUTE

As an example of time points and intcrval's definition consider the resource class
PERSON properties (Appendix 1):

resource class (
PERSON,
< base-role,
static propertics = { (name, STRING), (birthday, DATE) },
dynamic propertics = { (object_instance, INSTANT), (cnhd_object. INSTANT),
(address STRING) (vacations, INTERVAL(DAYS, CLOSED)) }

404

5.3. SPAN

Another important type is the span (directed duration) of an activity. This information is
represented by an integer number followed by the appropriate time unit - e.g., days,
hours, weeks. A possible span type is:

<month_span> := <integer> MONTH

An example of this data type is the span of time a tape is held in the store for locations
before it is sold:

resource class (
TAPE,

< Life_time,
dynamic propertics = { role_instance, INSTANT), (end_role, INSTANT),
(time.SPAN(YEARS)) },

5.4. DATA TYPES FOR INCOMPLETE TEMPORAL INFORMATION

Some applications need the representation of incomplete temporal information. For
these, Temporal F-ORM presents some specific temporal data types. When the
requirement only states that an event shall occur after or before a specific instant one of
the following types can be used considering a date as limit type:

<limil_date> ::= AFTER <date> | BEFORE <date>

The meaning of this data type is the same as an interval with one limil equal to infinity,
and considering only one point within the interval. Another special data type for
incomplete information is used to rcpresent only onc point within an interval, not
defining which point:

<within_interval> ::= WITHIN <intcrval>

5.5, FUNCTIONS AND OPERATIONS ON DATA TYPES

The uses of data types of different granularity offcr some difficultics in the manipulation
and operation of the diffcrent times [9, 26]. A set of funclions (predicates) that convert
the different types is defined (o accomplish this manipulation. The specialization of
classes with inheritance of propertics and messages allows the definition of functions for
INSTANT (basic temporal type) that can be specialized for DATE or TIME, as needed.
The functions return a temporal information, e.g., the weckday corresponding to a date,
a different temporal granularity of a given time point, the span of an interval. Some
cxamples are:
year(<instant>) - extracts the year of an instant

weekday(<date>) - rcturns the weckday of the given date
begin(<interval>) - returns the lower bound of an interval

405

span{<interval>) - computes the span of an interval
Operations using diffcrent time granularity are also defined:

e arithmetic operations like sum and subtraction can be applicd in particular cases,
like: (i) the two operands are of the type SPAN, resulting in a value of the same typc;
(ii} the first operand is of type INSTANT, DATE or TIME and the second of type
SPAN, resulting thc type of the first operand; (iii) the two operands are
INTERVALS having the same granularity, resulting in an INTERVAL or in an
undefined resull;

e the relations "<" (less than), ">" (greater than), "=" (equal 10), "<" (less than or
equal to) and "2>" (greater than or equal (o) can be used 1o compare two lime points
or two spans of different granularity converting internally the valucs to the {inest
granularity and resulting in a logical value; the allowed types for time points are
INSTANT, DATE. TIME, YEAR, MONTH. DAY, HOUR, MINUTE;

o operations defined for sets that can be applied 1o INTERVALS, like union,
intersection and ownership, resulting intervals or undefined results, or logical
values.

6. TRANSACTION AND VALID TIME REPRESENTATION

Two different time concepts must be represented in an application - transaction time and
valid times [15, 25]. The transaction time represents the time when an information is
stored in a database; valid time corresponds to the time when the information model
reality.

6.1. TRANSACTION TIME

The transaction time is implicitly defined by the DBMS. The definition of transaction
times in Temporal F-ORM is done timestamping dynamic properties and timestamping
objects’ instances.

PROPERTIES TIMESTAMPING

An analysis of the possible properties a role can present shows that there are some
properties that never change, like the "social securily number” for a person object. These
properties are called static properties; they are supposed 1o be defined once and valid all
over the instance's life.

