From Object-Oriented Design Towards
Object-Oriented Programming

Naoufel Kraicm*, Faiez Gargouri**, Faouzi Boufarés***

* Laboratoire CRI, Université de Paris I, 17 rue Tolbiac, 75013 Paris - naoufel@masi.ibp.fr
** Laboratoire CEDRIC-IIE, 18 Allée J. Rostand, 91025 Evry - gargouri@rubis.iie.cnam.fr
*#** JUT Villetaneuse, Université de Paris XIII, Av. J.B. Clément, 93430 Villetaneuse

Abstract : The emergence of the object philosophy in the new software development
techniques gave birth to many object models. The object-oriented approach enables the
improvement of software quality, the reduction of future maintenance requirements, the
reuse and the adaptation of specification and developments. However the difficulty lies in
the transition between the conceptual specification and the implementation because of
the disparity of the formalism proper to each level. To resolve the problem, we propose
an object oriented interface supporied by a software tool and based on a pivot model and
a set of mapping rules.

1 Introduction

The Object-Oriented approach emerges in certain number of data processing domains, such as
programming, software engincering, data base, DBMS, analysis and design of data base and
information system. The paradigm underlying the computational object-oricnted are stabilised
enough to consider that they are providing a unifying approach for information system
development.
However the development of object-oriented applications remains problematic.
Object-oriented design methodologies arc focusing on system design as a later stage of the
application life cycle, implying that the carliest stage leading to requirements specification and
conceptual design, have been performed.
Object-oriented analysis methodologies arc still under investigation. Three main approaches are
being proposcd:

- the functional approach uses traditional DFD based techniques to derive object
specification

- the data driven approaches are influcnced by E/R modelling to define objects

- the object based approaches recommend the use of the object concept right from the
beginning of the system life cycle. The concept of objcct is then the basic clement the system
relies on.
The claim of these approaches is that enhancements and extensions of the computational object
concept are required to make it relevant o conceptual modelling.
O* [6], MCO [7], (OOD, GOOD) {3,4] HOOD [11] and OFM [1] arc cxamplcs of approaches
to support conceptual modelling in an object-oricnted way.
Our aim is to bridge the gap between object-oriented conceptual modelling and object-oriented
implementation. To do so, we proposc an interface supportcd by a software tool and based on a
pivot model and a scl of mapping rulcs. .

417

This article is organized as follows. Section 2 prcsents a very bricf summary of the O* and
MCO models. The third section, describes the object-oriented interface (O21I) and the mapping
rules from object-oriented design towards object-oriented implementation and some concluding
remarks are presented in sectiond,

2 Overview of MCO and O* Models
2.1 Main MCO Concepts

MCO [8] is an object-oriented methodology for the design of information systems. It allows
designers to use the object-oriented paradigm from the carly steps of design to modelize the
universc of discourse of any systcm or organization (busincss or scientific application). Here
after, we present the main concepts of MCO model.

An agent is a concrete or abstract enlity having a set of acquaintances, which provides or
requires services. We distinguish two kinds of agents: actors and objects.

An actor is an intelligent agent because it can change its slate without any external request from
another agent.

An object is a non-intelligent agent with encapsulated acquaintances and services. An object is
said to be non-intelligent because its type acquaintances and its behavior can not be modified
without an external request.

An abstract object is used to factorize the common acquaintances of some objects. No instances
can be created for an abstract object.

An acquaintance of an object is one of its characteristics. Each object can use, modify and return
its acquaintances. Two kinds of acquaintances are used in MCO: external and internal. External
acquainiances of an object Objl represent all the objects Obji (i=1..n), to which it is linked.
Internal acquaintances of an object are used 10 define its set of instances.

The graphical conventions used o represent extemal acquainitances are as follows:

External acquaintance Mandatory D"" & 1L
external
Objl pma Obj2 acquainlance [_]-® < La
o & pa
One instance of object Objt .
‘knows’ at least p, on average m, Op:mnall e & o
at most a instances on Obj2 exlerna
acquaintance [Jo» <> Qan

In the MCO paradigm, we distinguish two kinds of inheritance: the classical ‘is-a' inherilance
link and the construction inheritance. The second kind doesn't have a semantic sense. It enables
to reuse some characteristics of one object in an other without having the classical hicrarchy of
type/subtype. For instance :

Person Person
Client Society
Specialisation inheritanc: | Constructioninheritance

418

Client and society both inherit {rom the same class Person. The meaning of inheritance is not
the same in the two cases. In the first one, the client is a person. In the second case, socicty
inherits some of the person characteristics to definc its own type, but it's not a person.

