
AN OBJECT-ORIENTED TEMPORAL MODEL

Nina Edelweiss*
Jos6 Palazzo M. de Oliveira

Barbara Pernici +,

* Universidade Federal do Rio Grande do Sul
Av. Bento Gon~alves, 9500 - Bloco IV - Agronomia - Caixa Postal 15064

CEP 91501-970 - Porto Alegre - RS - Brazil
Fax +55(51)336.5576

e-mail: [uina,palazzo]@ hff.u frgs.br

+ Universith di Udiue and Politecnico di Milano
Italy

e-mail: pemici@uduniv.chleca.it

Abstract. The representation of complex objects and behaviors (state transitions)
ha information systems is a central issue in software engineering. 111 an hfformatiou
system, supported by a conventional database, the only available state is the set of
present values. The object's behavior is controlled by integrity conslrahls defining
ouly the valid states. Ahnost all the representation of the dynamic evolution is lost
in flae traditional modeling process, h~ this paper the main concern is to present file
extensions made on an Object-Oriented Model, the F-ORM model [l 1] to expand
the representation of the object's evolution and to support file temporal aspects
involved. Temporal object-oriented models eeai be used to specify behavioral
requirements of infonnation systems. Four different modeling concepts are defined
to represent temporal informatiou: (i) a set of temporal data types and their
associated fimctions, to be used in properties' definitions; (it) thne stamps
associated to instances mid to dynamic properties; (iii) a special null value for
attribute values outside the validity period; and (iv) temporal conditions added to
rules, written in a temporal logic language. An example showing the use of the
Temporal F-ORM is developed.

1. I N T R O D U C T I O N

Information systems specification can be done through the use of data models. Ill the
framework of object-orientation much work has been done oli the modeling of static and
behavioral properties, but temporal aspects have not been explored in profundity. One
isolated example is the language RML [14]. Some studies about these aspects are
available [4, 8].

Object-oriented models should provide definition of time properties when intended to be
used in time critical systems, e.g., plant control systems, oflice inforlnation systems. Our
basic concern is the modeling of information systems. Time aspects are necessary to
represent objects dynamic evolution within these information system environments.

398

Temporal properties are used to define properties (attributes) with lime values, to time
stamp properties in temporal databases, order activities' execution through rules, etc.

Recent works present different forms of lime modeling. Time definitions may be done
explicitly, usually through timestamping (a time value associated with some object, e.g.,
m~ attribute value or a tuple) or implicitly, using some sort of temporal logic laa~guage.

The explicit time represet~tation requires the choice of a primitive temporal element, like
events (isolated instants of time) or intervals (tile time between two events). When using
events as the primitive temporal notion, there is a special time point corresponding to the
curretlt time, constantly moving along the temporal axis. The time concept may be
represented as a continuous or a discrete variable. Events belong to the continuous time
representation. An event is an isolated instant of time. It is said to occur at time t if it
occurs at any time during the chronou represented by t [15]. A chronon is the shortest
duration of time supported by a temporal DBMS; it belongs to the discreet time
representation. Many applications show the need of defining different granularity for
information: hours, days, years. This makes the retrieving of the temporal information a
complex affair but produces a much better representation of reality. Other time domains,
such as time intervals, may be defined as pairs of events, representing the lower and the
upper end of the time interval.

In systems where reasoning on time duration is central, such as scheduling systems, the
notion of time interval is a primitive and events are represented by very little intervals.
One important approach for time modeling is Allen's interval algebra [3], were time
intervals are related to each other by temporal relations, represented by predicates
expressed in a temporal logic language. The languages TELOS [21] and RML [14] are
based on this theory.

The use of temporal logic is also found in some systems and languages [5, 10, 14, 18, 19,
23]. In the Event Calculus [16], reasoning about events and time is performed within a
logical programming framework. The most important contribution of this approach is the
possibility of dealing with uncerlain and imprecise information like before and c~er.

This papers main concern is to extend an object-oriented model, the F-ORM model [l 1],
so that it supports temporal aspects. The chosen primitive temporal element is the eveul.
We add four different modeling concepts for temporal definitions: (i) a set of temporal
data types and their associated functions and operations, to be used in properties'
definitions; (ii) time stamps associated to instances of objects in the database and to
dynamic properties; (iii) a special nttll value for attribute values outside the validity
period; and (iv) temporal conditions added to rules, written in a temporal logic language.

Snodgrass and Ahn proposed a taxonomy of time in databases [25], consisting of three
distincl time concepts: (i) transaction time, the updale time; (ii) valid time, the period of
validity of the stored information and (iii) user-defined time, temporal properties defined
explicitly on a time domain and manipulated by the user program. Wilh the definition of
the set of temporal data types, the need of user-defined temporal properties decreases.
Dynamic properties timestampiug and the tlul/wdue represents the transaction and valid
times. Temporal conditions added to static and dynamic integrity rules cons|rain the set
of possible state transitions of the application.

