
Normalization of Object-Oriented Conceptual Schemes

Eric ANDONOFF

Laboratoim IRIT l~le SIG,
Unlversit~ Tonlouse Ill, 118 route de Narbonne, 31062 Toulouse C&iex.

Abstract. This paper presents a normalization process for object-oriented
conceptual schemes modelized with the O* object-oriented analysis method. Two
normal forms called 1-ONF and 2-ONF and a synthesis process are described.
These normal forms and synthesis process are used to validate only the structural
part of a conceptual scheme; the behavioural part is out of the scope of the paper.

1 Introduction

Nowadays analysis methods of information systems (IS) are widely influenced by the
object-oriented paradigm. This paradigm has already been used in several fields such as
programming languages [15], design methods [8], artificial intelligence [22] or databases
[9]. Analysis methods which integrate this paradigm are called object-oriented analysis
method : they lead to the modeling of object-oriented conceptual schemes.

But those methods do not still deal with the normalization principle. They do not provide
with solutions to indicate if the modelized conceptual schemes carry out desirable properties
such as completeness or non redundancy. To determinate if a conceptual scheme is
normalized, it is necessary to recognize the undesirable classes it describes and to convert
them in a more desirable form.

We can note that such studies have been done in the relational context. Normal forms and
normalization processes have been proposed to modelize suitable relational schemes [10],
[7], [11]. These results have been used to validate the structural part of entity-relationship
conceptual schemes [I 3].

This paper presents a normalization process adapted to the object-oriented conceptual
schemes modelized with the object-oriented analysis method O* [9]. This method has been
choosen because it fully integrates the object-oriented paradigm during the modeling stage
[20]. Two normal forms called 1-ONF and 2-ONF and a synthesis process have been
defined. The normal forms are used to check the redundancy of the conceptual scheme
classes. The design process is used to convert undesirable classes in a more suitable form.
The starting point of the process is a set of attributes, a set of functional (FD) and
multivalued (MD) dependencies extended to the notion of role [3]. The result is a set of
normalized classes. We can note that we approach only the structural part of the conceptual
scheme; the approach of the behavioaral part is out of the scope of this paper.

This paper is organized as follows. Section 2 is a survey of normalization processes for
databases. Section 3 outlines the fundamental concepts of the O* model. Section 4
describes the normal forms and the normalization process. First some basic notions and
notations are introduced. Then the normal forms and the design process are successively

450

presented. Secdon 5 illustrates the normalization principle of the structural part of O*
object-oriented conceptual schemes using the previous design process. Finally some
concluding remarks are given.

2 Survey of normalization processes for databases

On the one hand, normalization processes have been defined for relational databases. The
starting point of these processes are a set of attributes arid a set of FD or MD dependencies.
Attributes describe the structural part of the database while dependencies express the
semantics of the database. The result is a set of normalized relations for which redundancy
is reduced : 3NF, BCNF, 4NF ...

The most famous processes are the synthesis and the decomposition algorithms. The
synthesis algorithm described in [7] modelizes, from a set of attributes and a set of FD,
3NF relational schemes. The decomposition algorithm proposed in [11] lead to 4NF
relational schemes from a set of attributes and a set of MD. An algorithm which combines
the synthesizing and the decomposition approaches is presented in [6]. This algorithm
considers a set of attributes and a set of FD and MD to modelize 4NF relational schemes.
The underlaying process first uses the decomposition approach to determine a set of clusters
(set of attributes and dependencies) from the MD; then the synthesis approach is used to
deal the clusters with respect to the set of FD.

On the other hand, extended relational databases [1] [18] have been proposed to make the
modelization of strongly structured data easier. Such databases consider that tuple
components of relations may be sets, lists or relations themselves; they are free from INF.
Normalization processes for such databases have been proposed. First, [14] extends the
notion of FD and MD for nested relations and defines a normal form integrating those
extended dependencies in the definition of the 4NF. Then, [21] introduces the PNF
(Partitioned Normal Form) which represents scheme of nested relations by trees. Finally,
[16], [17] lake its inspiration from the previous works to define the NNF (Nested Normal
Form).

3 T h e O* object-oriented model

O* [9] is an object-oriented analysis method which consists of an object-oriented model
which fully integrates the object-oriented paradigm [20] and a set of methodological guide-
lines. For reasons of space limitation, this section only describes the O* model.