The properties that may change with time are defined as dynamic properties.
Transaction times are associated to dynamic propertics by timestamping, A dynamic
property consists of a sct of pairs mapping the definition time to the property's value
domain, as proposed in [8]. The temporal domain of these time stampings is the

406

concatenation of the datc and the time - the INSTANT data type. Appropriate operations
can be used in the query language and in the rules {o compare these values and to extract
specific information {c.g.. year, month. hour, minute, weckday). The instances' whole
history may be retricved through the dynamic properties' valucs,

As an example, static and dynamic properties are detined in the role employee of (he
PERSON class:

Employee,
static properties = { (name. STRING) },
dynamic properties = { (salary, REAL). (hire_date, DATE). (oul_date, DATE) }

Considering the dynamic property salary, it is represented by the pairs:

salary: INSTANT X REAL

A special null value can be uscd to represent the periods of time during which dynamic
propertics have undefined values. Immediately after the creation of the instance, all the
properties receive a default aull value. Static propertics hold this value until the first non
null value is assigned to them, and then retain the new value during all their lifetime.
For the dynamic propertics the aull value holds until a new value is defined. All the
changes of dynamic propertics’ valucs arc time stamped. During an application, there can
be periods of time when a property has an undefined value. This can be represented
associating again the null valuc to this dynamic property. This special value can be used
in all the property domains.

INSTANCES TIMESTAMPING

Instances of objects are managed through special messages. A special dynamic property
of the basic role, object_instance, keeps the time correspondent to the creation of an
instance of that object, done through the message create_object. This property may have
one of the two special valucs defined to represent the instances' life span - null and
nonull. An instances' existence starts at the crealion moment, with the value nonull
associated. to object_instance. and may have some valid disjoint periods, depending on
the income of the messages suspend_object and resume_object. The beginnings of the
periods when the inslance is suspended arc represenied in object_instance through the
value null associaled to the corresponding temporal information. The moment the
instance is resumed is again associated to nonull. The message kill tlerminates the object
instances' lifc. As the implemented database corresponding to this model will be a
temporal database, keeping all the values of the past, the active lifc of the instance is
discontinued but the instance is not removed. The instant when an instance is killed is
kept in another special dynamic property. called end_object, referencing the end of (he
instances' life.

407

In Temporal F-ORM there are not only object instances, but also role instances, managed
through the messages add_role, resume_role, suspend_role and terminate_role. The
validity periods of a role instance are stored the same way as the object instances, using a
special role dynamic property, called role_instance. The end of an instance of a role is
stored in another dynamic property: end_role.

The validity of a role instance depends on the validity of the corresponding objects'
inslance. Therefore, the values stored in object_instance and end_instance are (emporal
restrictions imposcd on those kept in role_instance and end_role. The termination of an
objects’ instance kills all the role instances of (hat object.

The dynamic propertics object_instance and end_instance are implicitly defined for each
base role, and role_instance and end_role for cach role.

6.2. YALID TIME

The valid time corresponding to an information can be different from the transaction
time. Both these valucs shall be stored in the database that models the application. Two
ways can be used to represent the valid time: (i) augment the definition of dynamic
propertics to threc dimensions, representing respectively the transaction time, the valid
time and the information domain; and (ii) 10 definc special dynamic properties that keep
the valid time, present only when dcefined. As the existence of valid time definition is not
so frequent, the first option would lead to an unnecessary augment in storage. In
Temporal F-ORM the second alternative is used. The name of the special properties used
to define valid time is formed by the concatenation of the prefix valid_ and the name of
the property. For instance, considering the property salary ol the role employee of the
PERSON class, when a valid time is delined it is stored in a property called valid_salary,
associated with the valuc of the information. For each defined dynamic property there is
the implicit creation of a corresponding valid dynamic properly. In the Appendix 1
cxample, the dynamic properties of employee. a role of the object person, are intcrnally
defined as:

< Employee,
dynamic properties = { (role_instance, INSTANT), (end_role, INSTANT),
(salary, REAL), (valid_salary, REAL),
(hirc_datc, DATE), (valid_hire_date, DATE),
(out_date, DATE), (valid_out_date, DATE),
(function. INTEGER), (valid_fuction) INTEGER]},

The values stored in the database are defined as argumcnts by messages sent and
received by the roles. A special argument is used to define valid times: Valid_Time. This
argument is optional, uscd only when the valid time can be different from the transaction
time. The corresponding query language must take care of the possibility of existence of
a valid time definition, when storing and retrieving an information.