An object transmutation is defined by one or more departure objects, several arrival objects and
the set of conditions necessary to its starting. Graphically a transmutation is represented as
follows:

fi] = 2}

Objl Obj2

TRANSMUTATIONS

One instance of the object Obji
is transmuted to:

. at lcast p,

. On average m,

. al maximum n or all,

instances of the object Obj2

An object can request or ensure a service to another. This service consists, in general, in giving
or demanding information about the state or the value of one characieristic of an object.

The object characteristics are: ils Internal and cxternal acquaintances, its services and its
transmutations.

An illustration of the use of the main MCO concepts is given Fig 1.

2,2 Main O* Concepts

O* is an analysis method which recommends the use of the object-oriented paradigm as soon as
the early development stages. It is supported by a conceptual model centered on the concept of
object.

The objects perceived in the real world are classified into classes. A object class has an
extension - the sct of its instances -, and characterises the structure (slatic) and the behavior
(dynamic) of the objects.

From a static point of view, an object is characterised by propertics and refercnces.

A property is valued either in a domain or in an object class. In the last case, a composition
link joins two object classes, namely composed and componcnt. The underlying semantics is
that a componcnt object is strongly dependcent on, and belongs exclusively to its composed
object. Composition reflects the fact that the composed object and its component(s) have life
cycles of a similar duration.

A referring link expresses a transient link between objects of two object classes, called
respectively referring and referred objects. The semantic is that a referred object can be shared by
several referring objects. It also expresses an existential constraint on the referred object. The
life cycle of a referring object is smaller than that of the corresponding referred object.
Composition and referring links are either simple or multiple.

An actor class allows to identily the agents of the external environment with which the
information system communicatcs. This allows to definc preciscly the relation between the
information system and the outsidc, to distinguish different competence zones and their interface
to the information system.

The graphic representation allows a vision of several relationships between object classes and
applications. From a static point of vicw (fig 1), each object class is associated with others by
one, or more, composition links, rcferring links or inheritance links. Each object class is
represented by a box. Links between object classes have to be read in the arrow direction:

419

A is composed of onc of B
_»[]-_3] A is composed of a set of B
Areferstoone B

hb- A refers o several B
[Al-#[B] A inherits of B

Structural constrainis specifying the invariant features of the objects can be specified upon
properties and references.

The O* inheritance mechanism is defined between O* classes, named specialized and gencralized
O* classes. The first one inherits all the characierislics of the second, and has its particular ones
[6].

The Inheritance constraint restricts the possibilities of existence of the objects of several
specialized classes, for each object of a gencralized class.

An inheritance constraint is specificd within the generalized class. There are three types of
inheritance constraints: disjunction, covering and partition :

Disjunction Covering Partition

SETTRRIONOERNY

[Car | [Van_|| [Client] [Supplier | || Man

o

o5 T,

1| Woanl

Union(Client , Supplier)= | Union(Man, Woman)= Person
Person Inter (Man, Woman)= void

inter (CAr, Van) = void

From a dynamic point of view, an object is characterized by operations and events. An
operation affects an object while an evenl ascertains a significant statc change of the object, for
which operations must be triggered. Other events, activated by actors of the organization or
depending on a date (temporal), are not placed in an object class. They notice the arrival of
messages from outside to the system. The cvent mechanism is similar to the one defined in the
Remora method [17].

Static and dynamic graphs give a global view of the interrelations and interactions betwecn
objects. The object class description provides a local view of the objects by listing sets of
properties, references, constraints, operations, events and inheritance links. The first three items
characterize the local aspects of an objcct, the next two specify the stalic and dynamic
relationships between objects.

The state transition graphs are used Lo express conditions on the sequence of an object
operations. Transitions describe the change from a state to another (of an object) by the
operation execulion. The nodes of the graph are states and the arcs arc slate transitions [2].

A same example is described here after using the two models, O* and MCO (see Fig 1).

In this O* example, we note a covering constraint, each person must be a client or a supplier
(or both). In the MCO example, this constraint is represented by an abstract class Person (non
instanciable) whereas Client and Supplier are persistent classcs. Lower level classes may be

420

created to represent clients who are supplicrs at the same time. Discussion about creation of
such classes can be found in [15].