399

The paper is organized as follows. A small application case is presented in Section 2, to
be used in examples in the other sections. Section 3 describes briefly the main aspects of
the F-ORM model [11,22]. The temporal requirements needed to specify information
systems are listed in Section 4. In Section 5, special temporal data types and the
corresponding functions and operations are presented. Section 6 describes the
representation of transaction times and valid times and Section 7 introduces briefly the
adopted temporal logic language.

2. AN APPLICATION EXAMPLE

This paper uses a part of a Video Rental Store specification in the examples: the
information on clients, employees, tapes and rentals. A client is identified by a unique
code, a name and an address. Additional information may be necessary, like his or her
inscription date in the Video Rental Store, all the tapes he or she rented and the
corresponding periods, and if he or she is allowed to rent tapes. An employee is
identified by the name and has the properties: address, the hiring date and salary. The
tapes are identified by a unique tape code. Each tape has the following information: the
movie name, the category and the date of acquisition. A rental is made associating the
client's and II~e tape's codes, and a starting date. A rental is only possible if some
conditions are satisfied: the lape must be in tire shop, tire client must be allowed to rent
tapes, can have a maximum of 5 tapes and is not allowed to keep up a tape for more than
30 days.

3. THE F-ORM MODEL

The F-ORM model (Functionality in Object with Roles Model) [11] is an object-oriented
design framework for inlbrmation systems requirements' specification I. Objects' behavior
is described using the concept of roles. Two distinct types of classes are identified:
resource classes and process classes. A resource class defines the structure of the
resources (agents, data and documents) in terms of roles that the resource can have in its
life-cycle. Process classes integrate Ihe resource classes aUowing to describe how the
work is actually performed in its organization and in the cooperation among agents. The
concept of role in process classes models the different tasks executed in the process and
their relationships in terms of communication and cooperation rules together with the
involved resources.

A class is defined by a name c, and a set of roles R i, each one representing a different
behavior of this object:

class = (Cn, R0, R 1 Rn)

Each role R i consists of a role name Rn i, a set of properties Pi of that role (abstract
descriptions of data lypes irnplemented as instance variables), a set of abstract states S i
that the object can be at while playing this role, a set of messages M i that the object can

1 Project INFOKIT, Italian National Research Council and Project ITHACA, ESPRIT II.

400

receive and send in this role, and a set of rMes Ru i (the state transition rules and integrity
rules):

R.i = < Rni' Pi' St' Mi' Ru.t >

All instances of roles evolve independently, the interactions being allowed through
message passing. An object can play different roles at different limes, ca,I play more than
one role at the same time, and can have more than one instance of the same role at the
same time.

Every object has a base role R 0 that describes the initial chm'acleristics of an instance
and the global properties concemi,ig its evolutiom The properties of the base role are
inherited by the remaining roles; the messages are used Io add, delete suspend and
resume instances of other roles; the possible slates m'e pre-defined, active and suspended;
and the rules define transitions ~tween roles and global constraints for the class.
Properties' definitions describe the domain each property should have.

A class can be defined as a subclass of one or of several classes (multiple inheritance). A
subclass inherits all components specified in the parent class or classes. New components
can be added to a subclass definition in two ways: (i) addi,lg specifications of new roles
and (it) modifying the specification of inherited roles.

Considering the class tape of the proposed application case, the properties of the base-
role are the tape's code, the name of Ihe fihn and the type of the movie (e.g., drama,
comedy). The loilowiug roles can be identified: (i) Life-time, modeling the actions to be
executed to buy Ihe tape, let the tape available lbr rental during a period of time and sell
it "afterwards; (it) Rentals, modeling the possible rentals of a tape; and (iii) Tape_loss,
modeling what shall be done when a tape is lost. Considering the role Rentals, some
required properties are the client's code and the rental starting and ending dates. Possible
states in this role are available and rented. This role can receive and send the following
messages: rental from Rental_control, tape_devolution from Rental_conlrol and
rented_time to Rental_control. Stale transition rules conlrol the behavior. Representing
incoming messages by the prefix "r and outgoing messages by " ~ ", we have the
following class defitaition:

resource class (
TAPE,
< base_role,
properties = {

messages =
states= {... 1,
rules = { ... }.
>,

. . . l ,

(tape_number, INTEGER),
(tape_fihn, STRING),
(film_type, STRING) },

< Life_time,

401

< Rentals,
properties = {

messages = {

states =
rules = {

>,

(client_code, INTEGER),
(beginl|ing_dale, DATE),
(end_date, DATE) },
renlal (Tape:INTEGER, Client:INTEGER) from

Rental_cona'ol,
tape_devolution (Tape:INTEGER) from Rental_control,
rented_time (Time:INTEGER,Client:INTEGER)) to

Rental_control },
{ available, renled },

rulel : msg(<--add_role) ~ slate(available),
rule2 : slate(available), msg(~rental(T,C)) ~ state(rented),
rule3 : state(rented), msg(<--lape_devolution(T))

msg(--> renled_time(T,C)), slate(available)}

< Tape_loss,
o . .