The O* model provides with two kinds of schemes to describe the static and dynamic
aspects of an IS. These schemes integrate the concepts of object and classe.

The static scheme describes the static aspects of an IS through classes connected by
inheritance links and attributes defined on classes. These attributes represent the static links
modelized between classes. Two kinds of links are distinguished : the composition links
and the refering links. A composition link between a composite class and a component
class expresses a strong coupling of behaviour between a composite object and its
component object: on one hand, the existence of the component object depends on the
existence of its composite object; on the other hand, a component object belongs to one
and only one composite object. In contrast, a refering link between a refering class and a

45t

refered class expresses a weak coupling of behaviour between a refering object and its refered
object: on one hand, the existence of the refered object is totally independent of its refering
object; on the other hand, a refered object may be shared by several refering object. Theses
links are either simple or multiple; simple links indicate that a composite (a refering)
object is composed of (refers to) one and only one object while multiple links indicate that
a composite (a refering) object is composed of (refers to) one or several objects. An
example of static scheme is given in section 4.

The dynamic scheme describes the behavioural aspects of the IS using the concepts of
events and operations associated with classes. Events may be external, internal and
temporal. External events correspond to the events occurring in the environment outside an
IS. Internal events correspond to the internal state changes or rather the system answers of
the IS. Temporal events correspond to the events whose occurrences depend on the
description of time. On the other hand, an operation represents an action performed on an
object of a class and causes a slate change to this object.

4 Normal forms and normalization process

Our proposal for the normalization of O* object-oriented scheme takes its inspiration from
the normalization principles of extended relational databases. It re-uses the notion of tree to
represent the classes structure describing the modelized conceptual scheme and leads to a
structural normalization.

4.1 Preliminaries

We use the notions of FD [10], MD [11] and role associated with a dependency:

There is a FD between X and Y, noted X ~ Y , if to each value of X corresponds one
value of Y at the most in a O* class C(X,Y,Z).

There is a MD between X and Y, noted X ~ Y , if to each value of X corresponds one
or several values of Y, independent of the values of Z in a O* class C(X,Y,Z).

The notion of role precises the semantics of dependencies allowing the distinction
between identical dependencies (i.e. expressed between the same left and right hand). The
role is noted between brackets. It allows the modelization of several relationships
between the same classes; it is also used to traduce the inheritance semantic expressed by
a FD (see section 4).

We also use the different inference rules defined for FD and MD [4]. We require these rules:

To compute the dependents of a set X of attributes: those dependents correspond to all
the attributes Y which are inferred from X and from a set of FD and MD, applying the
previous inference rules [5].

To compute the transitive closure and a minimal cover of a set D of FD and MD: the
IIansitive closure of D, noted D +, is the set of dependencies which may be inferred from
D; a minimal cover of D, noted D', is a set of reduced (i.e. exempt of redundancy) and
non inferred dependencies (from D).

452

A dependency d : X - - W r (D-) +, (where - - indicates the functional or multivalued
feature of the dependency), is reduced if it is [16] :

non trivial if XW --- U then W~O et W ~ X

left reduced V X', X ' c X then X ' w W ~ (D') +

right reduced V W', W ' c W then X W' ~ (D-) + where X - - W is trivial

non transferable V X', X ' c X then X' W(X-X9 ~ (D-) +

D- and D + allow to determinate the keys of D. Those keys are either essential or
nonessential. The essential keys of D are the left-hand of D-dependencies . The
nonessential keys of D are the left-hand of D + reduced dependencies.

Finally, we use the notion of tree to represent conceptual scheme classe structure. A tree is
described by a set of nodes and leaves which correspond to the attributes of the classes, and
by a set of edges which express the FD and MD existing between the attributes. O*
references are represented by a leaf of a tree ag' which is also the root of a tree ,N.". O*
compositions correspond to sub-trees of any tree.

The following tree ag illustrates the different
structural integrity constraints which exist between
its attributes. It represents the fol lowing
dependencies :

A1 - * ~ A 2
A 1 ~ A 3 A 3 IA32
A I A 3 ~ A 3 1
A1A3 ~ A 3 2

A1 / ,
A2 ~ A3

/ k
/ \

A31 A32

where FD and MD are respectively noted and - - - on the trees. We note DPS(ag)

the set of dependencies represented by the tree a~.

4.2 Normal forms

To validate the previous trees, we need to define normal forms. We present here two
normal forms called 1-ONF and 2-ONF. 1-ONF checks if a tree corresponds to the set of
FD and MD it must describe while 2-ONF verifies if a 1-ONF tree is non redundant.