To represent static links between objects, in O* one way arrow is used where as in MCO
double way is requiered.

(MCO Static graph Person ™
r—r ——'J Demand of
Account CliCM \Supplicr replenishment
[[o] |
N 7
|

Client_Supplier p

7

it | —i—.dO—

S Order Order line Product)
@lﬂaliggmm Demand of
replenishment

—

/
~
|
|

. J

Fig 1: An MCO and O* graphical descriptions of the static relationships between classes

2.3 Equivalence Between MCO and O* Models

We propose a comparalive table between the two models O* and MCO, described above. The
comparison criteria we chose deal with the nature of the concepts used by the models mentioned
before. These criteria are listed according to their types and will be used for the translation from
the conceptual to the implementation level. A framework for evaluating and comparing current
object-oriented analysis and design rescarch was developed in [14].

421

Type] O* Model MCO Model
A | Class Class
B | Inheritance Inherilance
ert Internal uaintance
C Proﬁcl:lr] lcl nem;:o ,f,fé‘ aintan
ultiple Itipl
Enum%rcted nlhl'lll?:r%lcd
Interval Interval
Aggregal Composed
D | Conslraint Constraint
Atiribute Altribute
Uniqueness Uniqueness
E Composilion link Cardinality
Simple El..l , (1,1)
Multiple wiN)s (1,
Refering link Cardinality
Simple »1), I}Q
Multiple 1,N), (0..N)
F | Inheritance Constraint | Inherilance type
Disjunction Simple
Couvering Mulliple
Partition Construclion
G Operation Service
H Event .
External Event model object
Temporal Event model object
Internal Service i
I State transition graph | States and behavior
graph of objccts
J Actor class Actor agent
K - Transmultation

We can casily see that the object-oriented paradigm concepts (class, object, inheritance,
encapsulation ...) are used in the two models. However, some diflerences exist, such: the
specification of links between objects, the expression of inheritance constraints and dynamic
aspect. For cxamplc, in MCO modecl the single acquaintance link includes the O* static links
(composition and referring links). They arc differenciated using MCO cardinalities. The O*
event concept has not the same definition as in MCO model. But it can be simulated, when it
is external or lemporal, using the Event model object concept and using scrvice when it's
internal.

3 Object-Oricented Interface (02I)

In order to automate the translation from object-oriented design towards object-oriented
programming, we proposc an interface called Object-Oricnted Interface (O2I).
021 is a generic interface which guides automalically the mapping from conceptual modelling
to a logical specification. In order Lo be generic, the interface leans on an object-oricnted pivot
language. It's considered as a super-set of object-oriented implementation languages. The
interfacc uses some mapping rulcs 1o:

a- transform the conceptual modelling to a pivot specification

b- transform the pivot specification to target cnvironment

The interface contains a several collection of rules related to different mappings . For instance,
from O* into ONTOS/C++ and Eiffel, from MCO into ONTOS/C++ and EifTel,
An interface user has two alternalive situations :

422

a- either the conceptual model and the target language take part of the interface and then

the mapping will be automatically donc
b- or one of them, or both, are unknown and then Re and Ri rules (see 3.3 and 3.4)

should be dcfined and integrated to the interface.

Defining an intermediate model such as a pivol model has the advantage of avoiding the study
and definition of a new transformation techniquc betwecn the conceptual model and target
implementation models newly envisaged, by just adopting the pivot model while shifting the

target one.
O21 is then an intermediate step downstrcam object-oriented design and upstream object-oriented

programming.

3.1 General Overview

O2I aims at assuring a mapping, guided by a software Lool, [rom a conceptual specification
towards an implementation. The interface consists of an object-oriented pivot language (O2IL),
Rc rules for the mapping from the conceptual specifications to O2IL and Ri rules {from the
O2IL 1o object-oriented implementation (fanguage and persistence).

The figure below illustrates the O2I:

4)
ject-orienic
Designed Model

Re

Object-oriented Impicmentation

\ W,
Fig 2: 021 : Object-oriented Interface

Two steps form the translation process. First, Re rules are run to transform the user's
conceptual scheme into O2I. Then Ri rules are applicd to lead to an object-oriented
programming environment. Rc and Ri rules are detailed further,

3.2 O2IL Syntax

The O2I language syntax is presented bellow. Notations used are inspired from Backus' ones:

[A] : A is optional

{A}+ : A exists at least once
AlB :AorB

A,B :AandB

Let:
G be a generalized class (abstract or persistent) and S; a specialized class i (a subclass of G).