>)

. T E M P O R A L R E Q U I R E M E N T S F O R I N F O R M A T I O N
S Y S T E M S

Temporal aspects are important in information systems not only to represent temporal
information to be inaoduced in the correspo.lding database but also to model the
interaction of the possible processes to be executed. Temporal F-ORM, an extension of
the F-ORM model, was created to permit temporal modeling. Analyzing the domain of
inlbrmation systems, two different types of temporal requirements can be identified:
unconditional and conditional temporal information about events.

4.1. UNCONDITIONAL TEMPORAL REQUIREMENTS

Unconditional temporal requirements are explicitly defined, representing a specific
moment of time associated to an information. These requirements call be well-defined
and incompletely defined. Well-defined static requirements are of three different types:

�9 registration of a temporal element associated to an event, like the birthday of a person
or the hour of a meeting;

�9 the duration of an event, like the duration of a meeting;

�9 the period of time during which a value is valid, as the case of an exchange rate thai
is valid during a certain period.

402

These requirements are reprcsculed in Temporal F-ORM through appropriate temporal
data types, presented in Section 5. The valid times of an informatiou, analyzed in Section
6, also represent well-defined static temporal requirements.

In many applications there is also Ihe need to replesent htcomp/ete information:

�9 the occurrence of an event before or after a date, as tile case of tile Individual Income
Tax Return lbrm thai musl be posted before the end of May:

�9 the occurrence of an event within an interval, like tile inscription of a student in a
course that must be done during the first week of September.

Incomplete information is also defined through some specific data types, as will be
explained in Section 5.4.

4.2. CONDITIONAL TEMPORAL REQUIREMENTS

Two types of conditional temporal requirements can be identified:

conditional temporal requirements thai represent casual eonslmints on the possible
execution of processes, like the case of a process that is executed when an event
occurs, or before (or after) the occurrence of another event; Ihese requirements
control the beginning and coordinate the execution of concurrent processes through
constraints on Ihe temporal order in which messages can be sent and received by
instances of roles;

�9 another form of conditional temporal restrictions is used to represent implicitly or
explicitly defined lemporal inlormation, relative to other information; as an example,
there can be a restriction that conlrols the fact thal a new salary is never less than a
previous one.

Conditional temporal inlbrmation is represenled through the use of logic conditions
associated to the Iransilion and inlegrity rules, as explained ill Seclion 7. These
conditions modeling temporal requirements represent constrainls to the information
systems evolution.

5. T E M P O R A L D A T A T Y P E S

A set of temporal data types is used on properties' definition to represent well-defined
static temporal requirements. These data types present different time granularity like
hour, year, interval. The differeul granularities tu'e necessary to make it possible to model
reality in a natural way with concepts we are used to.

The F-ORM method has the following pre-defined domains: BOOLEAN, DATE,
IMAGE, INTEGER, PLACE, STRING, TEXT, TIME, TITLE. Two temporal data types,
DATE and TIME, are already defined in F-ORM. Depending on the application to be
modeled other temporal data types are necessary. Four different temporal types can be
identified [1, 87]: time points, intervals, span (duration) and periodic lime. In our

403

approach we introduce the first three, considering that periods could be defined using
rules defining temporal constraints on intervals.

5.1 TIME POINTS

The selected primitive temporal element for explicit time representation is the time point.
Analyzing the applications in the inlormation systems domain, the finest time
granularity necessary to define human activity is the mimae, chosen to be the chronon
[15] of the data model. To define completely a time point it is necessary to set a date
(year, month and day) and a time (hour and minute). This is done defining the basic
temporal type INSTANT. Using a simplified BNF notation, the basic temporal data type
INSTANT is defined as:

<instant> ::= <year> "/" <month> "/" <day> <hour> ":" <minute>

Other temporal types with different lime granularity, needed to model information
systems applications, can be derived from this basic one. The derivation mechanism is
based on a restriction applied to the basic type. The derived temporal types defined in
this model are: DATE, YEAR, MONTH, DAY, TIME, HOUR and MINUTE. Some
other types are needed to model reality in a natural way, representing special intervals
that are considered as time points: WEEK and SEMESTER. The set of temporal types
representing lime points is completed with the type WEEKDAY representing the
correspondent information lbr a date in the enumeration Sunday to Saturday.

5.2. INTERVALS

Intervals of time can be used to define a set of time points between two limit events. Tile
two limits of ml interval must have the same granularity. The chronon within the interval
is implicitly defined by the limits' type. Four different types of intervals call be defined,
depending if the limit events belong to the interval or not: closed hlterval, when the
interval contains both limits; semi-open interval, when one of the limits belongs to the
interval; open interval when both limits are not in the interval; and floatblg interval, in
case one of the limits is the actual time. For instance, a closed interval is defined as:

<closed interval> ::= <limit> ":" <limit>

<limit> := INSTANT I DATE I TIME I YEAR I MONTH I DAY I HOUR I MINUTE

As an example of time points and interval's definition consider the resource class
PERSON properties (Appendix 1):

resource class (
PERSON,
< base-role,

static properties = { (name, STRING), (birthday, DATE)],
dynamic properties = { (object instance, INSTANT), (end_object, INSTANT),

(address,STRING),(vacations, INTERVAL(DAYS, CLOSED))]

404

5.3. SPAN

Another important type is the span (duected duration) of an activity. This inlbrmation is
represented by an integer number followed by the appropriate time unit - e.g., days,
hours, weeks. A possible span type is:

<month_span> := <integer> MONTH

An example of this data type is the span of time a tape is held in the store for locations
before it is sold:

resource class (
TAPE,

. . o

< Life_time,
dynamic properties = { role_instance, INSTANT), (end_role, INSTANT),

(time,SPAN(YEARS)) },
. o .