As an example considers the change of an employec's salary. Let's suppose that on the
92/May/10 (transaction time) there is the definition of a new salary for the employee, and
that this new salary counts from the first day of that month (valid time). Two possible
messages are:

408
messages = { modify_salary(Value:REAL, Valid_Timc:DATE)
{rom employee_conirol,
end_employment (Valid_Time:DATE)

from employec_control |}

7. TEMPORAL LOGIC

Two types of rules arc used in Temporal F-ORM: stale transition rules and integrity
rules. A state transition rule characlerizes valid transitions between states, eventually
depending on the arrival of a message. The transition may cause the sending of another
message. In some applications there is the need to define dynamic integrity conditions -
conditions that comparc iwo different states of the application's information. Therefore a
condition was added to the Temporal F-ORM transition rules. This condition is
cvaluated just before the state transition is activated. The transition between the two
states will only happen if the condition is satisfied. The extended state transition rule has
one of the following forms:

[N

<state transition rule> 1:= <rule idenfific>":
<stateI>["."<messagel>] "=>"[<message2>]","<stale2>]":"<temporal condition>]

",n

<state transition rule> ::= <rule identificr>":
<message 1> "="[<message2>]","<slate2>[";"<temporal condition>]

The sccond form, when there is no <statel> defined, represents a special state transition
rule; the arrival of the message <messagel> will cause the transition to the new slate,
independently of the actual state. This makes it possiblc to represent active objects, that
has a defined behavior when recciving a message with a pre-deflined temporal argument.
In these cases an object clock sends messages (cventually virtual messages) at a defined
interval to all the active objects. A condition added to these rules represents a limitation
of that behavior - the rule will be exccuted at the moment this condilion is satisficd,
without considering the actual state.

Integrity rules represent static intcgrity conditions - conditions that must always hold;
they must be satisficd by all instances of a role at all times. An integrity rule has the
following form:

<inlegrity rule> ;= "constraint” "(" <condition1> "=" <condition2> ")"

The rule represents a constraint: if the first condition is satisficd, than the second
condition must also hold. A constraint is evaluated the first time at the moment when the
roles' instance is created. It must be satisfied, otherwise the instance will be discontinued.
Afterwards, the constraint will be evaluated each time a statc transition involving the
first conditions' parameters is executed, just before the sending of the ouigoing mcssage.

409

If it happens that the constraint is not satisficd, the transition will be undone; if there is
an outgoing message, it will not be sent; and a NAck message is sent (o the role that sent
the incoming message. If the constraint is satisfied, then the outgoing message is sent.

The conditions used in state transition and integrity rules are expressed in temporal
logic, Temporal logic is a specialization of modal logic - while the interpretation domain
of the last is a generic sct of slates and the relations between these states, temporal logic
requires that these states constitule a linear discrete sequence {20]. A two-state discrele
sequence can be used to model dynamic changes at discrele instants.

Situations that change duc to the passage of time can be represented using the use of
temporal logic. We assume that the time variation is discrete. presenting a linear past
and allowing branching in the future. Logic formalisms have been widely used (o express
requirements involving time and 1o model dynamic applications [7, 6, 12, 13, 17, 24].
One of the advantages of this [ormalism is that the use of temporal opcrators, as since or
until make it possible to represent incomplete information.

The symbols that can be used in the condition formula are: (i) atomic propositions,
referencing values of static and dynamic attributes and names of states; (i) valucs
transmitted as arguments by the incoming message; (iii) relational operators: (iv)
Boolean connectives and. or and not; (v) existential and universal quantifiers formai and
exist; and (vi) a sct of temporal operators, listed in Table 1.

Operator Semantics
sometime past A A held at sometime in the past
immediately past A A hcld at the previous moment
always past A A held at all times in the past
sometime future A A will hold sometime in the future
immediately future A A will hold in the next moment
always future A A will hold at all times of the future
A since B A held at all times since B held
A untit B A holds at all times until B holds
A before B A held somcetime belore B hold
A afier B A held sometime after B hold

Table 1: Temporal Operators

As we are in an objecl-oriented framework, operators referencing the past consider only
those times beginning with the creation of the instance of the role; as for the future, they
will be limited by the life span of the instance.