<G>: the set of G instances.
<S>ji: the set of Sj instances.

423

The pivot model is considered 10 be a super-set of existing implementation models. It is a class
model which generic structurc is defined as {ollows :

DEFINE CLASS <class-name>
[INHERITS FROM : { < superclass-name>]
[REDEFINITION :
{{ <attribute-name>: <attribute-type>}+]
ENAME :

[{ <attribute-name> WITH <attribute-name> }+ J§
[{<method-name> WITH <method-name>}+]] 1
[{<attribute-name> WITH <attribute-name>}+ ,
{ <mcthod-name> WITH <method-name>}+}}+]
{INSTANCE VARIABLES :
{ <attributc-name> : <auribute-type> PUBLIC t PRIVATE | PROTECTED])+
[CONSTRAINT :
[UNIQUENESS :
({<autribute-name>}+)]
[ATTRIBUTE :
{<expression>}+]
[CARDINALITY :
{ <autribute-name>: (CardMin,CardMax)}+]]}
[INHERITANCE CONSTRAINTS :
[i=1 <8>=6]
X
[D. <S> 20}

[<S> =<G>]
n

[<S> #<G>]]
INSTANCE METHODS :
METHOD <method-name>: PUBLIC IPRIVATEIVIRTUAL
[(VAR : { <input-parameter>} +)]
[PRECONDITION : { <predicate>}+]

BODY
-=-Algorithm
[{CALL (<object-name> <operation-name>,{,<factor>)]})+]
END Body
[POSTCONDITION : {<predicate>)+}
END METHOD
END CLASS

With :
<attribute-type> :: <basic_domain>! <collection_domain> | <aggregate_domain> |
<enumerated_domain> | <referrcd-domain> | <domaine-intcrvale>
<basic_domain> i integer | real | date Istring | boolcan ...
<collection_domain> :: SET OF (<class-name>)
<enumerated_domain> :: ENUMERATED ({value}+)
<interval_domain> :: [min..max]
<aggregate_domain> :: <aggrcgale-name-class>
<referred_domain> it <refrered-name-class>
<simple_expression> :: <lerm> <comparaison_operator> <term> | <term>
<term> : <autribute-name> | OLD.<attributc-name> | NEW <attribute-name>

<method-name> | <conslant-name>
<composed_expression> :: <simple_expression> <logical_operator> <expression>

<expression> :: <simple_expression> | <composed_expression>
<predicate > 1 <expression>
<logical_operator> i ORINOT I AND I IN

<comparaison_operaior>:: =1>l<12|<|z

424

A pivot language class is composcd of variables, constraints and methods. Those concepts
constitutc the intentional definition of its instances and precise their static and dynamic aspects:
structure and behavior.

Instance variables arc data containers, like variables in a procedural programming languages.
They are defincd by a set of atiributcs and constraints. Each attribute has its own type.
Constraints are used to precise the class external identifier, invariant and the cardinalitics
expressing the structural links between classes.

A multiple inheritance mcans that a specialized class, or subclass, may have more than one
generalized classes, or superclasses. The major problem to solve with multiple inheritance is
how to handle name clashcs between methods or variables of multiple superclass. In our model,
we use the renaming principle for attributes and methods,

To express inherilance constraints, union and interscction operators are used. Those operators
are applied to the specialized class instances. Thus, inheritance constraints give the type of the
class: abstract or persistent. Four kinds of inhcritance constraints are defined within our model.
They cover all possibilities of cxistence of the objects of sevcral specialized classes, for cach
object of the generalized class.

In some objecl-oricnted languages, a method may be public, private or virtual [19]. We define
the set of methods for a class as the union of the set of privale, public and virtual methods. A
public method is a part of the interface of the class. We define the class inierface as a set of
methods which can be used by other classes. A private method is local to a class and not
accessible by other classes. A virtual mcthod is known in the class where it is defined, but
implemented in descendants only. We extend the definition of methods as follows. Each method
is defined by its input parameters, preconditions and postconditions.

The eveat concept is defined by a method which includes how operations are managed and
synchronized.

3.3 Re Mapping Rules

To wansform the user's object-oriented conceptual scheme, the following Rc rules must be
used;

Rc 1: All concepis of type A are translaied into O2I class. Each class will be public, private
or virtual.

Rc 2: All concepts of type B are translated into INHERITS FROM with rename and/for
redefinition possibilities.