~r 1 - O N F

Let D be the set of FD and MD, D- a minimal cover of D and a~ the corresponding tree. ag
is in 1-ONF if and only if every leaf is decomposed with respect to the essential keys of D.
The notion of decomposed leaves is defined as follows. X , leaf of a~, is not decomposed:

if it exists C such as X n C # O where C is a reduced essential key of D i.e. a key

such as it does not exist C', an essential key of D, checking X n C ' c X n C et
XCTC',~,

453

- X=X'Y1...Yn with X'=XC~C and Y1...Yn~:O, YI~ Dependent(A(P(X))X')
Yn~ Dependent (A(P(X))X~.

The idea is to use the notion of dependent to decompose every leaf. For example, let U= {A,
B, C, D, E, F, G} and D = { A ~ B , B ~ C , A D ~ F G , A D ~ E } .

The following ,~' tree is not decomposed with respect to the essential keys {A, B, AD}
because the leaf DEFG is not decomposed. Indeed, Dependent(AD)= { A, D, { A }, { D }, { B },
{ C}, {FG }, {E } }. Therefore, it exists X'=D, Y'=E and Y"=FG such as Y' ~ Dependent(AD)
et Y" ~ Dependent(AD). Quite the opposite, the ,~" tree is fully decomposed.

~,: A ~,,: A

\ / \

./ ~ ' . 6' ~ A D
B C DEFG B C / \

E FG
~a- 2 - O N F

Let D be the set of FD and MI), D- a minimal cover of D and ,~ the corresponding tree. ,~
is in 2-ONF if and only if ,.4 is in 1-ONF and if ,~ is nonredundant. Three kinds of
redundancy are specified: reflexive, augmentative and transitive redundancy.

�9 R e f l e x i v e r e d u n d a n c y

This redundancy is illustrated through the example of the following tree ,~'. Indeed
DPS(,.~')={A--d~A, A C ~ A C , A C A ~ A } . The dependencies A-- '~A and
AC ~ A C are reflexive redundant with respect to A and AC. To remove this redundancy,
the edges b'=(A,A) and b"=(C,A) must be deleted. The result is described in ,~".

Jg': A Jg":

A I

I
bC

A

r
I

C

�9 Augmentative redundancy: two cases are possible.

Case 1 [17]:

Let U={A, B, C, D, E, F, G, H} and D={A---~B, A C ~ E F G , B E ~ A F ,
BE ~ D } . D is a minimal cover and {A, AC, BE, AE, AEC, BEC} are the keys of D.

454

The ,~1.' tree is augmentative redundant. Indeed DPS(,sfl.')={A--P-B, A ~ C E F G D H ,
AC ~ E F G , A C I D , A C ~ H , A C E ~ F , A C E ~ G } . Now AE is a key
of D such as Dependent(AE)={A, E, {A}, {E}, B, {D}, {CGH}, {F}}. Therefore
AE ~ F ; so ACE ~ F is augmentative redundant with respect to AE.

$~.' : A / ,
B

/ i N

E , J , D
/

e
F G

H

To remove this redundancy, the edge b=(E,F) of ,~[' must be deleted and a new tree
representative of the dependency AE ~ F must be created. Then the trees ,~' and ~ " are
the following:

Case 2:

,.~L' : A ,~": //",
B , ~ , c

/ i x / \
"w

I D H

G

AE

I

F

Let U={A, B, C, D, E, F} and D = { A ~ B C F , A ~ D , B D ~ A } . D is a minimal
cover of itself and {A, BD} are the keys of D.

The following tree ,~ is augmentative redundant. Indeed D P S (, ~ .) = { A ~ B C F ,
AB--C~CF, A - r D, A---c'c,"EJ. As A ~ B C F implies AB'--~CF, A B ~ C F is
augmentative redundant with respect to AB. To remove this redundancy, the leaf AC must
be gather with the node B. The tree ,~ becomes:

(I): A ..~ (2): A

,

B "e "e
E BCF D E

CF

455

�9 Transitive redundancy: two cases are possible.

Case 1:

Let U={A, B, C, D, E, F} and D = { A - ~ B , B ~ E , B ~ F , C ~ D } . D is a
minimal cover of itself and {A, B, C} are the keys of D.