As an example of a state transition rulc with an associate condition, we can use the
representation of an employee's salary update. Suppose there is a law stating that an
employee's salary can never decrease. The corresponding state transition rule is:

rj: state(cmployed), MSG(modify_salary(V)) = slate(employed) ;

immediately past exists V1 (salary(V1) and V>V1)

410

8. CONCLUSION

Socio-technical systems composc a category of applications to which temporal modeling
is an essential requirement. In this class of systems the close interaction associating
human and automated activitics requircs modcling and control of temporal
characteristics. Object-oricnted models are a good option to represent this intcraction.
They should provide definition of time propertics (0 be used in time critical sysicms.
Time aspects are nccessary 1o represent objects dynamic evolution within an information
system environment. The F-ORM model is an object oricnied model, and bas the pre-
defined domains DATE and TIME to support explicit time manipulation.

This work describes Temporal F-ORM, an cxtension of this model for temporal modeling
purposes. A sct of differcnt data types was defined to represent unconditional temporal
requirements. Not only transaction times arc considered but also the valid time
corresponding to the moment when information model reality.

State transition and integrity rules are used in Temporal F-ORM (o represent complex
objects and behaviors (state transitions) in information systcms. A (ransition rule
characterizes valid transitions between stales. A condition added to the Temporal F-
ORM transition rules cnables the representation of dynamic integrity rules -- conditions
that compare two different statcs of the application's information. This condition is
evaluated just before the state transition is activated, and the transition will only happen
if the condition is satisfied. ‘The exiended transition rule allows the representation of
complex temporal behavior and enables the modeling of conditional (cmporal
requirements.

A support environment is being implemcnted, with tools that support the requircments’
specification, using a class library for reusing former defined requircments. The
implementation is based on a deductive (emporal databasc and a Prolog-like query
language. The history of the objects’ instances is held in the database, which enables the
retrieving of several different versions of the object, relative to logical and physical time.

9. REFERENCES

[1] M. Adiba; N.B. Quang; J.Palazzo M. de Oliveira. Time concept in generalized data
bascs. In; ACM Annual Conference, Denver, Oct. 14-16, 1985. Proceedings. New
York, ACM, 1985. p.214-23.

{21 M. Adiba; N.B. Quang: C. Collet. Aspect lcmporels, historiques ct dynamiqucs des
bases de données, TSI - Technique et Science Informatiques, AFCET-Bordas, v.0,
n.5, p.457-478, 1987.

[3] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, New Yoik, v.26, n.11, p.832-43, Nov. 1983.

[4] C. Arapis. Specifying object intcractions. D. Tsichritzis (ed.) Objects Composition.
Gencebra, Université de Geneve, 1991. p.303-22.

411

[S] A. Bolour; L.J. Dckeyser. Abstractions in temporal information. Information
Systems, Greal Britain, v.8, 0.1, p.41-9, 1983.

{6] J. Carmo; A. Scrnadas. A Temporal logic framework for a layered approach to
systems specification and verification. In: C. Rolland; F. Bodart; M. Leonard (eds.)
Temporal Aspects in Information Systems. Amsterdam, North-Holland, 1988. p.31-
46.

[77 LMV, Castilho: M.A. Casanova; A.L. Furlado. A Temporal [ramework for
database specifications. In: International Conference On Very Large Data Bases, 8.,
Mexico City, Sept. 1982. Proccedings. Mexico City, 1982. p.280-91.

(8] I Clifford; A. Croker. Objects in time. Data Engineering, Washington, v.11, n.4,
p.11-18, Dec. 1988.

9] 1. Clifford; A. Rao. A Simple, general structure for temporal domains. In: C.
Roliand; F. Bodart: M. Leonard (eds.) Temporal Aspects in Information Systems,
Amsterdam, North-Holland, 1988. p.17-28.

{10] E. Corsctti; E. Crivelli: A. Mandrioli; A. Montanari; A.C. Morzenti; P. San Pictro;
E. Ratto. Dealing with differcnt time scales in formal specifications. International
Workshop On Software Specification And Design, 6., Como, Italy, Oct. 25-6, 1991.
Proccedings. IEEE Computer Society Press, 1991. p.92-101.

[11] V. Deantonellis; B. Pernici: P. Samarati. F-ORM Method: a F-ORM Methodology
for reusing specifications. In: F.V. Assche; B. Moulin; C. Rolland (eds.) Object
Oriented Approach in Information Systems. Amsterdam, North-Holland, 1991,
p.117-35.