Rec 3: All concepts of type C are translated into INSTANCE VARIABLES according to there
types (predefined, SET OF, ENUMERATED, aggregate ...).

Rc 4: All concepts of type D are translated into CONSTRAINT of INSTANCE
VARIABLES according to their nature (uniqueness or attribute).

Rc 5: All concepts of type E are translated with aggregated atiributes and cardinality
constraints in the CONSTRAINT part. In the case of a strongly dependency, cardinalities must
be defined in two classes, the caller and called. However, in the case of a weak dependency, the
cardinalites is expressed only in the caller objects,

Re 6: All concepts of type F are translated inlo INHERITANCE CONSTRAINTS according
to their types (disjunction, covering, partition,...). We define four types of inheritance
consiraint:

425

a) ﬂ <S>i=0
b) N <ssizp

c) u <§>i = <G>
d) L..J. <8§>; #<G>
The first six rules are used to map the static aspect of an information system: mapping of

attributes, domains, structural links and inheritance. For instance the translation of Person and
Client classes of graphical descriptions given in figure 1 is as follows :

DEFINE CLASS PERSON DEFINE CLASS CLIENT
INSTANCE VARIABLES : INHERITS FROM : PERSON
Nss : siring (15) REDEFINITION Age : [0..80]
Name : string(30) RENAME
Age :[0..132] Adress WITH Adress_Client
Adress : ADRESS | ...
CONSTRAINT : END CLASS --Client
UNIQUENESS :
Nss
CARDINALITY :
Adress : (1, 1)
INHERITANCE CONSTRAINTS :
CLIENT » SUPPLIER = PERSON
END CLASS --- Person

Fig 3: The mapping of the static aspect of the conceptual specification

The dynamic concepts (operation, event, state transition graph, service, actor ...) are mapped
using the following rules :

Rc 7: All concepts of type G are translated into INSTANCE METHODS using a
precondition and a posicondition possibilities. In this case of a redefined method, the procedurc
will call explicitly the procedure of the same name defined in the superclass.

Some models describe operations by a text in natural language. This text specifies the operation
puspose and the rules according 10 which attributes and states are valued or changed. In this
case, the designer has to give his algorithm details using, when nceded, the classical
instructions (IF... THEN...ELSE...ENDIF, WHILE.... END,...). If the model uses a formal
specification language [16], the translation will be automatically done into O21I language. For
instance, an order creation operation is translated into O2I as follows:

426

DEFINE CLASS ORDER
INSTANCE VARIABLES:
Ord_Line : SET OF (ORDER_LINE)
State : ENUMERATED (created, delivered, invoiced, paid)

CONSTRAINT :
CARDINALITY :
Ord_Line : (1, N)

INSTANCE METHODS :

METHOD Create_Order : PRIVATE
(VAR : number, ord_line, Creation_date, state)
PRECONDITION : absent order
BODY:

{Creale_QOder_Line ()}+
--- Create one instance of order
state := ‘created’
END Body
POSTCONDITION : state ;= 'creaied’
END METHOD
END CLASS --Order

Fig 4: An example of operations and services mapping

Re 8.1: All concepts of type H are translated into INSTANCE METHODS. The event
predicate is translated into the method precondition or as simple condition into the method
body. Trigger is translated using the procedure CALL with specifying three parameters : the
object name, the operation and the factor.

For instance the product event (out of stock) can be translated into 021 as follows:

DEFINE CLASS PRODUCT
METHOD Out_of_Stock : PUBLIC
BODY :
IF (OLD.qte_stock >=replenishment_level) and
(NEW.qte_stock < replenishment_level)
THEN
CALL (Supplicr, Demand_of_replenishment)
ENDIF
END Body
END METHOD
END CLASS --Product

Fig 5: An example of the mapping of an Out_Of Stock event

427

Re 8.2: If an cvent is internal, it is translated by a private method for the object.

Rc 8.3: If an event is exiernal or temporal, it is translated by an abstract class and a method
for its exccution,

Rc 9: All concepts of type I are translated with enumcrated attribute (cailed STATE) and with
INSTANCE METHODS (prccondition and postcondition arc mandatorics).

Rec 10: All concepts of type J are translated into an abstract class (non instanciable).

Rc 11: All concepts of type K arc translated into INSTANCE METHODS which allow
instance migration.