The following tree ,~' is transitive redundant. Indeed DPS(,sg')={A--4~B, A ~ E ,
A ~ F , A-IP~'CD, A C I D , ACE-4m~F, A C E ~ G } . Now with respect to D,
we have B ~ E , B--'~F. Therefore, as A - - ~ B e DPS(,r A-4m~E and A' - -~F
hold. These dependencies are Ixansitive redundant with respect to B.

A

B E F
~ C

I

D

To remove this redundancy, the edges b'=(A,E) and b"=(A,F) of ,sg' must be deleted and a
new tree A" representative of the dependencies B ~ E and B ~ F must be created.

~g': A Jg": /,
B \r c

I

b
D

B

E F

Case 2 [17]:

Let U={A, B, C, D, E, F, G, H} and D={A--~B, A C ~ E F G , B E ~ A F ,
BE ~ D } . D is a minimal cover of itself and {A, AC, BE, AE, AEC, BEC} are the keys
of D.

The following Jg ' tree is transitive redundant. Indeed D P S (, ~ g ') = { A ~ B ,
A--dm~CEFGDH, A C ~ E F G , A C I D , A C ~ H , A C E ~ F ,
A C E ~ G } . Now AE is a key of D such as Dependent(AE)={A, E, {A}, {E}, B, {D},
{CGH}, {F} }. Therefore A E ~ D . More over AC ~ E F G implies AC ~ A E F G
and AE ~ D implies AEFG ~ D . Therefore A C i D is transitive redundant with
respect to AE. To remove this redundancy, the edge b=(C,D) of J~' must be deleted and a
new tree ,~g" must be created such as AE--4m~D.

456

~ ' (1) : A ~ : A ~" : ?, / ,
/ 1 \ / \ / ~ \ / x

\ D H / \ H
/ /

�9 b �9 b
F G F G

AE

I

D

4 . 3 Design process

The design process is a synthesis algorithm which modelize a set of trees which are directly
in 2-ONF from a set of attributes and a set of FD and MD. This algorithm lakes its
inspiration from those proposed in the relational databases context [7]. It re-uses the notion
of clusters introduced in [6]. It lies upon the basis inference rules (R1 ... R9) complemented
by the rules R10, R11, R12 and R13:

R 1 (Reflexivity) if Y~X then X ~ Y

R2 (Augmentation) if Z~--W and X ~ Y then XW-c, '-YZ
R3 (Transitivity) if X ~ Y and Y ~ Z then X---c~Z
R4 (Complementation) if X ~ Y then X ~ U - XY
R5 (Reflexivity) if Y~-X then X ~ Y

R6 (Augmentation) if ZffW and X ~ Y then XW ~ Y Z
R7 (Transitivity) if X ~ Y and y ~ Z then X ~ Z - Y
R8 (FD is a MD) i f X ~ Y t h e n X ~ Y
R9 (Projectability) if X ~ Y and Y - c ~ Z then X--4~Z-Y

R10 (Augmentation case 1)

R11 (Augmentation case 2)

R12 (Transitivity case 1)

R13 (Transitivity case 2)

if X ~ Y then XY' ~ Y " with Y'Y"=Y and Y ' ~
and Y"r
if X - r Y (resp X ~ Y) then XZ ~ Y (resp
X Z ~ Y)
rules R3, R5 and R8 are jointly used

if X ~ Y a n d Z ~ W with Z=X'Y', X'c-x and

y , c y then X ~ W

The last rules R 10 R13 correspond to the different cases of redundancy presented before;
they can be considered as macro inference rules inferred from the basis rules.

We consider a formal example to illustrate the design process. Let U={A, B, C, D, E, F, G,
H, I, J} and D={A--C~B, B ~ E , B ~ F , A C ~ D J H , A J ~ H , A D ~ J ,
A D ~ G } . The synthesis algorithm used is the following:

457

Compute a minimal cover of D
Compute the clusters 0Y,D') of D
For each cluster Do

Compute the keys of D'
Compute the dependents of the essential keys of D'
Add in D' the inferred dependencies
Use the rules R10, R11, R12 and R13 to remove the inferred dependencies

obtained from D'
Compute the dependents of nonessential keys of D'
For each dependency d Do

Use the rules R 10, R 11, R 12 and R 13 to replace the inferred
dependencies from D'+d by d (in D3

End For
End For
D <-- UD'
Determine the 2-OFM corresponding trees

First, the design process computes a minimal cover of D to remove the redundancy of the
non slxongly structured data. In the example, D is a minimal cover of itself.

