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Abstract. This paper presents a normalization process for object-oriented 
conceptual schemes modelized with the O* object-oriented analysis method. Two 
normal forms called 1-ONF and 2-ONF and a synthesis process are described. 
These normal forms and synthesis process are used to validate only the structural 
part of a conceptual scheme; the behavioural part is out of the scope of the paper. 

1 Introduction 

Nowadays analysis methods of information systems (IS) are widely influenced by the 
object-oriented paradigm. This paradigm has already been used in several fields such as 
programming languages [15], design methods [8], artificial intelligence [22] or databases 
[9]. Analysis methods which integrate this paradigm are called object-oriented analysis 
method : they lead to the modeling of object-oriented conceptual schemes. 

But those methods do not still deal with the normalization principle. They do not provide 
with solutions to indicate if the modelized conceptual schemes carry out desirable properties 
such as completeness or non redundancy. To determinate if a conceptual scheme is 
normalized, it is necessary to recognize the undesirable classes it describes and to convert 
them in a more desirable form. 

We can note that such studies have been done in the relational context. Normal forms and 
normalization processes have been proposed to modelize suitable relational schemes [10], 
[7], [11]. These results have been used to validate the structural part of entity-relationship 
conceptual schemes [I 3]. 

This paper presents a normalization process adapted to the object-oriented conceptual 
schemes modelized with the object-oriented analysis method O* [9]. This method has been 
choosen because it fully integrates the object-oriented paradigm during the modeling stage 
[20]. Two normal forms called 1-ONF and 2-ONF and a synthesis process have been 
defined. The normal forms are used to check the redundancy of the conceptual scheme 
classes. The design process is used to convert undesirable classes in a more suitable form. 
The starting point of the process is a set of attributes, a set of functional (FD) and 
multivalued (MD) dependencies extended to the notion of role [3]. The result is a set of 
normalized classes. We can note that we approach only the structural part of the conceptual 
scheme; the approach of the behavioaral part is out of the scope of this paper. 

This paper is organized as follows. Section 2 is a survey of normalization processes for 
databases. Section 3 outlines the fundamental concepts of the O* model. Section 4 
describes the normal forms and the normalization process. First some basic notions and 
notations are introduced. Then the normal forms and the design process are successively 
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presented. Secdon 5 illustrates the normalization principle of the structural part of O* 
object-oriented conceptual schemes using the previous design process. Finally some 
concluding remarks are given. 

2 Survey of normalization processes for databases 

On the one hand, normalization processes have been defined for relational databases. The 
starting point of these processes are a set of attributes arid a set of FD or MD dependencies. 
Attributes describe the structural part of the database while dependencies express the 
semantics of the database. The result is a set of normalized relations for which redundancy 
is reduced : 3NF, BCNF, 4NF ... 

The most famous processes are the synthesis and the decomposition algorithms. The 
synthesis algorithm described in [7] modelizes, from a set of attributes and a set of FD, 
3NF relational schemes. The decomposition algorithm proposed in [11] lead to 4NF 
relational schemes from a set of attributes and a set of MD. An algorithm which combines 
the synthesizing and the decomposition approaches is presented in [6]. This algorithm 
considers a set of attributes and a set of FD and MD to modelize 4NF relational schemes. 
The underlaying process first uses the decomposition approach to determine a set of clusters 
(set of attributes and dependencies) from the MD; then the synthesis approach is used to 
deal the clusters with respect to the set of FD. 

On the other hand, extended relational databases [1] [18] have been proposed to make the 
modelization of strongly structured data easier. Such databases consider that tuple 
components of relations may be sets, lists or relations themselves; they are free from INF. 
Normalization processes for such databases have been proposed. First, [14] extends the 
notion of FD and MD for nested relations and defines a normal form integrating those 
extended dependencies in the definition of the 4NF. Then, [21] introduces the PNF 
(Partitioned Normal Form) which represents scheme of nested relations by trees. Finally, 
[16], [17] lake its inspiration from the previous works to define the NNF (Nested Normal 
Form). 

