
From Object-Oriented Design Towards
Object-Oriented Programming

Naoufel Kra'fcm*, Faiez Gargouri**, Faouzi Boufar~s***

* Laboratoire CRI, Universitd de Paris I, 17 rue Tolbiac, 75013 Paris - naoufel@masi.ibp.fr
** Laboratoire CEDRIC-IIE, 18 Allde J. Rostand, 91025 Evry - gargouri@rubis.iie.cnam.fr
*** IUT Villetaneuse, Universit6 de Paris XIII, Av. J.B. Cldment, 93430 Villetaneuse

Abstract : The emergence of the object philosophy in the new software development
techniques gave birth to many object models. The object-oriented approach enables the
improvement of software quality, the reduction of future maintenance requirements, the
reuse and the adaptation of specification and developments. However the difficulty lies in
the transition between the conceptual specification and the implementation because of
the disparity of the formalism proper to each level. To resolve the problem, we propose
an object oriented huerface supported by a software tool and based on a pivot model and
a set of mapping rules.

1 Introduction

The Object-Oriented approach emerges in certain number of data processing domains, such as
programming, software engineering, data base, DBMS, analysis and design of data base and
information system. The paradigm underlying the computational object-oriented are stabilised
enough to consider that they are providing a unifying approach for information system
development.
However the development of object-oriented applications remains problematic.
Object-oriented design methodologies are focusing on system design as a later stage of the
application life cycle, implying that the earliest stage leading to requirements specification and
conceptual design, have been perfomaed.
Object-oriented analysis methodologies are still under investigation. Three main approaches are
being proposed:

- the functional approach uses traditional DFD based techniques to derive object
specification

- the data driven approaches are influenced by E/R modelling to define objects
- the object based approaches recommend the use of the object concept right from the

beginning of the system life cycle. The concept of object is then the basic element the system
relies on.
The claim of these approaches is that enhancements and extensions of the computational object
concept are required to make it relevant to conceptual ,nodelling.
O* [6], MCO [7], (OOD, GOOD) [3,4] HOOD [11] and OFM [1] are examples of approaches
to support conceptual modelling in an object-oriented way.
Our aim is to bridge the gap between object-oriented conceptual modelling and object-oriented
implementation. To do so, we propose an interface supported by a software tool and based on a
pivot model and a set of mapping rules.

417

This article is organized as follows. Section 2 presents a very brief summary of the O* and
MCO models. The third section, describes the object-oriented interface (O21) and the mapping
rules from object-oriented design towards object-oriented implementation and some concluding
remarks are presented in section4.

2 O v e r v i e w o f M C O a n d O* M o d e l s

2.1 Main M C O Concepts

MCO [8] is an object-oriented methodology for the design of information systems. It allows
designers to use the object-oriented paradigm from the early steps of design to modelize the
universe of discourse of any system or organization (business or scientific application). Here
after, we present the main concepts of MCO model.
An agent is a concrete or abstract entity having a set of acquaintances, which provides or
requires services. We distinguish two kinds of agents: actors and objects.
An actor is an intelligent agent because it can change its state without any external request from
another agent.
An object is a non-intelligent agent with encapsulated acquaintances and services. An object is
said to be non-intelligent because its type acquaintances and its behavior can not be modified
without an external request.
An abstract object is used to factorize the common acquaintances of some objects. No instances
can be created for an abstract object.
An acquaintance of an object is one of its characteristics. Each object can use, modify and return
its acquaintances. Two kinds of acquaintances are used in MCO: external and internal. External
acquaintances of an object Objl represent all the objects Obji (i=l..n), to which it is linked.
Internal acquaintances of an object are used to define its set of instances.
The graphical conventions used to represent external acquaintances are as follows:

External acquaintance

ObjZ Obj~ p,m,n
. n-q

One instance of object Objl
'knows' at least p, on average m,
at most n instances on Obj2