Then, the design process removes the redundancy of strongly structured data. It begins
computing the different clusters of U with respect to D and the keys of these clusters. The
clusters are groups of attributes, FD and MD expressed between these attributes. They are
identified as follows:

Compute the CE set of essential keys of D
Arrange CE in growing order of keys (the order of a key is the number of

attributes which compose it [2])
Select the keys whose order is equal and minimum
Make a cluster for each minimum order key; this cluster is defined as follows:

D'= {deD such as LeftHand(d)n(key of the cluster)~}

U'= [A such as A appear in d'a D'}
Add the attributes of U which do not belong to any U' if one of the U'
Gather the equivalent clusters (two clusters are equivalent if their keys are such as

(keyl -r D and (key2.-4~keyl)e D)

In the example, the clusters are the following:

- CII=(U1,D1) where UI={A, B, C, D, H, I, J} and DI={A---~B, AC--C'~DJH,
A J ~ H , A D ~ J , A D ~ G } .

- CI2=CLI2,D2) whereU2={B,E,F} a n d D 2 = { B ~ E , B-4~F}.

Now, the redundancy of the clusters must be removed. For each cluster, the designer first
determinates the dependents of the essential keys of the cluster (using the principle
decomposition of leaves presented in the 1-ONF) and add in D' the inferred dependencies.
This step is illuslyated through the example as follows:

458

Cil: the essential keys are A, AC, AD, AJ and the unique nonessential key is ACJ.
The designer uses the notion of reduced keys to compute the dependent of essential
keys; the computing principle is the same as making 1-ONF trees:

Dependent(A)=[A, {A}, B, {CDGHIJ} } implies A--4"B and A ~ C D G H I J .
Dependent(AC)={A, C, {A}, {C], B, {DJH], {G}, {I]} implies AC'--c"B,
AC ~ D J H , A C ~ G and A C ~ I .
Dependent(ACD)={A, C, D, {A}, {C}, {D}, B, {G}, {H}, {I}, {J}) implies
ACD ~ B , ACD ~ G , ACD ~ H , ACD ~ I and ACD ~ J .

Therefore Dl={A--I,"B, AC-c'P"DJH, A J ~ H , A D ~ J , A D ~ G ,
A ~ C D G H I J , AC-c-B, A C ~ G , A C ~ I , ACD--a,'-B, A C D ~ G ,
ACD ~ H , ACD--r ACD ~ J } .

The dependencies AC--C-B, A C D ~ B , A C D ~ G , A C D ~ I and
A C D ~ J are deleted because they are augmentative redundant (rules R10 and
Rll) . Therefore DI={A---C'B, A C ~ D H , A J ~ H , A D ~ J ,
AD ~ G , A ~ C D G I H , AC ~ G , AC ~ I , ACD ~ H } .
The dependency A C ~ G is removed because it is transitive redundant with
respect to AD (rule R12 applied from A C ~ D H and AD-Ce 'G) . The
dependency ACD ~ H is also removed because it is transitive redundant with
respect to AJ (rule R12 applied from A C D ~ J and AJ ~ H) .

Hence DI={A---m'-B, A C I D , A J ~ H , A D ~ J , A D ~ G ,
A ~ C D I , A C ~ I } .

- C12: the essential key is B. Computing its dependents does6 not alter D2 which has
no redundancy.

Then, the designer computes the dependents of the nonessential keys of the clusters. For
each inferred dependency d, he checks if it exists in D' a dependency d' which is redundant
with respect to Left-Hand(d) (which is a non essential key) in D'+d and replaces d' with d;
rules RI0, Rll , R12 and R13 are applied. In the example, CI1 has a nonessential key
ACJ. Dependent(ACJ)={A, C, J, {A}, {C}, {J}, B, {D}, {H}, {G}, {I}}. The inferred
dependencies are nonredundant in D1, so D1 is not altered.

When each cluster is considered, D is the union of each D'. In the example, D= {A ~ B ,
B ~ E , B ~ F , A C I D , A J ~ H , A D ~ J , A D ~ G , A ~ C D I ,
AC ~ 1 } .