5.4. DATA TYPES FOR INCOMPLETE TEMPORAL INFORMATION

Some applications need the representation of incomplete temporal information. For
these, Temporal F-ORM presents some specific temporal data types. When the
requirement only states that an event shall occur after or before a specific instant one of
the following types can be used considering a date as limit type:

<limit_date> ::= AFTER <date> I BEFORE <date>

The meaning of this data type is the same as an interval with one limit equal to infinity,
and considering only one point within the interval. Another special data type for
incomplete information is used to represent only one point within an interval, not
defining which point:

<within_interval> ::= WITHIN <interval>

5.5. FUNCTIONS AND OPERATIONS ON DATA TYPES

The uses of data types of different granularity offer some difficulties in the manipulation
and operation of the different times [9, 26]. A set of functions (predicates) that convert
the different types is defined to accomplish this manipulation. The specialization of
classes with inheritance of properties and messages allows the definition of functions for
INSTANT (basic temporal type) that can be specialized for DATE or TIME, as needed.
The functions return a temporal inlbrmation, e.g., the weekday corresponding to a date,
a different temporal granularity of a given time point, the span of an interval. Some
examples are:

year(<instant>) - extracts the year of an instant
weekday(<date>) returns the weekday of the given date
begin(<interval>) returns the lower bound of an interval

405

span(<interval>) - computes the span of an interval

Operations using different time granularity are also defined:

arithmetic operations like sum and subtraction can be applied in particular cases,
like: (i) the two operands are of the type SPAN, resulting in a value of the same type;
(it) the first operand is of type INSTANT, DATE or TIME and the second of type
SPAN, resulting the type of the first operand; (iii) the two operands are
INTERVALS having the same granularity, resulting in an INTERVAL or in an
undefined result;

the relations "<" (less than), ">" (greater than), "=" (equal to), "<" (less than or
equal to) and ">" (greater than or equal to) can be used to compare two time points
or two spans of different granularity converting internally the values to the finest
granularity and resulting in a logical value; lhe allowed types for time points are
INSTANT, DATE, TIME, YEAR, MONTH, DAY, HOUR, MINUTE;

operations defined for sets thai can be applied to INTERVALS, like union,
hztersection and ownership, resulting intervals or undefined results, or logical
values.

6. T R A N S A C T I O N AND V A L I D T I M E R E P R E S E N T A T I O N

Two different time concepts must be represented in an application - transaction time and
valid times [15, 25]. The transactiotl time represents the time when an information is
stored in a database; valid time con'esponds to the time when the inlbrmation model
reality.

6.1. TRANSACTION TIME

The transaction time is implicitly defined by the DBMS. The definition of transaction
times in Temporal F-ORM is done ti,nestamping dynamic properties and timestamping
objects' instances.

PROPERTIES TIMESTAMPING

An analysis of the possible properties a role can present shows that there are some
properties that never change, like the "social security number" for a person object. These
properties are called static properties; they are supposed to be defined once and valid all
over the instance's life.

The properties that may change wilh time are defined as dynamic properties.
Transaction times are associated to dynamic properties by timestamping. A dynamic
property consists of a set of pairs mapping the definition time to the property's value
domain, as proposed in [8]. The temporal domain of these time stampings is the

406

concatenation of the date and Ihe time - tile INSTANT data type. Appropriate operations
caq be used in the query language and in the rules to compare these values and to extract
specific information (e.g., year. month, hour, minute, weekday). The instances' whole
history may be retrieved through the dynamic properties' values.

As an example, static and dynamic properties are defined in the role employee of the
PERSON class:

Employee,
static properties = ((name. STRING) }.
dynamic properties = { (salary, REAL), (hire_date, DATE), (out_date, DATE) }

Considering the dynamic property salary, it is represented by the pairs:

salary: INSTANT X REAL

A special null value can be used to represent the periods of time during which dynamic
properties have undefined values. Immediately after the creation of the instance, all the
properties receive a default null value. Static properties hold this value until the first non
null value is assigned to them, and theft retain the new value during all their lifetime.
For the dynamic properties the null value holds until a new value is defined. All lhe
changes of dynamic properties' values are time slamped. During all application, there can
be periods of time when a property has an undefined value. This can be represented
associating again the mdl value to this dynamic property. This special value can be used
in all the property domains.