Mandatory ~ ~ l . l
external
acquainlance ~ ~ l,,n

r p.~

Optional ~ ~ O.t
external
acquaintance ~ ~ O,,n

In the MCO paradigm, we distinguish two kinds of inheritance: the classical 'is-a' inheritance
link and the construction inheritance. The second kind doesn't have a semantic sense. It enables
to reuse some characteristics of one object in an other without having the classical hierarchy of
type/subtype. For instance :

Person

Client

Parson

[3

Society

Specialisation inhcritanc~ Constrocdoninheritanec

418

Client and society both inherit from the same class Person. The meaning of inheritance is not
the same in the two cases. In the first one, the client is a person. In the second case, society
inherits some of the person characteristics to define its own type, but it's not a person.
An object transmutation is defined by one or more departure objects, several arrival objects and
the set of conditions necessary to its starting. Graphically a transmutation is represented as
follows:

TRANSM UTATIONS 11-7 - - : - []-I
Objl Obj2

One instate of the object Objl
is transmuted to:
�9 at least p.
�9 OII a v e r a g e I l l ,

�9 at maximum n or all,
instances of the object Obj2

An object can request or ensure a service to another. This service consists, in general, in giving
or demanding information about the state or the value of one characteristic of an object.
The object characteristics are: its Internal and external acquaintances, its services and its
transmutations.
An illustration of the use of the main MCO concepts is given Fig 1.

2 . 2 M a i n O* Concepts

O* is an analysis method which recommends the use of the object-oriented paradigm as soon as
the early development stages. It is supported by a conceptual model centered on the concept of
object.
The objects perceived in the real world are classified into classes. A object class has an
extension - the set of its instances -, and characterises the structure (static) and the behavior
(dynamic) of the objects.
From a static point of view, an object is characterised by properties and references.
A property is valued either in a domain or in an object class. In the last case, a composition
link joins two object classes, namely composed and component. The underlying semantics is
that a component object is strongly dependent on, and belongs exclusively to its composed
object. Composition reflects the fact that the composed object and its component(s) have life
cycles of a similar duration.
A referring link expresses a transient link between objects of two object classes, called
respectively referring and referred objects. The semantic is that a referred object can be shared by
several referring objects. It also expresses an existential constraint on the referred object. The
life cycle of a referring object is smaller than that of the corresponding referred object.
Composition and referring links are either simple or multiple.
An actor class allows to identify the agents of the external environment with which the
information system communicates. This allows to define precisely the relation between the
information system and the outside, to distinguish different competence zones and their interface
to the information system.
The graphic representation allows a vision of several relationships between object classes and
applications. From a static point of view (fig 1), each object class is associated with others by
one, or more, composition links, referring links or inheritance links�9 Each object class is
represented by a box. Links between object classes have to be read in the arrow direction:

419

[~] . _ . . . ~ A is composed of one of B

[~] ~ A is composed of a set orB

[' ~ . _ ~ A refers to one B

1~. l l~ [] A refers to several B

I'Xl-- l l Ai, ,eri of B

Structural constraints specifying the invariant features of the objects can be specified upon
properties and references.
The O* inheritance mechanism is defined between O* classes, named specialized and generalized
O* classes. The first one inherits all the characteristics of the second, and has its particular ones
[6].
The Inheritance constraint restricts the possibilities of existence of the objects of several
specialized classes, for each object of a generalized class.
An inheritance constraint is specified within the generalized class. There are three types of
inheritance constraints: disjunction, covering and partition :