[12] M. Finger; P. Mcbricn; R. Owens. Databascs and executable temporal logic. In:
Esprit '91 Annual Esprit Conference. Brusscls, Nov. 25-29. 1991. Proceedings.
Brussels, ECSC, 1991. p.289-302.

[13] D. Gabbay: P, Mcbrian. Temporal logic & historical databases. In: International
Conlference On Very Large Databases. 17., Barcelona, Sept. 3-6, 1991. Procecdings.
Barcelona, Industria Grafica, 1991, p.423-30.

[14] S.J. Greenspan: A. Borgida; J. Mylopoulos. A Requirements modeling language
and its logic. In: M.L. Brodie: J. Mylopoulos (eds.) On Knowledge Base Sysicms.
Springer-Verlag. New York, 1986. p.471-502.

[15] C.S. Jensen et al. A Glossary of temporal database concepts. SIGMOD Record,
v.21, n.3, p.35-43. Sept. 1992,

[16] R. Kowalski; M. Sergot. A Logic based calculus of events. New Generation
Computing, 4. 1986. p.67-95.

412

{171 UW. Lipeck, G. Saake. Monitoring dynamic inlegrily constraints based on
temporal logic. Information Systems, GB, v.12, n.3, p.255-69, 1987.

[18] P. Loucopoulos: P. Mcbrien; U. Persson; F. Schumacker; P. Vascy. TEMPORA -
Integrating databasc technology, rulc-based sysiems and temporal reasoning for
information systems development. (to be included in the IEEE Knowledge
Enginecring Newsletters, Feb. 1991,

{19] R. Maiocchi; B. Pernici: F. Barbic. Automatic deduction of temporal information.
University of Udine, Dipartimento de Matematica e Informatica, 1991. 58p.
(Research Report). (to be published in ACM Transactions on Database Systems)

[20] Z. Manna; A. Paucli. Verification of concurrent programs: the temporal
framework. In: B. Moore (ed.} The Correctness Problem of Computer Science.
Academic Press, 1981, p.215-73.

[21] J. Mylopoulos: A. Borgida: M. Jarke; M. Koubarakis. Telos: representing
knowledge about information sysiems. ACM Transactions on Information Systems,
New York, v.8, n.4, p.325-62, Oct. 1990,

[22] B. Pemici. Objects with Roles. In: Conference on Information Systems,
Cambridge, Massachusscits, April 25-27, 1990. Proceedings. SIGOIS Bulletin,
v.11, n.2-3, p.205-15. 1990.

[23] U. Schiel. An Abstract introduction to the Temporal-Hierarchic Data Model
(THM). International Confcrence On Very Large Data Bascs. 9.. Florence (Italy),
Oct. 31 - Nov. 2. 1983. Proceedings. Italy, VLDB, 1983. p.322-30.

[24] Segev.A. & Shoshani,A. Modeling temporal semantics. In: Rolland,C.; Bodart,F.;
Leonard, M. (eds.) Temporal Aspects in Information Systems. Amsterdam, North-
Holland, 1988. p.47-57.

[25] R. Snodgrass; 1. Ahn. A Taxonomy of time in databases. In: ACM SIGMOD
International Conference On Management Of Data, Texas, May 28-31, 1985.
Proceedings. New York, ACM, 1985. p.236-46.

[26] G. Wiederhold; S. Jajodia: W. Litwin. Dealing with granularily of (ime in temporal
databases. In: International Conference CAISE91, 3.. Trondheim, Norway, May
13-15, 1991. Proceedings. Berlin, Springer-Verlag, 1991. p.124-40.,

APPENDIX 1
VIDEQ RENTAL STORE APPLICATION EXAMPLE

Three classes of the Video Rental Store applications arc illustrated. As the objective of
this example is just to show the temporal cxiensions defined for the F-ORM modecl, we
don't present the whole specification, just some important parts.