INSTANCES TIMESTAMPING

Instances of objects are managed through special messages. A special dynamic property
of the basic role, object_htstance, keeps the lime correspondent to the creation of an
instance of that object, done through the message create object. This property may have
one of the two special values defined to represent the instances' life span - null and
nonull. All instances' existence starts at the crealion moment, with the value nonull
associated to object_htstance, and may have some valid disjoint periods, depending on
the income of the messages suspend_object and resume_object. The beginnings of the
periods when the instance is suspended are represented in objecthzstance through the
value null associaled to the corresponding temporal information. The moment the
instance is resumed is again associated to nontdl. The message kill terminates the object
instances' life. As lhe implemcnled database corresponding to this model will be a
temporal database, keeping all the values of the past, the active life of the instance is
discontinued but the instance is not removed. The instant when an inslance is killed is
kept in another special dynamic property, called end_object, referencing the end of the
instances' life.

407

In Temporal F-ORM there are not only object instances, but also role instances, managed
through the messages add_role, resume_role, suspend__role and terminate_role. The
validity periods of a role instance are stored the same way as the object instances, using a
special role dynamic properly, called role_instance. The end of an instance of a role is
stored in another dynamic property: end_role.

The validity of a role instance depends on the validity of the corresponding objects'
instance. Therefore, the valuesstored in object_instance and end_.instance are temporal
restrictions imposed on Ihose kept in role_instance and end_role. The termination of an
objects' instance kills all the role instances of thai objecl.

The dynamic properties objectinstance and end_instance are implicilly defined for each
base role, and role instance and end role for each role.

6.2. VALID TIME

The valid lime corresponding to an information can be different from the transaction
time. Both these values shall be slored in the database that models the application. Two
ways can be used to represent the valid time: (i) augment the definition of dynamic
properties to three dimensions, representing respectively the transaction tilne, the valid
time and the information domain; and (it) to define special dynamic properties that keep
the valid time, presenl only when defined. As the existence of valid lime definition is not
so frequent, the first optio,~ would lead Io an unnecessarY augment in storage. In
Temporal F-ORM the second alternative is used. The name of the special properties used
to define valid lime is formed by Ihe concatenation of the prefix valid_ and the name of
the property. For instance, considering the property salary of the role employee of the
PERSON class, when a valid lime is defined it is stored in a property called valid_salary,
associated with the value of Ihe inlbrmation. For each defined dynamic property there is
the implicit creation of a corresponding valid dynalnic properly. In the Appendix 1
example, the dynamic properties of employee, a role of the object person, are internally
defined as:

< Employee,
dynamic properties = { (role_instance, INSTANT), (end_role, INSTANT),

(salary, REAL), (valid_salary, REAL),
(hire_date, DATE), (valid_hire_date, DATE),
(out_date, DATE), (valid out_date, DATE),
(function, INTEGER), (valid_fuction) ,INTEGER},

. o .

The values stored in the database are defined as arguments by messages sent and
received by the roles. A special argumenl is used to define valid times: Valid Time. This
argument is optional, used only when the valid time call be diffel'enl from the transaction
time. The corresponding query language must lake care of the possibility of existence of
a valid time definition, when storing and retrieving an information.

As an example considers Ihe change of an employee's salary. Let's suppose that on the
92/May/10 (transaction time) there is the definition of a new salary for the employee, and
that this new salary counts from Ihc first day of that month (valid time). Two possible
messages are:

408

messages = { modify_salary(Value:REAL, Valid_Time:DATE)

from em ployec_conlrol,

e,ld employment (ValidTime:DATE)

froln employee_control }

7. T E M P O R A L L O G I C

Two types of rules ate used in Temporal F-ORM: stale transition rules and integrity
rules. A state transition rule characterizes valid transitions between stales, eventually
depending on tile arrival of a message. Tile transition may cause the sending of anoiher
message. In some applications there is Ihe need to define dynamic integrity conditions -
conditions that compare two differeni stales of the application's information. Therefore a
condition was added to Ihe Temporal F-ORM iransition rules. This condition is
evaluated just before the slate Iransilion is activated. The Iransition between the two
states will only happen if the condition is satisfied. The extended stale transition rule has
one of the following lorms:

<slate transition rule> ::= <rule identifier>":"
. ~ [<message2>] , <state,>[: <temporal condition>] <statel>[, <messagel>] , '~

<slate transition rule> ::= <rule identifie~>":"
<messagel> "~"[<message2>]","<state2>[";"<temporal condition>]

The second form, when there is no <statel> defined, represents a special state transition
rule; the arrival of the message <messagel> will cause the transition io the new slate,
independently of the actual state. This makes it possible to represent active objects, thai
has a defined behavior when receiving a message with a pre-defined temporal argumenl.
In these cases an object clock sends messages (eventually virtual messages) at a defined
interval to all the active objects. A condition added to these rules represents a limitation
of that behavior - the rule will be executed al the moment this condilion is satisfied,
without consideriug the actual slate.

h~tegrity rules represent static integrity conditions - conditions that must always hold;
Ihey must be salisfied by all instances of a role at all times. An integrity rule has the
following form:

<integrity rule> ::= "constraint (" <condition 1> " ~ " <condition2> ")"

The rule represenls a constraint: if the firsl condition is satisfied, than the second
condition must also hold. A constraint is evaluated Ihe first time at the moment when the
roles' instance is created. It must be satisfied, otherwise the instance will be disconlinued.
Afterwards, the constraint will be evaluated each time a state transition involving the
first conditions' parameters is executed, just before the sending of the oulgoing message.