3 T h e  O*  object-oriented model 

O* [9] is an object-oriented analysis method which consists of an object-oriented model 
which fully integrates the object-oriented paradigm [20] and a set of methodological guide- 
lines. For reasons of space limitation, this section only describes the O* model. 

The O* model provides with two kinds of schemes to describe the static and dynamic 
aspects of an IS. These schemes integrate the concepts of object and classe. 

The static scheme describes the static aspects of an IS through classes connected by 
inheritance links and attributes defined on classes. These attributes represent the static links 
modelized between classes. Two kinds of links are distinguished : the composition links 
and the refering links. A composition link between a composite class and a component 
class expresses a strong coupling of behaviour between a composite object and its 
component object: on one hand, the existence of the component object depends on the 
existence of its composite object; on the other hand, a component object belongs to one 
and only one composite object. In contrast, a refering link between a refering class and a 
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refered class expresses a weak coupling of behaviour between a refering object and its refered 
object: on one hand, the existence of the refered object is totally independent of its refering 
object; on the other hand, a refered object may be shared by several refering object. Theses 
links are either simple or multiple; simple links indicate that a composite (a refering) 
object is composed of (refers to) one and only one object while multiple links indicate that 
a composite (a refering) object is composed of (refers to) one or several objects. An 
example of static scheme is given in section 4. 

The dynamic scheme describes the behavioural aspects of the IS using the concepts of 
events and operations associated with classes. Events may be external, internal and 
temporal. External events correspond to the events occurring in the environment outside an 
IS. Internal events correspond to the internal state changes or rather the system answers of 
the IS. Temporal events correspond to the events whose occurrences depend on the 
description of time. On the other hand, an operation represents an action performed on an 
object of a class and causes a slate change to this object. 

4 Normal forms and normalization process 

Our proposal for the normalization of O* object-oriented scheme takes its inspiration from 
the normalization principles of extended relational databases. It re-uses the notion of tree to 
represent the classes structure describing the modelized conceptual scheme and leads to a 
structural normalization. 

4.1 Preliminaries 

We use the notions of FD [10], MD [11] and role associated with a dependency: 

There is a FD between X and Y, noted X ~ Y ,  if to each value of X corresponds one 
value of Y at the most in a O* class C(X,Y,Z). 

There is a MD between X and Y, noted X ~ Y ,  if to each value of X corresponds one 
or several values of Y, independent of the values of Z in a O* class C(X,Y,Z). 

The notion of role precises the semantics of dependencies allowing the distinction 
between identical dependencies (i.e. expressed between the same left and right hand). The 
role is noted between brackets. It allows the modelization of several relationships 
between the same classes; it is also used to traduce the inheritance semantic expressed by 
a FD (see section 4). 

We also use the different inference rules defined for FD and MD [4]. We require these rules: 

To compute the dependents of a set X of attributes: those dependents correspond to all 
the attributes Y which are inferred from X and from a set of FD and MD, applying the 
previous inference rules [5]. 

To compute the transitive closure and a minimal cover of a set D of FD and MD: the 
IIansitive closure of D, noted D +, is the set of dependencies which may be inferred from 
D; a minimal cover of D, noted D', is a set of reduced (i.e. exempt of redundancy) and 
non inferred dependencies (from D). 
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A dependency d : X - -  W r (D-) +, (where - -  indicates the functional or multivalued 
feature of the dependency), is reduced if it is [16] : 

non trivial if XW --- U then W~O et W ~ X 

left reduced V X', X ' c  X then X ' w  W ~ (D') + 

right reduced V W', W ' c  W then X W' ~ (D-) + where X - -  W is trivial 

non transferable V X', X ' c  X then X' ..... W(X-X9 ~ (D-) + 

D- and D + allow to determinate the keys of  D. Those keys are either essential or 
nonessential. The essential keys of  D are the left-hand of  D-dependencies . The 
nonessential keys of D are the left-hand of D + reduced dependencies. 

Finally, we use the notion of tree to represent conceptual scheme classe structure. A tree is 
described by a set of  nodes and leaves which correspond to the attributes of the classes, and 
by a set of edges which express the FD and MD existing between the attributes. O* 
references are represented by a leaf of a tree ag' which is also the root of a tree ,N.". O* 
compositions correspond to sub-trees of  any tree. 