Disjunction

I Vehicle I

Van

inter (CAr, Van) = void

Covering

I Person I

s2\
[' - ~ e n ~ l Supplier

Union(Client , Supplier)=
Person

Partition

I Person I

I anl I Woman I
Union (Man, Woman)= Person
Inter (Man, Woman)= void

From a dynamic point of view, an object is characterized by operations and events. An
operation affects an object while an event ascertains a significant state change of the object, for
which operations must be triggered. Other events, activated by actors of the organization or
depending on a date (temporal), are not placed in an object class. They notice the arrival of
messages from outside to the system. The event mechanism is similar to the one defined in the
Remora method [17].
Static and dynamic graphs give a global view of the interrelations and interactions between
objects. The object class description provides a local view of the objects by listing sets of
properties, references, constraints, operations, events and inheritance links. The first three items
characterize the local aspects of an object, the next two specify the static and dynamic
relationships between objects.
The state transition graphs are used to express conditions on the sequence of an object
operations. Transitions describe the change from a state to another (of an object) by the
operation execution. The nodes of the graph are states and the arcs are state transitions [2].

A same example is described here after using the two models, O* and MCO (see Fig 1).
In this O* example, we note a covering constraint, each person must be a client or a supplier
(or both). In the MCO example, this constraint is represented by an abstract class Person (non
instanciable) whereas Client and Supplier are persistent classes. Lower level classes may be

420

created to represent clients who are suppliers at the same time. Discussion about creation of
such classes can be found in [15].
To represent static links between objects, in O* one way arrow is used where as in MCO
double way is requiered.

r MCO Static eravh

Account []--]

Person
i-i-7 m .-J Demand of

replenishment Clien t~,,,,, '~ ~ S u p p l i e r

Order Order line Product

rO*Staticgrap h I Demandof i
replenishment

I Person I / ,

I Account Client I I Suppl,er I
,
I
I

~ ~ l Order line I
I I

Fig 1: An MCO and O* graphical descriptions of the static relationships between classes

2.3 Equivalence Between MCO and O* Models

We propose a comparative table between the two models O* and MCO, described above. The
comparison criteria we chose deal with the nature of the concepts used by the models mentioned
before. These criteria ,are listed according to their types and will be used for the translation from
the conceptual to the implementation level. A framework for evaluating and comparing current
object-oriented analysis and design research was develol~.d in [14].

421

Type

A

B

C

D

E

G

H

I

J

K

O* Model MCO Model

Class
Inheritance
Pronertv

~imple
MnUltiple .

umeretea
Interval
Aggregat

Constraint
Attribute
Uniqueness

Composition link
Simple
Multiple

Refering link
Simple
Multiple

Inheritance Constraint

Class
Inheritance
Internal . acquaintance

Atomic
~lnultirfle un~ereted
Interval
Composed

Constraint
Attribute
Uniqueness

Cardinality
1 ,,1), (1,,1)
1,,N), (1,,1)

Cardinality
(1,,1), (0,,N)
(1,,N), (0,,N)

! Inheritance type
Disjunction
Couvering
Partition

Operation
Event

External
Temporal
Internal

State transition graph

Actor class

Simple
Multiple
Construction

Service

Event model o_bject
Event model oSject
Service
States and behavior

graph of objects
Actor agent
Transmutation

We can easily see that the object-oriented paradigm concepts (class, object, inheritance,
encapsulation ...) are used in the two models. However, some differences exist, such: the
specification of links between objects, the expression of inheritance constraints and dynamic
aspect. For example, in MCO model the single acquaintance link includes the O* static links
(composition and referring links). They are differenciated using MCO cardinalities. The O*
event concept has not the same definition as in MCO model. But it can be simulated, when it
is external or temporal, using the Event model object concept and using service when it's
internal.

3 Object-Oriented Interface (021)

In order to automate the translation from object-oriented design towards object-oriented
programming, we propose an interface called Object-Oriented Interface (O2I).
O2I is a generic interface which guides automatically the mapping from conceptual modelling
to a logical specification. In order to be generic, file interface leans on an object-oriented pivot
language. It's considered as a super-set of object-oriented implelnentation languages. The
interface uses some mapping rules to:

a- transform the conceptual modelling to a pivot specification
b- transform the pivot specification t o target environment

The interface contains a several collection of rules related to different mappings. For instance,
from O* into ONTOS/C++ and Eiffel, from MCO into ONTOS/C++ and Eiffel.
An interface user has two alternative situations :

422

a- either the conceptual model and the target language take part of the interface and then
the mapping will be automatically done

b- or one of them, or both, are unknown and then Rc and Ri rules (see 3.3 and 3.4)
should be defined and integrated to the interface.
Defining an intermediate model such as a pivot model has the advantage of avoiding the study
and definition of a new transformation technique between the conceptual model and target
implementation models newly envisaged, by just adopting the pivot model while shifting the
target one.
O2I is then an intermediate step downstream object-oriented design aud upstream object-oriented
programming.