413

process class (
Rental,
< base-role,
static propertics = { (crcation, INSTANT) },
dynamic properties = { (client, CLIENT), (tapc, TAPE) },
rules = {rulcl : msg(«create_object) = msg(— allow_rolc(rental_service)),
rule2 : msg(«create_object) =
msg(— allow_role(tape_devolution)),
rule3 : msg(«create_object) = msg(— allow_role(rental_control)),
ruled : msg(«crealc_object) = msg(— allow_role(clients_rental))}
>

/* The attendant receives the client’s rental request and asks for information about the
client; if the clicnt is allowed to rent the tape, the attendant informs the rental control
and gives the tape to the client: if not, he gives this information to the client. */

< Rental_service,
static propertics = { ... }
states = { wait_request, wait_check)
messages = {
tape_rcquest(client: CLIENT, tape: TAPE) from clients_rental,
check_client {client:CLIENT) to rental_control,
allowed from rental_control,
rejected from rental_control,
begin_rental (o rental_control,
request_denicd to clients_rental }
rules = {rulel : msg(<add_role) = state(wait_request).
rule2 : state(wait_rcquest), msg(«tape_request) =
msg(— check_client), state(wait_check),
rule3 : statc(wait_check), msg(erejected) =
msg(— request_denicd), state(wait_request),
rule4 : state(wait_check), msg(«allowed) =
msg(— begin_rental), statc(wait_request)
>,
/* The attendant receives the devolution of a tape and sends the information to the
rental control. */
< Tape_devolution,

>,

/* Receives request of a clients checking, verifies if the client is allowed to rent a new
tape and sends the answer to Rental_service; receives information of beginning and end
of rentals and storcs the correspondent information. */

< Rental_control,

>,

414

/* The client makes a rental request to Rental_service, receives a denial or the tape; if
he reccives the tape, he later returns the tape to Rental_scrvice. */
< Clients_rental,

>)

process class (
ACCOUNTING,
< base-role,

>
< employee_control,

>9
< rental_account,

>)

resource class (

PERSON,

< base-role,
static propertics = { (name, STRING), (birthday, DATE) },
dynamic propertics = { (object_instance,INSTANT), (end_object INSTANT),

(address, STRING), (vacations, INTERVAL(DAYS,CLOSED)) },

messages = { ... },
states = { ... }.
rules={ ... }

>,

< Client,

>,
< Employee,
dynamic properties = { (role_instance, INSTANT), (end_role, INSTANT),
(salary, REAL), (hire_date, DATE), (out_dale, DATE), (function,
INTEGER) 1},
messages = {
modily_salary(Value:REAL, Valid_Time:DATE) from
employee_control,
end_cmployment (Valid_Time:DATE) from employee_control,
employment_time(Time:SPAN(DAYS)) to employee_control,
employment_ended from employee_control ,
)
states = { employed, waiting_end_emplyment, disconnected },
rules = {rulel : msg(«—add_role) = state(employed),
rule2 : state(employed), msg(«—modify_salary(V)) = state(employed) ;
immediatcly past exists V1 (salary(V1) and V>V1),
rule3 ; state(cmployed), msg(«—end_cmployment) =

415

msg(— employment_time(T)),
state(waiting_end_employment),

ruled: state(waiting_end_employment), msg(«—employment_ended) =
state(disconnected)

.

>)

resource class (
TAPE,
< base_role,
static properties = { (object_instance:INSTANT), (end_object, INSTANT),
(tapc_number, INTEGER) },
dynamic propertics = { (tape_film, STRING), (film_type, STRING) },
messages = { ... },
states = { ... }.
rules = {... },
>,
< Life_time,
dynamic properties = {{role_instance, INSTANT), (end_rolc, INSTANT),
(time,SPAN(YEARS)) },

>,
< Rentals,
dynamic properties = {(rolc_instance, INSTANT), (end_role, INSTANT),
(client_code, INTEGERY), (beginning_date, DATE), (end_date, DATE)

messages = {
rental (Tape. INTEGER, Client:INTEGER) from Rental_control,
tape_devolution (Tape:INTEGER, Client:INTEGER) (rom
rental_control,
rented_time (Time:SPAN(DAYS), Client:INTEGER) to
rental_account},
states = { available, rented },
rules = {rulel : msg(«add_role) = state(available),
rule2 : state(available), msg(erental(T,C)) = state(rented),
ruled : statc(rented), msg(«tape_devolution(T,C)) =
msg(— rented_time(T,C)), state(available) }
>,

< Tape_loss,

>)