The following tree ag illustrates the different 
structural integrity constraints which exist between 
its attributes. It represents the fol lowing 
dependencies : 

A1 - * ~ A 2  
A 1 ~ A 3 A 3  IA32 
A I A 3 ~ A 3 1  
A1A3 ~ A 3 2  

A1 / ,  
A2 ~ A3 

/ k  
/ \ 

A31 A32 

where FD and MD are respectively noted and - - - on the trees. We note DPS(ag) 

the set of dependencies represented by the tree a~. 

4.2  Normal forms 

To validate the previous trees, we need to define normal forms. We present here two 
normal forms called 1-ONF and 2-ONF. 1-ONF checks if a tree corresponds to the set of 
FD and MD it must describe while 2-ONF verifies if a 1-ONF tree is non redundant. 

~r 1 - O N F  

Let D be the set of FD and MD, D- a minimal cover of D and a~ the corresponding tree. ag 
is in 1-ONF if and only if every leaf is decomposed with respect to the essential keys of D. 
The notion of decomposed leaves is defined as follows. X ,  leaf of  a~, is not decomposed: 

if it exists C such as X n C # O  where C is a reduced essential key of  D i.e. a key 

such as it does not exist C', an essential key of D, checking X n C '  c X n C  et 
XCTC',~, 
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- X=X'Y1...Yn with X'=XC~C and Y1...Yn~:O, YI~ Dependent(A(P(X))X') . . . . .  
Yn~ Dependent (A(P(X))X~. 

The idea is to use the notion of dependent to decompose every leaf. For example, let U= {A, 
B, C, D, E, F, G} and D = { A ~ B ,  B ~ C ,  A D ~ F G ,  A D ~ E } .  

The following ,~' tree is not decomposed with respect to the essential keys {A, B, AD} 
because the leaf DEFG is not decomposed. Indeed, Dependent(AD)= { A, D, { A }, { D }, { B }, 
{ C}, {FG }, {E } }. Therefore, it exists X'=D, Y'=E and Y"=FG such as Y' ~ Dependent(AD) 
et Y" ~ Dependent(AD). Quite the opposite, the ,~" tree is fully decomposed. 

~,: A ~,,: A 

\ / \ 

./ ~ ' .  6' ~ A D  
B C DEFG B C / \ 

E FG 
~a- 2 - O N F  

Let D be the set of FD and MI), D- a minimal cover of D and ,~ the corresponding tree. ,~ 
is in 2-ONF if and only if ,.4 is in 1-ONF and if ,~ is nonredundant. Three kinds of 
redundancy are specified: reflexive, augmentative and transitive redundancy. 

�9 R e f l e x i v e  r e d u n d a n c y  

This redundancy is illustrated through the example of the following tree ,~'. Indeed 
DPS(,.~')={A--d~A, A C ~ A C ,  A C A ~ A } .  The dependencies A-- '~A and 
AC ~ A C  are reflexive redundant with respect to A and AC. To remove this redundancy, 
the edges b'=(A,A) and b"=(C,A) must be deleted. The result is described in ,~". 

Jg': A Jg": 

A I 

I 
bC 

A 

r 
I 

C 

�9 Augmentative redundancy: two cases are possible. 

Case 1 [17]: 

Let U={A, B, C, D, E, F, G, H} and D={A---~B, A C ~ E F G ,  B E ~ A F ,  
BE ~ D } .  D is a minimal cover and {A, AC, BE, AE, AEC, BEC} are the keys of D. 
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The ,~1.' tree is augmentative redundant. Indeed DPS(,sfl.')={A--P-B, A ~ C E F G D H ,  
AC ~ E F G ,  A C I D ,  A C ~ H ,  A C E ~ F ,  A C E ~ G } .  Now AE is a key 
of D such as Dependent(AE)={A, E, {A}, {E}, B, {D}, {CGH}, {F}}. Therefore 
AE ~ F ;  so ACE ~ F  is augmentative redundant with respect to AE. 