3.1 General Overview

O2I aims at assuring a mapping, guided by a software tool, from a conceptual specification
towards an implementation. The interface consists of an object-oriented pivot language (O2IL),
Rc rules for the mapping from the conceptual specifications to O21L and Ri rules from the
O21L to object-oriented implementation (language and persistence).

The figure below illustrates the O2I:

Fig 2:021 : Object-oriented Interface

Two steps form the translation process. First, Rc rules are run to transform the user's
conceptual scheme into O21. Then Ri rules are applied to lead to an object-oriented
programming environment. Rc and Ri rules are detailed further.

3.2 O2IL Syntax

The O21 language syntax is presented bellow. Notations used are inspired from Backus' ones:
[A] : A is optional
{A}+ : A exists at least once
A I B : A o r B
A , B : AandB

Let:
G be a generalized class (abstract or persistent) and Si a specialized class i (a subclass of G).
<G>: the set of G instances.
<S>i: the set of Si instances.

423

The pivot model is considered to be a super-set of existing implementation models. It is a class
model which generic structure is defined as follows :

DEFINE CLASS <class-name>
:INI-IERITS FROM : {< superclass-name>]

[REDEI'qN1T1ON :
[{ <attribute-name>: <attribute-type>] +]

[RENAME :
[I<attrilmte.name> WITI-I <attrlbute-name>]+]1
[{<method-name> WITH <method-name>}+]] I
[{<attfibutr w r r H <attribute-name>I+,

{,,z'nethod-name> w m l <method-name>}+]]+]
INSTANCE VARIABLF~ :

{<attribute-name> : <attribute-type> PUBLIC I PRIVATE I PROTECTED] }+

"CONSTRAINT :
[UNIQUENESS :

({<attribute-name>}+)]
[ATFRIBUTE :

{ <expression> } +l
[CARDINALITY :

{<attribute-name>: (CardMin,CardMax)] +1]]
[INHERITANCE CONSTRAINTS :

[!=! <S>i = Ol
ii

[IQ <S>i ~ 0]
, . .

[~t <S> i = <G>]

I I

[~ - <S>t' * <G>I]
INSTANCE MErlIODS :

METIIOD <method-name>: PUBIJC IPRIVATEIVIRTUAL
[(VAR : {<input-parameter>}+)]
[PRECONDrrlON : (<predicate>]+]
BODY

---Algorithnl
[ICALL (<object-name> <operation-name>,[,<faetor>)]i+ l

END Body
[POSTCONDrrlON : {<predicate>}+ I

END METHOD
END CLASS

With :
<attribute-type> :: < b a s i c _ d o m a i u > l < c o l l e c t i o n _ d o m a i n > I < a g g r e g a t e _ d o m a i n > I
< e n u m e r a t e d _ d o m a i n > I <referred-domain> I <domaine- intervale>
<basic domain> :: integer I real I date Istring I boo lean ...
<collection domain> :: S E T O F (< c l a s s - n a m e >)
<enumerated domain> :: E N U M E R A T E D ({ v a l u e } +)
<interval domain> :: [m i n . . m a x]
<aggregate_domain> :: <aggregate -name-c lass>
<referred_domain> :: <refrered-name-class>
<simpleexpression> :: < term> <compara i son_opera tor> <term> I < t e r m >
<term> :: <at tr ibute-name> I O LD.<a t t r ibute -name> I N E W . < a t t r i b u t e - n a m e >
< m e t h o d - n a m e > I <cons ta nt -na me>
<composed__expression> :: < s i m p l e _ e x p r e s s i o n > < log ica l_operator> <expres s ion>
<expression> :: < s i m p l e _ e x p r e s s i o n > I < c o m p o s e d _ e x p r e s s i o n >
<predicate > :: <ex pres s io n>
<logicaloperator> :: O R I N O T I A N D I IN
<comparaison_operator> :: = I > I < I > I < I~:

424

A pivot language class is composed of variables, constraints and methods. Those concepts
constitute the intentional definition of its instances and precise their static and dynamic aspects:
structure and behavior.
Instance variables are data containers, like variables in a procedural programming languages.
They are defined by a set of attributes and constraints. Each attribute has its own type.
Constraints are used to precise the class external identifier, invariant and the cardinalities
expressing the structural links between classes.
A multiple inheritance means that a specialized class, or subclass, may have more than one
generalized classes, or superclasses. The major problem to solve with multiple inheritance is
how to handle name clashes between methods or variables of multiple supcrclass. In our model,
we use tile renaming principle for attributes and methods.
To express inheritance constraints, union and intersection operators are used. Those operators
are applied to the specialized class instances. Thus, inheritance constraints give the type of the
class: abstract or persistent. Four kinds of inheritance constraints are defined within our model.
They cover all possibilities of existence of the objects of several specialized classes, for each
object of the generalized class.
In some object-oriented languages, a method may be public, private or virtual [19]. We define
the set of methods for a class as the union of the set of private, public and virtual methods. A
public method is a part of the interface of the class. We define the class interface as a set of
methods which can be used by other classes. A private method is local to a class and not
accessible by other classes. A virtual method is known in the class where it is defined, but
implemented in descendants only. We extend the definition of methods as follows. Each method
is defined by its input parameters, preconditions and postconditions.
The event concept is defined by a method which includes how operations are managed and
synchronized.

3.3 Rc Mapping Rules

To transform the user's object-oriented conceptual scheme, the following Rc rules must be
used:

Rc 1: All concepts of type A are translated into O2I class. Each class will be public, private
or virtual.

Rc 2: All concepts of type B are translated into INHERITS FROM with rename and/or
redefinition possibilities.

Re 3: All concepts of type C are translated into INSTANCE VARIABLES according to there
types (predefined, SET OF, ENUMERATED, aggregate ...).

Rc 4: All concepts of type D are translated into CONSTRAINT of INSTANCE
VARIABLES according to their nature (uniqueness or attribute).

Re 5: All concepts of type E are translated with aggregated attributes and cardinality
constraints in the CONSTRAINT part. In the case of a strongly dependency, cardinalities must
be defined in two classes, the caller and called. However, in the case of a weak dependency, the
cardinalites is expressed only in the caller objects.

Rc 6: All concepts of type F are translated into INHERITANCE CONSTRAINTS according
to their types (disjunction, covering, partition,...). We define four types of inheritance
constraint:

425

a) ~ <S>i = 0

b) ~ <S>i~O

c) Q <S>i = <G>

d) 0,~ <S>i g<G>

The first six rules are used to map the static aspect of an information system: mapping of
attributes, domains, structural links and inheritance. For instance the translation of Person and
Client classes of graphical descriptions given in figure 1 is as follows :

DEFINE CLASS PERSON

INSTANCE VARIABLES :
Nss : string (15)
Name : string(30)

Age : [0 .. 132]
Adress : ADRESS

CONSTRAINT :
UNIQUENESS :

Nss
CARDI/4AL1TY :

Adress : (1, 1)
INHERITANCE CONSTRAINTS :

CLIENT ~ SUPPLIER = PERSON
, , . ,

END CLASS --- Person

DEFINE CLASS CLIENT

INHERITS FROM : PERSON
REDEFINITION Age : [0..80]
RENAME

Adress W1TH Adress_Client
, , , , . , ,

END CLASS -- Client

Fig 3: The mapping of the static aspect of the conceptual specification

The dynamic concepts (operation, event, state transition graph, service, actor ...) are mapped
using the following rules :

Re 7: All concepts of type G are translated into INSTANCE METHODS using a
precondition and a postcondition possibilities. In this case of a redefined method, the procedure
will call explicitly the procedure of the same name defined in the superclass.