409

If it happens that the constraint is not satisfied, the transition will be undone; if there is
an outgoing message, it will not be sent; and a NAck message is sent to the role that sent
the incoming message. If the constraint is satisfied, then the outgoing message is sent.

The conditions used ill state transition and integrity rules are expressed in temporal
logic. Temporal logic is a specialization of modal logic - while the interpretation domain
of the last is a generic set of states and the relations between lhese slales, temporal logic
requires that these states constitute a linear discrete sequence [20]. A two-slate discrete
sequence can be used to model dynamic chmlges at discrete instants.

Situatiotls that change due to the passage of time can be represented using the use of
temporal logic. We assume thai the time vm'iation is discrete, presenting a linear past
and allowing branching in the future. Logic formalisms have beetl widely used to express
requirements involving time and to model dynamic applications [7, 6, 12, 13, 17, 24].
One of the advantages of this lbrmalism is that the use of temporal operators, as since or
until make it possible to represent incomplete information.

The symbols that can be used in the condition formula are: (i) atomic propositions,
referencing values of slatic and dynamic attributes and names of states; (it) values
transmitted as arguments by the incoming message; (iii) relational operators: (iv)
Boolean connectives and, or and not; (v) existential and universal quantifiersformat and
exist; at~d (vi) a set of temporal operators, listed in Table 1.

Operator
sometime past A

hnmediatety past A
always past A

somethne fitture A
itmnediately future A

always future A
A since B
A until B

A before B
A t~er B

Semantics
A held at sometime in the past
A held at the previous moment
A held at all limes in the past

A will hold sometime in the future
A will hold in the next moment

A will hold at all times of the future
A held at all times since B held

A holds at all times until B holds
A held sometime before B hold
A held sometime after B hold

Table 1: Temporal Operators

As we are in an object-oriented framework, operators referencing the past consider only
those times beginning wilh the creation of the instance of the role; as for the future, they
will be limited by the life span of the inslance.

As an example of a stale transition rule with an associate condition, we can use the
representation of an employee's salm'y update. Suppose there is a law slating that an
employee's salary can never decrease. The corresponding state transition rule is:

ri: stale(employed), MSG(modify_salary(V)) ~ state(employed) ;

immediately past exists V1 (salary(V1) and V>VI)

410

8. CONCLUSION

Socio-lechnicai systems compose a category of applications to which temporal modeling
is an essential requirement. In this class of systems the close interaction associating
human attd automated activities requires modeling and control of temporal
characteristics. Object-oriented Inodeis are a good option to represent this interaction.
They should provide definition of time properties to be used in time critical systems.
Time aspects ale necessary to represent objects dynamic evolution within an information
system environment. The F-ORM model is an object oriented model, and has the pre-
defined domains DATE and TIME to support explicit time manipulation.

This work describes Temporal F-ORM, an extension of this model for temporal modeling
purposes. A set of different data types was defined to represent uncot~ditiotml temporal
requirements. Not only transaction times are considered but also the valid time
corresponding to the moment when inforlnalion model reality.

State Iransition and integrity rules ale used in Temporal F-ORM to represent complex
objects and behaviors (state transitions) in information systems. A transition rule
characterizes valid transitions between stales. A condition added to the Temporal F-
ORM transition rules enables the representation of dynamic integrity rules -- conditions
that compare two different slates of the application's information. This condition is
evaluated just bclbre the slate transition is activated, and the transition will only happen
if the condition is satisfied. The extended transition rule allows the representation of
complex temporal behavior attd enables the modeling of conditional temporal
require,nents.

A support environment is being implemented, with tools thai support the requirements'
specificalion, using a class library for reusing former defined requirements. The
implementation is based on a deductive lemporal database and a Prolog-like query
language. The history of the objects' instances is held in the database, which enables the
retrieving of several different versions of the object, relative to logical and physical lime.

o

[1]

[21

[3]

[4]

REFERENCES

M. Adiba; N.B. Quang; J.Palazzo M. de Oliveira. Time concept in generalized data
bases. In: ACM Annual Conference, Denvcr, Oct. 14-16, 1985. Proceedings. New
York, ACM, 1985. p.214-23.

M. Adiba, N.B. Quang: C. Collet. Aspect lemporels, hisloriques et dynamiques des
bases de donn6es, TSI - Technique et Science Informatiques, AFCET-Bordas, v.6,
n.5, p.457-478, 1987.

J.F. Allen. Maiulaining knowledge about temporal intervals. Communications of
the ACM, New York, v.26, n. 11, p.832-43, Nov. 1983.

C. Arapis. Specifying object interactions. D. Tsichritzis (ed.) Objects Composition.
Genebra, Universit6 de GenSve, 1991. p.303-22.

411

[5] A. Bolour; L.J. Dekeyser. Abstraclions in temporal information, hfformalion
Systems, Greal Britain, v.8, n.l, p.41-9, 1983.