$~.' : A / ,  
B 

/ i  N 

E , J ,  D 
/ 

e 
F G 

H 

To remove this redundancy, the edge b=(E,F) of ,~[' must be deleted and a new tree 
representative of the dependency AE ~ F  must be created. Then the trees ,~' and ~ "  are 
the following: 

Case 2: 

,.~L' : A ,~": //", 
B , ~ , c  

/ i  x / \ 
"w 

I D H 

G 

AE 

I 

F 

Let U={A, B, C, D, E, F} and D = { A ~ B C F ,  A ~ D ,  B D ~ A } .  D is a minimal 
cover of itself and {A, BD} are the keys of D. 

The following tree ,~ is augmentative redundant. Indeed D P S ( , ~ . ) = { A ~ B C F ,  
AB--C~CF, A - r  D, A---c'c,"EJ. As A ~ B C F  implies AB'--~CF, A B ~ C F  is 
augmentative redundant with respect to AB. To remove this redundancy, the leaf AC must 
be gather with the node B. The tree ,~ becomes: 

(I): A ..~ (2): A 

, 

B "e "e 
E BCF D E 

CF 
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�9 Transitive redundancy: two cases are possible. 

Case 1: 

Let U={A, B, C, D, E, F} and D = { A - ~ B ,  B ~ E ,  B ~ F ,  C ~ D } .  D is a 
minimal cover of itself and {A, B, C} are the keys of D. 

The following tree ,~'  is transitive redundant. Indeed DPS(,sg')={A--4~B, A ~ E ,  
A ~ F ,  A-IP~'CD, A C I D ,  ACE-4m~F, A C E ~ G } .  Now with respect to D, 
we have B ~ E ,  B--'~F. Therefore, as A - - ~ B  e DPS(,r A-4m~E and A' - -~F 
hold. These dependencies are Ixansitive redundant with respect to B. 

A 

B E F 
~ C  

I 

D 

To remove this redundancy, the edges b'=(A,E) and b"=(A,F) of ,sg' must be deleted and a 
new tree A" representative of the dependencies B ~ E  and B ~ F  must be created. 

~g': A Jg": /, 
B \r c 

I 

b 
D 

B 

E F 

Case 2 [17]: 

Let U={A, B, C, D, E, F, G, H} and D={A--~B, A C ~ E F G ,  B E ~ A F ,  
BE ~ D } .  D is a minimal cover of itself and {A, AC, BE, AE, AEC, BEC} are the keys 
of D. 

The following Jg '  tree is transitive redundant. Indeed D P S ( , ~ g ' ) = { A ~ B ,  
A--dm~CEFGDH, A C ~ E F G ,  A C I D ,  A C ~ H ,  A C E ~ F ,  
A C E ~ G } .  Now AE is a key of D such as Dependent(AE)={A, E, {A}, {E}, B, {D}, 
{CGH}, {F} }. Therefore A E ~ D .  More over AC ~ E F G  implies AC ~ A E F G  
and AE ~ D  implies AEFG ~ D .  Therefore A C i D  is transitive redundant with 
respect to AE. To remove this redundancy, the edge b=(C,D) of J~' must be deleted and a 
new tree ,~g" must be created such as AE--4m~D. 
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~ ' (1 ) :  A ~ :  A ~" :  ?, / ,  
/ 1 \  / \ / ~ \  / x 

\ D  H / \  H 
/ / 

�9 b �9 b 
F G F G 

AE 

I 

D 

4 . 3  Design process 

The design process is a synthesis algorithm which modelize a set of trees which are directly 
in 2-ONF from a set of attributes and a set of FD and MD. This algorithm lakes its 
inspiration from those proposed in the relational databases context [7]. It re-uses the notion 
of clusters introduced in [6]. It lies upon the basis inference rules (R1 ... R9) complemented 
by the rules R10, R11, R12 and R13: 

R 1 (Reflexivity) if Y~X then X ~ Y  

R2 (Augmentation) if Z~--W and X ~ Y then XW-c, '-YZ 
R3 (Transitivity) if X ~ Y and Y ~ Z  then X---c~Z 
R4 (Complementation) if X ~ Y  then X ~ U - XY 
R5 (Reflexivity) if Y~-X then X ~ Y 