Some models describe operations by a text in natural language. This text specifies the operation
purpose and the rules according to which attributes and states are valued or changed. In this
case, the designer has to give his algorithm details using, when needed, the classical
instructions (IF... THEN...ELSE...ENDIF, WHILE END,...). If the model uses a formal
specification language [16], the translation will be automatically done into O2I language. For
instance, an order creation operation is translated into O21 as follows:

426

DEFINE CLASS ORDER
/NSTANCE VARIABLES:

Ord_Line : SET OF (ORDER_LINE)
State : ENUMERATED (created, delivered, invoiced, paid)

CONSTRAINT :

CARDINAL1TY :
Ord_Line : (1, N)

INSTANCE METHODS :
METHOD Create Order : PRIVATE

(V A R : number, ord._line, Creation_date, state)
PRECONDITION : absent order
BODY :

{ Create_Oder_Line ()} +
--- Create one instance of order
state := 'created'

END Body
POSTCONDITION : state := 'created'

END METHOD
E ND CLASS --Order

Fig 4: An example of operations and services mapping

Rc 8.1: All concepts of type H are translated into INSTANCE METHODS. The event
predicate is translated into the method precondition or as simple condition into the method
body. Trigger is translated using the procedure CALL with specifying three parameters : the
object name, the operation and the factor.

For instance the product event (out of stock) can be translated into O21 as follows:

DEFINE CLASS PRODUCT
. ~

METHOD Out of_Stock : PUBLIC
BODY :

IF (OLD.qte stock >=replenislmaent_level) and
(NEW.qte_stock < replenislmlent_.levcl)

THEN
CALL (Supplier, Demand_.of._replenishment)

ENDIF
END Body
END METHOD

E N D CLASS --Product

Fig 5: An example of the mapping of an Out_Of_Stock event

427

Re 8.2: If an event is internal, it is translated by a private method for the object.

Re 8.3: If an event is external or temporal, it is translated by an abstract class and a method
for its execution.

Re 9: All concepts of type I are translated with enumerated attribute (called STATE) and with
INSTANCE METHODS (precondition and postcondition are mandatories).

Re 10: All concepts of type J are translated into an abstract class (lion instanciable).

Re 11: All concepts of type K are translated into INSTANCE METHODS which allow
instance migration.

3 .4 Ri M a p p i n g R u l e s

The second set of rules is used for the translation from an O2I specification, already established
before, towards a target object-oriented implementation.

Ri 1: Each OI2 class is translated into a class within the target language.

Ri 2: Each actor class (a class without instance variable in O2IL) is translated into an abstract
class (deferred in Eiffel, virtual in ONTOS/C++)

Ri 3: The INHERITS FROM concept is translated into a classical inheritance into target
languages. To resolve the multiple inheritance conflict, REDEFINE and RENAME can be
used.

Ri 4.1: All object-oriented programming languages support the <basic_domain> notion.

Ri 4.2: Each <collection_domain> is translated using the generic class COLLECTION [X]
into Eiffel and collection SET (X) into ONTOS/C++, where X is a type.

Ri 4.3: Each <aggregate_domain> or <referred _domain> is translated using a deferred class
into Eiffel and abstract class into ONTOS/C++.

Ri 4.4: Each <enumerated_domain> or <interval _domain> is translated using the routine
Eiffel concept or the ONTOS/C++ method.

Ri 5: Each uniqueness or attribute constraint is translated into an invariant or using a
specific method.

Ri 6: Each cardinality constraint is translated within a specific method which verifies the
minimal and maximal cardinalities (in the caller and the called).