[6] J. Carmo; A. Sernadas. A Telnporai logic fra,nework lor a layered approach to
systems specification and verification. In: C. Rolland: F. Bodart: M. Leonard (eds.)
Temporal Aspects in Inlbrmatioli Systems. Amsterdam, North-Holland, 1988. p.31-
46.

[7] J.M.V. Castilho: M.A. Casanova: A.L. Furtado. A Temporal framework for
database specifications. In: International Conference On Very Large Data Bases, 8.,
Mexico City, Sept. 1982. Proceedings. Mexico City, 1982. p.280-91.

[8] J. Clifford: A. Croker. Objects in time. Data Engineering, Washington, v,l 1, n.4,
p.l 1-18, Dec. 1988.

[91 J. Clifford; A. Rao. A Simple, general structure lbr temporal domains. In: C.
Rolland; F. Bodart: M. Leonard (eds.) Temporal Aspects in Information Systems.
Amsterdam, North-Hollaod. 1988. p. 17-28,

[10] E. Corsctti: E. Crivelli: A. Mandrioli: A. Montanari; A.C. Morzenti; P. San Pictro;
E. Ratto. Dealing with different time scales in lormal specifications. International
Workshop On Softw;u'e Specification And Design, 6., Como, Italy, Oct. 25-6, 1991.
Proceedings. IEEE Computer Society Press, 1991. p.92-101.

[11] V. Deantonellis: B. Pernici: P. Samarali. F-ORM Method: a FORM Methodology
for reusing specifications. In: F.V. Assche; B. Moulin; C. Rolland (eds.) Object
Oriented Approach in Information Systems. Amsterdam, North-Holland, 1991.
p.117-35.

[12] M. Finger; P. Mcbrien: R, Owens. Databases aod executable temporal logic. In:
Esprit '91 Annual Esprit Conference, Brussels, Nov. 25-29, 1991. Proceedings.
Brussels, ECSC, 1991. p.289-302.

[13] D. Gabbay: P. Mcbrian. Temporal logic & historical databases, ln: International
Conference On Very Large Databases, 17, Barcelona, Sept. 3-6, 1991. Proceedings.
Barcelona, Industria Grafica, 1991. p.423-30.

[14] S.J. Greenspan: A. Borgida; J. Mylopoulos. A Requirements modeling language
and its logic. In: M.L. Brodie: J. Myiopoulos (eds.) On Knowledge Base Syslcms.
Springer-Verlag. New York, 1986. p.471-502.

[15] C.S. Jensen et al. A Glossa~ 7 of temporal database concepts. SIGMOD Record,
v.21, n.3, p.35-43, Sept. 1992.

[16] R. Kowalski" M. Sergot. A Logic based calculus of events. New Generation
Computing, 4, 1986. p.67-95.

412

[17] U.W. Lipeck. G. Saake. Monitoring dynamic imegrity constraints based on
temporal logic. Information Systems, GB, v.12, n.3, p.255-69, 1987.

[18] P. Loucopoulos: P. Mcbricn: U. Persson; F. Schumacker; P. Vasey. TEMPORA -
Integrating database technology, rule-based systems and temporal reasoning for
information systems development. (Io be included in Ibe IEEE Knowledge
Engineering Newslellers, Feb. 1991.

[19] R. Maiocchi; B. Pernici: F. Barbic. Aulomatic deduction of temporal information.
University of Udine, Dipartimento de Matematica e Informatica, 1991. 58p.
(Research Report). (to be published in ACM Transactions on Database Syslems)

[20] Z. Manna; A. Pnueli. Verification of concurrent programs: tile temporal
fra,nework. In: B. Moore (ed.) The Correctness Problem of Computer Science.
Academic Press, 1981. p.215 -73.

[21] J. Mylopoulos, A. Boi~ida; M. Jarke: M. Koubarakis. Telos: representing
knowledge about inlbrmation systems. ACM Transactions on Inlormation Systems,
New York, v.8, n.4, p.325-62, Oct. 1990.

[22] B. Pemici. Objects with Roles. In: Conference on hfformation Systems,
Cambridge, Massachusselts, April 25-27, 1990. Proceedings. SIGOIS Bulletin,
v.l 1, n.2-3, p.205-15, 1990.

[23] U. Schiel. An Abslract introduction to tile Temporal-Hierarchic Data Model
(THM). International Conference On Very Large Data Bases, 9., Florence (Italy),
Oct. 31 - Nov. 2, 1983. Proceedings. Italy, VLDB, 1983. p.322-30.

[24] Segev,A. & Shoshani,A. Modeling temporal seman|ics. In: Rolland,C.: Bodart,F.;
Leonard,M. (eds.) Temporal Aspects in Information Syslems. Amsterdam, North-
Holland, 1988. p.47-57.

[25] R. Snodgrass; I. Ahn. A Taxonomy of time in databases. In: ACM SIGMOD
International Conference On Management Of Dala, Texas, May 28-31, 1985.
Proceedings. New York, ACM, 1985. p.236-46.

[26] G. Wiederhold; S. Jajodia: W. Litwin. Dealing with granularity of time ill temporal
databases. In: International Confereuce CAISE'91. 3., Trondheim, Norway, May
13-15, 1991. Proceedings. Berlin, Springer-Verlag, 1991. p.124-40.