R6 (Augmentation) if ZffW and X ~ Y  then XW ~ Y Z  
R7 (Transitivity) if X ~ Y and y ~ Z then X ~ Z  - Y 
R8 (FD is a MD) i f X ~ Y  t h e n X ~  Y 
R9 (Projectability) if X ~  Y and Y - c ~ Z  then X--4~Z-Y 

R10 (Augmentation case 1) 

R11 (Augmentation case 2) 

R12 (Transitivity case 1) 

R13 (Transitivity case 2) 

if X ~ Y then XY' ~ Y "  with Y'Y"=Y and Y ' ~  
and Y"r 
if X - r  Y (resp X ~ Y )  then XZ ~ Y  (resp 
X Z ~ Y )  
rules R3, R5 and R8 are jointly used 

if X ~ Y  a n d Z ~ W  with Z=X'Y', X'c-x and 

y , c y  then X ~ W  

The last rules R 10 ..... R13 correspond to the different cases of redundancy presented before; 
they can be considered as macro inference rules inferred from the basis rules. 

We consider a formal example to illustrate the design process. Let U={A, B, C, D, E, F, G, 
H, I, J} and D={A--C~B, B ~ E ,  B ~ F ,  A C ~ D J H ,  A J ~ H ,  A D ~ J ,  
A D ~ G } .  The synthesis algorithm used is the following: 
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Compute a minimal cover of D 
Compute the clusters 0Y,D') of D 
For each cluster Do 

Compute the keys of D' 
Compute the dependents of the essential keys of D' 
Add in D' the inferred dependencies 
Use the rules R10, R11, R12 and R13 to remove the inferred dependencies 

obtained from D' 
Compute the dependents of nonessential keys of D' 
For each dependency d Do 

Use the rules R 10, R 11, R 12 and R 13 to replace the inferred 
dependencies from D'+d by d (in D3 

End For 
End For 
D <-- UD'  
Determine the 2-OFM corresponding trees 

First, the design process computes a minimal cover of D to remove the redundancy of the 
non slxongly structured data. In the example, D is a minimal cover of itself. 

Then, the design process removes the redundancy of strongly structured data. It begins 
computing the different clusters of U with respect to D and the keys of these clusters. The 
clusters are groups of attributes, FD and MD expressed between these attributes. They are 
identified as follows: 

Compute the CE set of essential keys of D 
Arrange CE in growing order of keys (the order of a key is the number of 

attributes which compose it [2]) 
Select the keys whose order is equal and minimum 
Make a cluster for each minimum order key; this cluster is defined as follows: 

D'= {deD such as LeftHand(d)n(key of the cluster)~} 

U'= [A such as A appear in d'a D'} 
Add the attributes of U which do not belong to any U' if one of the U' 
Gather the equivalent clusters (two clusters are equivalent if their keys are such as 

(keyl -r D and (key2.-4~keyl)e D) 

In the example, the clusters are the following: 

- CII=(U1,D1) where UI={A, B, C, D, H, I, J} and DI={A---~B, AC--C'~DJH, 
A J ~ H ,  A D ~ J ,  A D ~ G } .  

- CI2=CLI2,D2) whereU2={B,E,F} a n d D 2 = { B ~ E ,  B-4~F}.  

Now, the redundancy of the clusters must be removed. For each cluster, the designer first 
determinates the dependents of the essential keys of the cluster (using the principle 
decomposition of leaves presented in the 1-ONF) and add in D' the inferred dependencies. 
This step is illuslyated through the example as follows: 
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Cil: the essential keys are A, AC, AD, AJ and the unique nonessential key is ACJ. 
The designer uses the notion of reduced keys to compute the dependent of essential 
keys; the computing principle is the same as making 1-ONF trees: 

Dependent(A)=[A, {A}, B, {CDGHIJ} } implies A--4"B and A ~ C D G H I J .  
Dependent(AC)={A, C, {A}, {C], B, {DJH], {G}, {I]} implies AC'--c"B, 
AC ~ D J H ,  A C ~ G  and A C ~ I .  
Dependent(ACD)={A, C, D, {A}, {C}, {D}, B, {G}, {H}, {I}, {J}) implies 
ACD ~ B ,  ACD ~ G ,  ACD ~ H ,  ACD ~ I  and ACD ~ J .  