For instance, the translation of the static aspect of the conceptual specification, giving in Fig.
3, towards Eiffel and ONTOS/C++ programming environments is as follows:

428

Eiffel :

Class Person

export Nss, name,age, address
feature

Nss : STRING
name : STRING

age: INTEGER
address: expanded (ADDR :I~S)

set age (new age: INTEGER) ; BOOLEAN is
do

--- verified if the the value o f age is correct

if(new_valae~--O and new_value<=132)
then

rcsulc=TR UE

age:---'ncw value
else

result := FALSE
end'.

end ;
Set Nss (new value: STRING) : BOOLEEN is

do
c: COLI.EC'I]ON[Person]
c,selecl X sudms

X.Nss :=new value
inherit Person

if (not c.empty)
then

result:= FALSE
else

Nss:=ncw_valuo
rcsult:=TRUF,

end;

end ; *-- class Person

ONTOS/C+.~ ;
Class Person : PublieObject
{
I~blie

char *Nss;

char *name;
int age.result;

ADDRESS address

int set age (age)
{

if ((age < O) and (age > 132))
then

re:~ult := l;
else

result:--O;
end;
return (result)

}
int Set_Nss (new value: STRING)
[
If(select * from Person X

where X.Nss := new value) �9 0
theal

re,suit:= l'-
also
f

Nss:fnew_value;
resuh:=O;

};
return (result);

}

; ..- class Person

where Object is a predefined ONTOS class. Each persistent object must be an instance of the
Object class or its derived classes.

The inheritance constraints are mapped in object-oriented programming using the following set
of rules:

Ri 7.1: Each inheritance constraint such that ,=, <S>i = 0 or o <S>i ~ <G> is translated
by a classical inheritance into the target languages (all classes are persistents).

Ri 7.2: Each inheritance constraint such that ,~o~ <S> i ~ 0 is translated by a superclass and

subclasses all persistents. 2~- (n+l) persistent classes will be created. They represent all
possible intersections between the n subclasses.

I'1
Ri 7.3: Each inheritance constraint such that ,~ < S > i = < G > is translated using the Ri 7.2
rule where the superclass is abstract (deferred).

The O2I dynamic concepts are mapped using the following rules :

Ri 8: Each instance method is translated by a specific method into the target language. Pre
and Post conditions are checked into the method body.

429

The meaning of the event concept is not the same in different conceptual models. This concept
is particularly hard to implement in object oriented languages, because of the functional
principles of the method calls [12]. For instance, in O*, it poses some problems such as:

- the implementation of the internal event mechanism
- the management of the dynamic transition during the execution
- the saving of the event succession.

To resolve these problems, we propose a solution based on two steps:
- when event is activated, its operations are triggered and its predicates - susceptible to

be chained - are tested
- then, each event having a true predicate is activated in sequence.

To implement this mechanism, we use the two following rules :

Ri 9.1: Every event method is implemented by a routine in the target language.

Ri 9.2: For every private event method, a specific method (TEST_PRED) is implemented in
order to test predicate. A boolean parameter is used when calling the method. When the call has
a factor, we must keep the predicate value for each affected object.

Class Product
feature
Prod Out of s t o c k : B O O L E A N ;
sp : Supplier;

Out Of Stock (Prod Out of stock) : B O O L E A N is
do

if (OLD.qte_stock >=replenishment_level) and
(NEW.qte_stock < replenishment_level)

then
Demand Of_.Replenishment(Pred Out o f stock);

end;
end;

end - - - class Product

Class Supplier
e x p o a Demand_Of_Replenishment ...;
feature

Demand_Of_Repletf ishment0~red_Out_of_stock): B O O L E A N is
do

--- operation perfomlh~g text
end;

end; - - - class Supplier

Fig 6: Eiffel implementation of an event method.