APPENDIX 1

VIDEO RENTAL STORE APPLICATION EXAMPLE

Three classes of the Video Rental Store applications are illustrated. As the objective of
this example is just to show the temporal exlensions defined [or the F-ORM model, we
don't present the whole specificalion, .just some important paris.

413

process class (
Rental,
< base-role,

static properties = { (creation, INSTANT) },
dynalnic properties = { (client, CLIENT), (tape, TAPE) },
rules = {rulcl : msg(~crcale_object) ~ msg(---) allow_role(rental_service)),

rule2 : msg(6-create_object)
msg(~ allow_role(tape_devoluliou)),

rule3 : msg(~create_object) ~ msg(---) allow_role(rentalcontrol)),
rule4 : msg(~create_object) ~ msg(---) allowrole(clients_rental))}

/* The attendant receives the client's rental request and asks for inforlnation about the
client; if the client is allowed to rent the tape. the attendant informs the rental control
and gives the tape to the client: if not, he gives this inlbrmation to the client. */

< Rental_service,
static properties = { ... }
states = { wait_request, wait_check }
messages = {

taperequest(client:CLIENT, tape:TAPE) from clients_rental,
check_client (client:CLIENT) to rental_control,
allowed fi'om rental_control,
rejected from rental_conla'ol,
begin_rental to rental_control,
request_denied to clients_rental }

rules = {rulel : msg(t--add_role)~ state(wait_request),
rule2 : state(wait_request), msg(~tape_request) ::o

msg(---) check_client), state(wait_check),
rule3 : state(wait_check), msg(~--rejected) =:~

msg(---) request_denied), state(waiUrequest),
rule4 : slate(wait_check), msg(t--allowed)

msg(~ begin_rental), state(waiLrequest) }
>,

/* The attendant receives the devolution of a tape and sends the information to the
rental control. */

< Tape_devolution,
o o o

>.

/* Receives request of a clients checking, verifies if the client is allowed to rent a new
tape and sends the answer to Rental_service; receives information of beginning and end
of rentals and stores the correspondent information. */

< Rental_control,
o . o

>,

414

/* The client makes a rental request to Rental_service, receives a denial or the tape; if
he receives the tape, he later returns the tape to Renlal_service. */
< Clientsrental,

. , .

>)

process class (
ACCOUNTING,
< base-role,

>

< employee_control,
~ 1 7 6

>,

< rental_account,
o . .

>)

resource class (
PERSON,
< base-role,

static properties = { (name, STRING), (birthday, DATE) },
dynamic properties = { (object_instance,INSTANT), (end_object,INSTANT),

(address, STRING), (vacations, INTERVAL(DAYS,CLOSED)) },
messages = {... },
states = { ... }.
rules = { ... }

>,

< Client,
, . o

>,

< Employee,
dynamic properties = {

(salary, REAL),
INTEGER) },

messages = {

(role_instance, INSTANT), (end_role, INSTANT),
(hh'e_date, DATE), (out_date, DATE), (function,

modify_s',dary(Value:REAL, V',did_Time:DATE) from
employeecontrol,

end_employment (Valid_Time:DATE) from employee_control,
employment_time(Time:SPAN(DAYS)) to employee._control,
employment_ended from employee_control ,
�9 . *] ,

states = { employed, waiting_end_emplyment, disconnected },
rules = {rulel : msg((---add_role)~ state(employed),

rule2 : slate(employed), msg((---modify_salary(V)) ~ state(employed) ;
immediately past exists V1 (salary(Vl) and V>VI),

rule3 : slate(employed), msg((--end_employment)

415

msg(~ employlnent time(T)),
state(waiting_end_employmen 0,

rule4: slate(waiting_end_empioymen0, msg(~employment_ended)
state(discomlected)

~ 1 7 6 I

>)

resource class (
TAPE,
< base_role,

static properties = { (object_instance:INSTANT), (end object, INSTANT),
(tape_number, INTEGER) },

dynamic properties = { (tape film, STRING), (film_type, STRING) },
messages = {... },
states = {... l,
rules = {... },

>,
< Life_time,

dynamic properties = { (role_inslance, INSTANT). (end_role, INSTANT),
(time,SPAN(YEARS)) },

~

>,
< Rentals,

dynamic properties = {(role_instance, INSTANT), (end_role, INSTANT),
(client_code, INTEGER), (beginning_date, DATE), (end_date, DATE)

>,

messages = {
rental (Tape. INTEGER, Client:INTEGER) from Rental_control,
tape devolulion (Tape:INTEGER, Client:INTEGER) from

renlal_conlrol,
rented_dine (Time:SPAN(DAYS), Client:INTEGER) to

rental account },
states = { available, renled },
rules = {rulel : msg(~add_role) ~ state(available),

rule2 : stale(available), msg(~rental(T,C)) ~ state(rented),
rule3 : slate(rented), msg(~--lape_devolution(T,C))

msg(~ renled__time(T,C)), slate(available) }

< Tape_loss,
, . .

>)