Therefore Dl={A--I,"B, AC-c'P"DJH, A J ~ H ,  A D ~ J ,  A D ~ G ,  
A ~ C D G H I J ,  AC-c-B,  A C ~ G ,  A C ~ I ,  ACD--a,'-B, A C D ~ G ,  
ACD ~ H ,  ACD--r ACD ~ J } .  

The dependencies AC--C-B, A C D ~ B ,  A C D ~ G ,  A C D ~ I  and 
A C D ~ J  are deleted because they are augmentative redundant (rules R10 and 
Rll) .  Therefore DI={A---C'B, A C ~ D H ,  A J ~ H ,  A D ~ J ,  
AD ~ G ,  A ~ C D G I H ,  AC ~ G ,  AC ~ I ,  ACD ~ H } .  
The dependency A C ~ G  is removed because it is transitive redundant with 
respect to AD (rule R12 applied from A C ~ D H  and AD-Ce 'G) .  The 
dependency ACD ~ H  is also removed because it is transitive redundant with 
respect to AJ (rule R12 applied from A C D ~ J  and AJ ~ H ) .  

Hence DI={A---m'-B, A C I D ,  A J ~ H ,  A D ~ J ,  A D ~ G ,  
A ~ C D I ,  A C ~ I } .  

- C12: the essential key is B. Computing its dependents does6 not alter D2 which has 
no redundancy. 

Then, the designer computes the dependents of the nonessential keys of the clusters. For 
each inferred dependency d, he checks if it exists in D' a dependency d' which is redundant 
with respect to Left-Hand(d) (which is a non essential key) in D'+d and replaces d' with d; 
rules RI0, Rll ,  R12 and R13 are applied. In the example, CI1 has a nonessential key 
ACJ. Dependent(ACJ)={A, C, J, {A}, {C}, {J}, B, {D}, {H}, {G}, {I}}. The inferred 
dependencies are nonredundant in D1, so D1 is not altered. 

When each cluster is considered, D is the union of each D'. In the example, D= {A ~ B ,  
B ~ E ,  B ~ F ,  A C I D ,  A J ~ H ,  A D ~ J ,  A D ~ G ,  A ~ C D I ,  
AC ~ 1 } .  

Finally, the designer deduces the 2-ONF corresponding trees: he gathers together the 
dependencies which have the same left-hand. Two dependencies d : X m Y  and d':X'mY' 
have same left-hands if and only if X=X' or X'=XX" with X"cY and Y'cY. Gathered 
dependencies are the 2-ONF modelized trees. In the example, the trees are the following: 

~-I=(U1,D1) with UI={A, B, C, D, I} and DI={A-a~B, A ~ C D I ,  A C ~ I ,  
AC ~D}, 
~9.2=(U2,D2 ) with U2={B, E, F} and D2={B ~E, B -a~F}, 
,~.3 = (U3,D3) with U3= { A, D, J, G } and D3= { AD ~J, AD ~ G }, 
3~L4=(U4,D4 ) with U4=[A, J, H} and D4={AJ ~H}. 
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Their graphical descriptions are: a~-l: A ?, 
B ) , , c  

/ \ 
/ x 

D O  'oI  

as B ag3: AD a[4: AJ 

/ / \ I 

dr dr ~, i 
g F G J H 

5 Normalization of O* object-oriented conceptual schemes 

In this section, we describe how the previous normal forms may be used to normalize the 
static scheme modelized with the O* method. 

The static scheme may be presented in a graphical way or a textual way. The two 
descriptions are useful to check if the static part of the conceptual scheme is normalized. 
The graphical description shows the different classes and the links which connect them. 
Three groups of links are illustrated: inheritance links, refering links and composition 
links. Refering and composition links may be simple or multiple. The textual description 
indicates the different attributes of each class of the graphical description. 