4 C o n c l u s i o n

In this paper we proposed an interface, supported by a software tool, to bridge the gap between
object-oriented conceptual modelling and object-oriented implementation (Eiffel,
ONTOS/C++). It is based on a pivot model and a set of mapping rules. The interest of our
approach is to obtain a precise and non ambiguous specification easily impleinentable.
Our works are, at present, oriented to suggest a 'PIVOT' object-oriented design model that
might allow to shift from any object-oriented conceptual specification to different environments
(OO languages, OODBMS, relational DBMS...) and integrate some optimization notions using
metrics.

430

Acknowledgements

We thank Professor C. ROLLAND, Professor X. CASTELLANI, Professor N. BIDOIT and
R. LALEAU for their helpful advise and remarks and their amiability.

References

[1] E. Ar~Jonof; "OFM : une m~thode formelle pour la conception des bases de donnEes orinet6es
objet", doctorat d'universit~ Paul Sabatier, September 1992.

[2] BUSINESS CLASS project, "Analyst Workbench Tutorial" Release 2, Deliverable BC.R.TS.T34,
Business class ESPRIT II P 5311, 1992.

[3] G.Booch, "Object-Oriented Develop,nent", IEEE Trans. on S.E., Vol. SE-12, N*2, Feb. 1986.

[4] G.Booch, Software Engineering with Ada, 2nd Edition, Benjamin/Cummings Publishing Co.,
Menlo Park, 1987.

[5] J. Brunet, C.Cauvet, L. Lassoudris, "Why Using Event in a Hight Level Specification", in Proc. of
the Entity / Relationship Conference, Lausanne, 1990.

[6] J. Brunet, "Modeling the world with Semantic Objects", Working conference on the object
oriented approach in information systems, 1991.

[7] X. Castellani, "Le module de la m&hode MCO d'analyse et de conception des syst~mes d'objets"
Congr6s 1NFORSID, Paris 1991.

[8] X. Castellani, "MCO M6thodologie G6n6rale d'analyse et de Conception des Syst~mes d'Objets,
Tome 1 : l'Ing6nieurie des besions" Edition Masson, Paris 1993.

[9] P Cointe, "Metaclasses are First Class : the ObjVlisp ModeI",L1TP, Universitd Paris VI ACM,
OOPSLA, 1987.

[10] G. Grosz " Formalisation des connaissances r6utilisables pour la conception des syst~mes
d'information",Th~se de doctorat de runiversit6 Paris V1, Ddcembre 1991.

[11] M. Heitz, "HOOD, une mdthode de conception hi6rarchisde orient6e objet pour le d6veloppement
des gros logiciels techniques et temps r6el", D6c. 1989, Journ6es Ada-France.

[12] N.Kraiem, J.Brunet " Mapping of Conceptual Specifications into Object-oriented Programs",
SEKE'92, Proceedings of the Fourth International Conference on Software Engineering and
Knowledge Engineering, IEEE, Capri, June 1992.

[13] B. Meyer, 'Conception et programmtion orientde objets", IntcrEdition, 1990.

[14] D.E. Monarchi, G.I. Puhr " A research typology for object-oriented analysis and design",
Conununications of the ACM, September 1992, Vol 35, N ~ 9.

[15] R. Laleau, X. Castellani, M. Jouve. "Normalized Design of the Specialization Inheritance". Indo-
French workshop on Object-Oriented Systems. GOA-Inde. 2-5 Nov. 1992.

[16] R. Laleau, X. Castellani, and al. "Transformation de Spdcifications informelles MCO en
Sp6cifications formelles VDM". Journ6e AFCET. November 1992.

431

[17] C. Rolland, O. Foucaut, G. Benci, Conception de Syst~mes d'lnformation, la mdthode Remora,
Ed. Eyrolles, Paris 1988.

[18] E. Yourdon, P. Coad "Object oriented analysis", second Edition, Yourdon press, 1991.

[19] Peter Wegner. "Concepts and Paradigms of Object-Oriented Progranmling,"OOPSLA-89 Keynote
Talk, 1989.