Finally, the designer deduces the 2-ONF corresponding trees: he gathers together the
dependencies which have the same left-hand. Two dependencies d : X m Y and d':X'mY'
have same left-hands if and only if X=X' or X'=XX" with X"cY and Y'cY. Gathered
dependencies are the 2-ONF modelized trees. In the example, the trees are the following:

~-I=(U1,D1) with UI={A, B, C, D, I} and DI={A-a~B, A ~ C D I , A C ~ I ,
AC ~D},
~9.2=(U2,D2) with U2={B, E, F} and D2={B ~E, B -a~F},
,~.3 = (U3,D3) with U3= { A, D, J, G } and D3= { AD ~J, AD ~ G },
3~L4=(U4,D4) with U4=[A, J, H} and D4={AJ ~H}.

459

Their graphical descriptions are: a~-l: A ?,
B) , , c

/ \
/ x

D O 'oI

as B ag3: AD a[4: AJ

/ / \ I

dr dr ~, i
g F G J H

5 Normalization of O* object-oriented conceptual schemes

In this section, we describe how the previous normal forms may be used to normalize the
static scheme modelized with the O* method.

The static scheme may be presented in a graphical way or a textual way. The two
descriptions are useful to check if the static part of the conceptual scheme is normalized.
The graphical description shows the different classes and the links which connect them.
Three groups of links are illustrated: inheritance links, refering links and composition
links. Refering and composition links may be simple or multiple. The textual description
indicates the different attributes of each class of the graphical description.

Examples of graphical and textual static conceptual scheme are described hereunder. They
help us to explain how we check the normalization of the static part of the conceptual
scheme. In this example, we consider two main functions of a business firm namely order
processing and inventory management [9]. The graphical description is the following:

I I I / / " - -

p \

" ~ I Product

460

where ~ is the inheritance link, - - - - ~ and - - - - ~ are the simple
and multiple refering links and ~ and ~ are the simple and
multiple composition links. The partial corresponding textual static conceptual scheme is
the following:

class Order
compositions

order# : integer
creation date : string
delivery date : string
invoice "date : string
state : string
lines : set-of (Orderline)

references
client : Client

class Orderline
compositions

quantity : real
references

product : Product

To check the normalization of such a conceptual scheme, we proceed as follows. First, the
clusters are deduced from the graphical description; they correspond to the set of classes
connected at least by a composition link. Next, the attributes of the clusters am recorded.
These attributes are attributes which do not express a (refering or composition) link; they
come from the textual description. Then, the cluster keys are choosen; they correspond to
one or several attributes which identify the cluster. Next, the dependencies of the clusters
are expressed. These dependencies traduce either existing links between classes of the
conceptual scheme or existing links between the key of the cluster and the other attributes.
Inheritance links are represented through FD and an inheritance role. Simple refering or
composition links correspond to FD. But there is not always a close correspondence
between a multiple link and a MD because of the strong restriction of MD (there is a MD
between X and Y if to each value of X corresponds one or several values of Y independent
of the values of Z).

In the business firm example, six clusters are identified. The first one gathers the Person
and Account classes, the second the Client class, the third the Order and Orderline classes,
the fourth the Supplier class, the fifth the Supplier-order and Supplier-orderline classes and
the sixth the Product class.

The attributes of these clusters am the attributes of the classes they gather except those
which describe links coming from these classes. For example, the attribute client of the
Order class is not keeped in the third cluster (Order and Orderline).

The keys of these clusters are the attributes which identify the composite classes. For
example, the key of the third cluster is the attribute order# of the Order class : such an
attribute is called conceptual identifier in [19].

The dependencies of these clusters describe links between their keys and the other attributes.
For example, order#-4~state and order#"~creation-date am dependencies of the third
cluster. These dependencies can also describe inheritance, refering or composition links. The
third cluster contains the dependency order#'-C~client# which represents a refering link
between the Order class and the Client class. It also contains the dependencies

461

order# ~ orderline#, order# orderline# ~ product# and order# orderline# ~ quantity.
The inheritance link existing between the class Client and the class Person is represented by
a FD between the corresponding clusters. An inheritance role is associated to this FD [3]:
client#-C~ pers#(inheritance).

Then, a minimal cover is computed for each cluster; the design process presented in section
4.3 is also used to remove redundancy of slIongly structured data in each cluster and to
deduce the corresponding set of 2-ONF trees. Finally, the static O* scheme is built again:

- trees and sub-trees correspond to classes;
nodes and leaves correspond to attributes;

- sub-IIees express composition links;
- leaves which are also root of a tree express refering links except if there is an

inheritance role associated with the considered leaf; in that case, they express an
inheritance link.