Examples of graphical and textual static conceptual scheme are described hereunder. They 
help us to explain how we check the normalization of the static part of the conceptual 
scheme. In this example, we consider two main functions of a business firm namely order 
processing and inventory management [9]. The graphical description is the following: 

I I I / /  " - -  

p \ 

" ~  I Product 
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where .................. ~ is the inheritance link, - -  - -  ~ and - -  - -  ~ are the simple 
and multiple refering links and ~ and ~ are the simple and 
multiple composition links. The partial corresponding textual static conceptual scheme is 
the following: 

class Order 
compositions 

order# : integer 
creation date : string 
delivery date : string 
invoice "date : string 
state : string 
lines : set-of (Orderline) 

references 
client : Client 

class Orderline 
compositions 

quantity : real 
references 

product : Product 

To check the normalization of such a conceptual scheme, we proceed as follows. First, the 
clusters are deduced from the graphical description; they correspond to the set of classes 
connected at least by a composition link. Next, the attributes of the clusters am recorded. 
These attributes are attributes which do not express a (refering or composition) link; they 
come from the textual description. Then, the cluster keys are choosen; they correspond to 
one or several attributes which identify the cluster. Next, the dependencies of the clusters 
are expressed. These dependencies traduce either existing links between classes of the 
conceptual scheme or existing links between the key of the cluster and the other attributes. 
Inheritance links are represented through FD and an inheritance role. Simple refering or 
composition links correspond to FD. But there is not always a close correspondence 
between a multiple link and a MD because of the strong restriction of MD (there is a MD 
between X and Y if to each value of X corresponds one or several values of Y independent 
of the values of Z). 

In the business firm example, six clusters are identified. The first one gathers the Person 
and Account classes, the second the Client class, the third the Order and Orderline classes, 
the fourth the Supplier class, the fifth the Supplier-order and Supplier-orderline classes and 
the sixth the Product class. 

The attributes of these clusters am the attributes of the classes they gather except those 
which describe links coming from these classes. For example, the attribute client of the 
Order class is not keeped in the third cluster (Order and Orderline). 

The keys of these clusters are the attributes which identify the composite classes. For 
example, the key of the third cluster is the attribute order# of the Order class : such an 
attribute is called conceptual identifier in [19]. 

The dependencies of these clusters describe links between their keys and the other attributes. 
For example, order#-4~state and order#"~creation-date am dependencies of the third 
cluster. These dependencies can also describe inheritance, refering or composition links. The 
third cluster contains the dependency order#'-C~client# which represents a refering link 
between the Order class and the Client class. It also contains the dependencies 
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order# ~ orderline#, order# orderline# ~ product# and order# orderline# ~ quantity. 
The inheritance link existing between the class Client and the class Person is represented by 
a FD between the corresponding clusters. An inheritance role is associated to this FD [3]: 
client#-C~ pers#(inheritance). 

Then, a minimal cover is computed for each cluster; the design process presented in section 
4.3 is also used to remove redundancy of slIongly structured data in each cluster and to 
deduce the corresponding set of 2-ONF trees. Finally, the static O* scheme is built again: 

- trees and sub-trees correspond to classes; 
nodes and leaves correspond to attributes; 

- sub-IIees express composition links; 
- leaves which are also root of a tree express refering links except if  there is an 

inheritance role associated with the considered leaf; in that case, they express an 
inheritance link. 

The obtained static O* scheme is normalized with respect to the 2-ONF. 

6 C O N C L U S I O N  

This paper has presented a normalization process adapted to the object-oriented conceptual 
schemes modelized with the object-oriented analysis method O* [9]. This method has been 
choosen because it fully integrates the object-oriented paradigm during the modeling stage 
[20]. Two normal forms called 1-ONF and 2-ONF and a synthesis process have been 
proposed. The normal forms are used to check the redundancy of the conceptual scheme 
classes and the design process is used to convert undesirable classes in a more suitable 
form. The starting point of the process is a set of attributes, a set of functional and 
multivalued dependencies extended to the notion of role [3]. The result is a set of 
normalized classes. We think that such a process is useful in object-oriented design methods 
in order to support the modelization of"weU-defmed" conceptual schemes. 

We can note that only the structural part of the conceptual scheme is aproached; the 
approach of the behavioural part is out of the scope of this paper. Our current works 
concern this behavioural part; the problem may be dealt minimizing the complexity of the 
client/server graph. 
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