3.4 Ri Mapping Rules

The second set of rules is used for the translation from an Q21 specification, already established
before, towards a target object-oriented implementation,

Ri 1: Each OI2 class is translated into a class within the target language.

Ri 2: Each actor class (a class without instance variable in O2IL) is translated into an abstract
class (deferred in Eiffel, virtual in ONTOS/C++)

Ri 3: The INHERITS FROM concept is translated into a classical inheritance into target
languages. To resolve the multiple inhcritance conflict, REDEFINE and RENAME can be
used.

Ri 4.1: All object-orienled programming languages support the <basic_domain> notion.

Ri 4.2: Each <collcction_domain> is translated using the generic class COLLECTION [X]
into Eiffel and collection SET (X) into ONTOS/C++, where X is a type.

Ri 4.3: Each <aggregate_domain> or <referred _domain> is translated using a deferred class
into Eiffel and abstract class into ONTOS/C++.

Ri 4.4: Each <enumerated_domain> or <inlerval _domain> is translaicd using the routine
Eiffel concept or the ONTOS/C++ method.

Ri 5: Each uniqueness or attribute constraint is translated into an invariant or using a
specific method.

Ri 6: Each cardinality constraint is translated within a specific method which verifies the
minimal and maximal cardinalitics (in the caller and the called).

For instance, the translation of the static aspect of the conceptual specification, giving in Fig,
3, towards Eiffel and ONTOS/C++ programming environments is as {ollows:

428

p ONTQSIC+x
Class Person Class Person : Public Object
cxport Nss, name,age, address {
{ealure Public
Nss : STRING char *Nss;
name | STRING char *name;
age: INTEGER int age, result;
address: expanded (ADDRIESS) ADDRESS address
se;_agu (new_age: INTEGER) : BOOLEAN is int set_nge (age)
° {
--- verified if the the value of age is correat if ((age < 0) and (age > 132))
if (new_values=0 and new_value <=132) then
then result:= I
resule=TRUE else
age:=now_value resulu=0;
else end;
result := FALSE return (resuk)
. ’)
J end; int Set_Nss (new_value: STRING)
end;
Set_Nss (new_value: STRING) : BOOLEEN is If (select * from Person X
do . " where X.Nss :=new_value) >0
¢: COLLECTION[Person] thea
c.select X suchas rosult=1:
X.Nss :znew_value else *
inherit Person (
it (l;:m cemply) Nssi=new_value;
en
=0,
result:= FALSE)brcsu
clseNss::m-,w value return (result);
result:=TRUE
end;
} ; --class Person
lend ; --- class Person

where Object is a predefined ONTOS class. Each persistent object must be an instance of the
Object class or its derived classes.

The inheritance constraints are mapped in object-oriented programming using the following set
of rules:

” "

Ri 7.1: Each inheritance coastraint such that D<S>i =@or 9<S>i # <G> is translated
by a classical inheritance into the lacget languages (all classes are persistents).

Ri 7.2: Each inheritance constraint such that Q <§>; # () is translated by a superclass and

n
subclasses all persistents. 2- ("1 persistent classes will be created. They represent all
possible intersections between the n subclasses.

Ri 7.3: Each inheritance constraint such that u <§>;=<G> is translated using the Ri 7.2
rule where the superclass is abstract (deferred).

The O2I dynamic concepls are mapped using the following rules :

Ri 8: Each instance method is translated by a specific method into the target language. Pre
and Post conditions are checked into the method body.

429

The meaning of the event concept is not the same in different conceptual models. This concept
is particularly hard to implement in object oriented languages, because of the functional
principles of the method calls [12]. For instance, in O*, it poses some problems such as:

- the implementation of the internal event mechanism

- the management of the dynamic transition during the execution

- the saving of the event succession.

To resolve these problems, we propose a solution based on two steps:

- when event is activated, its operations are triggered and its predicales - susceptible to
be chained - are tested

- then, each event having a true predicate is activated in sequence.

To implement this mechanism, we use the two [ollowing rules :
Ri 9.1: Every event method is implemented by a routine in the target language.
Ri 9.2: For every private event method, a specific method (TEST_PRED) is implemented in

order to test predicate. A boolcan parameler is used when catling the method. When the call has
a factor, we must keep the predicate value for each affected object.