The obtained static O* scheme is normalized with respect to the 2-ONF.

6 C O N C L U S I O N

This paper has presented a normalization process adapted to the object-oriented conceptual
schemes modelized with the object-oriented analysis method O* [9]. This method has been
choosen because it fully integrates the object-oriented paradigm during the modeling stage
[20]. Two normal forms called 1-ONF and 2-ONF and a synthesis process have been
proposed. The normal forms are used to check the redundancy of the conceptual scheme
classes and the design process is used to convert undesirable classes in a more suitable
form. The starting point of the process is a set of attributes, a set of functional and
multivalued dependencies extended to the notion of role [3]. The result is a set of
normalized classes. We think that such a process is useful in object-oriented design methods
in order to support the modelization of"weU-defmed" conceptual schemes.

We can note that only the structural part of the conceptual scheme is aproached; the
approach of the behavioural part is out of the scope of this paper. Our current works
concern this behavioural part; the problem may be dealt minimizing the complexity of the
client/server graph.

R e f e r e n c e s

1. S. Abiteboul: Non-first normal form relations: an algebra allowing data structuring, Journal
of Computer and System Science, December 1986.

2. E. Andonoff, C. Sallaberry, G. Zurfluh: Interactive design of object-oriented databases. 4th
CAiSE International Conference, Manchester, May 1992.

3. E. Andonoff: OFM: une m~thode formelle pour la conception de bases de donn~es orient6es
objet. Th~se de l'Universit~ de Toulouse 111, Septembre 1992.

4. C. Beeri, R. Fagin, T. Howard: A complete axiomatization for functional and multivalued
dependencies. 2nd ACM International Conference on Management of Data, Toronto,
August 1977.

5. C. Beeri: On the membership problem for functional and multivalued dependencies in
relational database. ACM Transaction On Database Systems, Vol. 5, n*3, September 1980.

462

6. C. Beeri, M. Kifer: An integrated approach for logical relational design of relational
database schemes. ACM Transaction On Database Systems, Vol. 11, n~ June 1986.

7. P. Bemstein: Synthesizing third normal form relations from functional dependencies. ACM
Transaction On Database Systems, Vol. 1, n~ December 1976.

8. G. Beech: Software engineering with ADA. Benjamin-Cummings publishing company,
1991.

9. J. Brunet: Modelling the world with semantic objects. IFIP TC8 Working Conference on
Object-Oriented approach in Information Systems, Quebec, October 1991.

10. E. Codd: Further normalization of the database relational model. In Database systems,
Prentice-Hall publishing company, Englewood Cliffs, 1972.

11. R. Fagin: Multivalued dependencies and new normal form for relational databases. ACM
Transaction On Database Systems, Vol. 2, n~ September 1977.

12. W. Kim: Object-oriented databases: definition and research directions. IEEE Transaction on
Knowledge and Data Engineering, Vol. 2, n ~ 3, September 1990.

13. T. Ling: A normal form for entity relationship diagrams. 4th ER Approch International
Conference, Chicago, November 1985.

14. A, Makinouchi: A consideration on normal form of not-necessarily-normalized relations in
the relational data model. 3rd VLDB International Conference, Tokyo, 1977.

15. B. Meyer: Object-oriented software construction. Prentice-Hall publshing company,
Englewood Cliffs, 1988.

16. Z. Ozsoyoglu, L.Y. Yuan: A normal form for nested relations. 4th ACM Symposium on
Principles of Database Systems, March 1985.

17. Z. Ozsoyoglu, L.Y. Yuan: A new normal form for nested relations. ACM Transaction on
Database Systems, Vol. 12, n~ 1987.

18. P. Pistor, F. Andersen: Designing a generalized NF2 model with an SQL-type language
interface. 12th VLDB International Conference, Kyoto, 1986.

19. C. Rolland. C. Cauvet: Modtlisation conceptuelle orientte objet 7i~mes Journtes Bases de
Donntes Avan~es, Lyon, Septembre 1991.

20. C. Rolland: Trends and perspectives in conceptual modeling. Indo-French Workshop on
Object-Oriented Databases, Goa, November 1992.

21. M. Roth, H. Forth, A. Silberschatz: Theory on non-first-normal form relational databases.
Internal Report 84/36, Univeristy of Texas, Austin, December 1984.

22. M. Stefik, D. Bobrow: Object-oriented programming: themes and variations. Articial
Intelligence Magazine, January 1986.