Class Product
[cature
Pred_Out_of_stock : BOOLEAN;,
sp : Supplier;

Out_Of_Stock (Pred_Out_of_stock) : BOOLEAN is
do

if (OLD.qte_stock >=replenishment_level) and
(NEW.qte_stock < replenishment_level)
then
Demand_Of_Replenishment(Pred_Out_of_stock);
end;
end;

end - - - class Product

Class Supplier
export Demand_Of_Replenishment ...;
feature

Demand_Of_Replenishment(Pred_Out_of_stock): BOOLEAN is

do
--- operation performing text
end;
end; - - - class Supplicr

Fig 0: Liffel implementation of an event method.

4 Conclusion

In this paper we proposed an interface, supporied by a software tool, to bridge the gap between
object-oriented conceptual modelling and object-oriented implementation (Eiffel,
ONTOS/C++). It is based on a pivot model and a sct of mapping rules. The interest of our
approach is to obtain a precise and non ambiguous specification easily impleimentable.

Our works are, at present, oricnted to suggest a 'PIVOT' object-oricnted design model that
might allow to shift from any objcct-oriented conceptual specilication to different environments
(OO0 languages, OODBMS, relational DBMS...) and integrate some oplimization notions using
metrics.

430

Acknowledgements

We thank Professor C. ROLLAND, Professor X. CASTELLANI, Prolessor N. BIDOIT and
R. LALEAU for their helpful advise and remarks and their amiability.

References

[1} E. Aronof; "OFM : une méthode formelle pour la conception des bases de données orinetées
objet", doctorat d'université Paul Sabaticr, September 1992.

[2] BUSINESS CLASS project, "Analyst Workbench Tutorial" Release 2, Deliverable BC.R.TS. T34,
Business class ESPRIT II P 5311, 1992,

{3] G.Booch, "Object-Oriented Development”, IEEE Trans. on S.E., Vol. SE-12, N°2, Feb. 1986.

[4] G.Booch, Software Engineering with Ada, 2nd Edition, Benjamin/Cummings Publishing Co.,
Menlo Park, 1987.

{5] 1. Brunet, C.Cauvet, L. Lassoudris, "Why Using Event in a Hignt Level Specification", jn Proc. of
the Entity / Relationship Conference, Lausanne, 1990.

[6] J. Brunet, "Modeling the world with Semantic Objects”, Working confercnce on the object
oriented approach in information systems, 1991.

[7] X. Castellani, "Le modele de la méthode MCO d'analyse et de conception des sysiemes d'objets”
Congrés INFORSID, Paris 1991.

[8] X. Castellani, "MCQ Méthodologie Générale d'analyse et de Conception des Systémes d'Objets,
Tome 1 : l'Ingénicurie des besions” Edition Masson, Paris 1993,

[9] P Cointe, "Metaclasses are First Class : the ObjVlisp Model",LITP, Université Paris VI ACM,
OOPSLA, 1987.

[10} G. Grosz " Formalisation des connaissances réutilisables pour la conception des systémes
d'information",Thése de doctorat de I'université Paris VI, Décembre 1991.

[11] M. Heitz, "HOOD, une méthodc de conception hiérarchisée orientée objet pour le développement
des gros logiciels techniques et temps réel”, Déc. 1989, Journées Ada-France.

[12] N.Kraiem, J.Brunet " Mapping of Conceptual Specifications into Object-oriented Programs”,
SEKE'92, Proceedings of the Fourth Intcrnational Conference on Software Engineering and
Knowledge Engincering, IEEE, Capri, June 1992,

[13] B. Meyer , 'Conception et programmtion orientée objets”, InterEdition, 1990,

[14] D.E. Monarchi, G.I. Puhr " A research typology for object-oriented analysis and design”,
Communications of the ACM, September 1992, Vol 35, N° 9.

[15] R. Laleau, X. Castellani, M. Jouve. "Normalized Design of the Specialization Inheritance". Indo-
French workshop on Object-Oriented Systems. GOA-Inde. 2-5 Nov. 1992.

[16] R. Laleau, X. Castellani, and al. "Transformation de Spécifications informelles MCO en
Spécifications formelles VDM". Journée AFCET. November 1992.

431

[171 C. Rolland, O. Foucaw, G. Benci, Conception de Systémes d'Information, la méthode Remora,
Ed. Eyrolles, Paris 1988.

[18] E. Yourdon, P. Coad "Object oriented analysis”, sccond Edition, Yourdon press, 1991.

[19] Peter Wegner, "Concepts and Paradigms of Object-Oriented Programming,"OOPSLA-89 Keynote
Talk, 1989.

